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Abstract. As machine learning technologies are increasingly adopted,
the demand for responsible AI practices to ensure transparency and ac-
countability grows. To better understand the decision-making processes
of machine learning models, GASTeN was developed to generate realistic
yet ambiguous synthetic data near a classifier’s decision boundary. How-
ever, the results were inconsistent, with few images in the low-confidence
region and noise. Therefore, we propose a new GASTeN version with a
modified architecture and a novel loss function. This new loss function
incorporates a multi-objective measure with a Gaussian loss centered
on the classifier probability, targeting the decision boundary. Our study
found that while the original GASTeN architecture yields the highest
Fréchet Inception Distance (FID) scores, the updated version achieves
lower Average Confusion Distance (ACD) values and consistent perfor-
mance across low-confidence regions. Both architectures produce realis-
tic and ambiguous images, but the updated one is more reliable, with
no instances of GAN mode collapse. Additionally, the introduction of
the Gaussian loss enhanced this architecture by allowing for adjustable
tolerance in image generation around the decision boundary.

Keywords: Synthetic Data Generation · Generative Adversarial Net-
works · Responsible Artificial Intelligence

1 Introduction

The widespread adoption of Machine Learning (ML) and Artificial Intelligence
(AI) technologies has made the development of responsible AI practices crucial
to ensure transparency and accountability in their applications [3]. In this con-
text, model cards emerge as a tool to provide standardized documentation to
communicate the characteristics and behaviours of deployed AI models [11].

To improve the transparency of ML models, Cunha et al. . introduced GAS-
TeN — a deep generative model that generates realistic synthetic data near a
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classifier’s decision boundary [5]. The authors use the Fréchet Inception Dis-
tance (FID) [9] to measure image realism and introduce the Average Confusion
Distance (ACD) to assess proximity to the decision boundary. Visual inspec-
tion shows that GASTeN can create realistic yet ambiguous images for human
observers. However, the results are inconsistent due to a challenging trade-off
between ACD and FID, which should be as low as possible. Despite this, GAS-
TeN hand-picked samples can fill model cards, providing insights into the ML
model’s decision boundary.

To enhance the GASTeN framework, we introduce two modifications in this
research: architectural updates and a novel generator loss function approach.
On the architectural side, we replaced the generator’s initial linear layer and the
discriminator’s last linear layer with convolutional layers. Then, we updated the
generator loss mechanism to include a multi-objective measure that combines the
standard generator adversarial loss with a Gaussian loss applied to the classifier’s
output, targeting a distribution centered at 0.5 with adjustable variance.

Our empirical study shows that GASTeNv2 achieves lower ACD values and
consistent FID across low-confidence regions. We conclude that both architec-
tures produce realistic and ambiguous images, being the updated one more re-
liable, with no instances of GAN mode collapse — problem when the generator
outputs non-diverse images despite varying inputs [7].

The contributions of this work are as follows:

1. updated architecture to enhance performance and stability;
2. incorporation of a multi-objective measure with a Gaussian loss to provide

more control over the generation process.

These contributions result in more consistent images that remain close to the
decision boundary, providing better examples for populating model cards and
ultimately enhancing our understanding of the classifiers’ decision boundaries.

2 Related Work

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of deep generative models
that feature two neural networks: a generator that creates images from noise and
a discriminator that assesses their authenticity [8]. GANs have gained significant
notoriety in computer vision due to their ability to generate high-quality, real-
istic images. However, training GANs effectively is challenging. Reaching Nash
equilibrium — where simultaneous updates of the two neural networks might
not lead to convergence [7] — and mode collapse are prominent issues.

Since the GAN architecture proposal, numerous adaptations have been devel-
oped. Research works like WGAN [2], DCGAN [15], and InfoGAN [4] have signif-
icantly improved the training processes by addressing issues like training stability
and feature representation. These architectures have also enhanced loss functions
through various improvements: they integrate adversarial losses [14], application-
specific losses [6], or combinations thereof by adopting a multi-objective measure
for loss function optimization [1].
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Generative Adversarial Stress Test Networks GASTeN [5] uses Deep Con-
volutional GAN (DCGAN) [15] to synthesize realistic yet challenging data. The
method aims to provide insights into deep-learning image classifiers by gener-
ating examples near the decision boundary in binary classification. GASTeN
introduces a two-step training process: firstly, it pre-trains the original DCGAN
to teach the generator; secondly, it integrates classifier predictions, enabling fur-
ther training of the generator with a new loss function (see Equation 1). The
new term of the loss function — confusion distance (cd) — measures the dis-
tance from the classifier’s prediction to the decision threshold multiplied by α
to balance the image quality and ambiguity [5].

LGASTeN
G = LGAN

G + α · cd(C(G(z))) (1)

The authors evaluated their method on binary subsets of MNIST [10] and
Fashion MNIST [16] using the FID score as the image quality metric. FID as-
sesses realism by comparing feature distributions with real images. The authors
then introduce a new metric, the average confusion distance (ACD), that mea-
sures the average cd of all images. By visually inspecting some generated samples,
the authors found images visually plausible yet ambiguous, even to human ob-
servers. However, The authors found it challenging to identify images that had
both low ACD values and low FID scores [5]. Therefore, they concluded that it
might not always be feasible to develop a generator that consistently deceives
the target classifier while still producing images that are considered realistic.

2.2 Gaussian Negative Log Likelihood Loss

The Gaussian Negative Log Likelihood Loss (GNLL) is used to estimate both the
mean (µ) and variance (σ) of a target’s probability distribution as a function of
the input. It is based on a presumed model of the target’s error-distribution [12].
The GNLL formula, as outlined in Equation 2, incorporates these parameters
where σ2 represents the variance, µ indicates the mean of the distribution, and y
is the observed actual value. According to this formulation, a lower GNLL value
suggests that the actual value is closer to the predicted mean, aligning more
closely with the expected target distribution.

LGNLL =
1

2
log(σ2) +

(y − µ)2

2σ2
(2)

A study improved deep age estimation using Gaussian loss [13]. The re-
searchers used a Convolutional Neural Network (CNN) with a mean-variance
loss to predict age from images. This approach minimized the discrepancy be-
tween predicted and actual ages and penalized variance in the age distribution,
achieving state-of-the-art results.

3 Gaussian Conditional GASTeN

To develop and deploy responsible models, we are developing methods to in-
vestigate the decision boundary of a specified classifier. While exploring state-
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of-the-art methods, we identified the GASTeN [5] architecture, which generates
realistic images near a classifier’s decision boundary. However, GASTeN often
struggles to balance FID and ACD scores, meaning achieving realistic images
compromises proximity to the decision boundary.

To address this challenge, we suggest two improvements to GASTeN related
to the intrinsic architecture and the generator loss function. Cunha et al. imple-
mented two modifications to the original DCGAN architecture: they replaced
the initial convolutional layer in the generator with a linear layer and, similarly,
the last convolutional layer in the discriminator with a linear layer. Our first
update was to revert these changes to preserve the architecture of the original
DCGAN. Then, we updated the generator loss, introducing a multi-objective
measure incorporating the standard generator loss with a Gaussian loss applied
to the classifier’s output. This Gaussian loss targets a distribution centered at the
decision boundary — that we define as 0.5 — with an adjustable variance (σ2),
which acts as a hyperparameter and is weighted by α that balances the data
realism and confusion. The improvements to the original GASTeN framework
are detailed in Fig. 1, and the new loss is specified in Equation 4.

Fig. 1: Schematic overview of GASTeNv2. The generator loss is a multi-objective
measure of the generator and Gaussian losses.

LGASTeN
G = LGAN

G + α · LGNLL (3)

= LGAN
G + α · 1

2
log(σ2) +

(C(G(z))− 0.5)2

2σ2
(4)

This approach shifts from measuring the average distance of all images from
the decision boundary to assessing their deviation from a Gaussian distribution
centered at 0.5. GNLL captures the variance around this center, representing the
low-confidence region better. Additionally, GNLL allows for fine-tuning the out-
put distribution through the variance parameter, enabling precise adjustments
in model predictions and avoiding issues like mode collapse in GANs.

This enhancement maintains GASTeN’s principle of generating images based
on a differentiable function. Although we set the Gaussian distribution mean
at 0.5, other values can be chosen to condition image generation for different
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classifier probabilities, addressing various scenarios and objectives, e.g., setting
the mean to 1 would generate images with total confidence in the positive class.

4 Experimental Setup

4.1 Dataset

To assess the effectiveness of our approach, we conduct experiments using the
MNIST dataset, given that the results can be easily interpreted with general
knowledge, as opposed to other datasets that may need expert evaluation. Con-
siderations like dataset size and image characteristics were also taken. As GAS-
TeN exclusively works with binary classification tasks [5], we curate binary sub-
sets of the original dataset by isolating images belonging to two specific classes.
In this context, we focus on subsets representing similar concepts: 7vs1 and 5vs3.

4.2 Architecture

The base architecture is the same as GASTeN. The used GAN follows the DC-
GAN [15] architecture, with the non-saturating GAN loss proposed by Goodfel-
low et al. [8]. Optimizer and training hyperparameters are set according to the
original DCGAN work [15]. For the binary classification, we use a CNN-based
architecture with two convolutional blocks. Each block contains a convolution
and a max pooling operation. The first block uses nf number of filters in the
convolutions, and the second uses 2 ·nf blocks. Classifiers with smaller nf values
have less capacity. Each classifier was trained for 1 epoch.

4.3 Evaluation Strategy

To measure performance, we use the same metrics as Cunha et al. , enabling
direct comparison. We use accuracy to assess classification performance. To
evaluate GASTeN’s performance, we use FID and ACD scores. The FID score
measures the realism of generated images, while the ACD score assesses the
generator’s capacity to produce images with low classification confidence.

Both ACD and FID scores should be minimized. However, since our primary
goal with GASTeN is to generate images near the decision boundary, we prioritize
the ACD metric, provided the FID scores remain within a reasonable range.
To further compare our experiments, we define a low confidence region where
ACD < 0.1, corresponding to classifier probabilities between 0.4 and 0.6. We
then select images generated within this region and measure their FID scores.
Finally, we compare these FID scores to the overall FID scores and evaluate how
they perform relative to the other experiments.

Additionally, we perform a manual inspection of the generated samples to
provide a qualitative assessment. This inspection facilitates the rapid identifica-
tion of collapsed GANs and allows us to evaluate the ambiguity of the images.
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4.4 Experiments

We structured our experimental approach into two distinct phases: initially, we
assess whether the updated architecture improves the original; then, we select
the best architecture to evaluate the efficacy of the new loss function. To this
end, we have designed two specific experiments:

1. Architecture: comparing the confusion distance (CD) loss, i.e., the original
loss defined by Cunha et al. , using the original GASTeN architecture against
the CD loss using the updated GASTeN architecture;

2. Losses: comparing the CD loss versus the Gaussian loss on the winning
architecture.

One of GASTeN’s objectives is to stress classifiers in a data-driven way by
identifying data points that push the model to its limits — in this case, the
decision boundary [5]. We continue this goal from the original study by stressing
three classifiers of varying capacities. We experimented with CNN using 1, 2,
and 4 filters, where fewer filters indicate reduced classifier capacity.

For the original GASTeN configuration, we selected α values of 20, 25, and
30 based on findings from Cunha et al. . The authors found that these values
are the ones that decrease the ACD score the most. However, it can impact the
realness of the images. This strategy is appropriate given our focus on generating
images near the decision boundary.

For the Gaussian loss version of GASTeN, the α value also weights the im-
pact of the classifier on the generator loss. Setting α to 0 effectively eliminates
the Gaussian loss constraint. After manually assessing that the GNLL and the
generator losses are on comparable scales, we opted to test α values of 0.5, 0.8,
and 1.0, where 1.0 levels the losses.

Additionally, the GNLL loss requires specifying a variance (σ2). We exper-
imented with variances of 0.01 and 0.005. A variance of 0.01 corresponds to a
standard deviation of 0.1, implying that 68.2% of the values will fall between
classifier probabilities of 0.4 and 0.6. A variance of 0.005 leads to a standard de-
viation of 0.07, meaning that 95.4% will lie between 0.64 and 0.36. We selected
these variance values to explore different tolerances on the classifier confidence,
where a higher variance allows greater tolerance and a lower variance leads to a
closer concentration of images around the decision boundary.

The last hyperparameter we adjusted was the number of GAN pre-training
epochs — that we denote by β — for which we explored values of 5 and 10. We
chose these values based on observations from the original GASTeN implemen-
tation, which the authors found to minimize instances of GAN mode collapse
and enhance the FID scores.

All combinations of the mentioned hyperparameters are tested for each clas-
sifier, and all GASTeN versions are trained with 40 epochs. Also, all experiments
were conducted using a machine equipped with one Tesla T4 GPU, ensuring suf-
ficient computational power for training and inference phases. The source code
for the experiments is available on GitHub1.

1 https://github.com/crdsteixeira/Thesis-Hubris Benchmarking with AmbiGANS
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5 Results

Following the original GASTeN architecture, our first step was to train the clas-
sifiers. The accuracies of these classifiers are detailed in Table 1. The selected
MNIST subsets exhibit varying levels of complexity, with 7 vs 1 being the easiest
and 5 vs 3 the most challenging. Even the least accurate classifier achieves an
accuracy of 91.85%, demonstrating that all classifiers can make reliable predic-
tions. The following sections reflect the defined experimental setup.

Table 1: Performance metrics of CNN models on various datasets.

Dataset Classifier Accuracy Loss

CNN (nf = 4) 99.12% 0.036
7 vs 1 CNN (nf = 2) 98.15% 0.061

CNN (nf = 1) 97.55% 0.177

CNN (nf = 4) 96.32% 0.116
5 vs 3 CNN (nf = 2) 94.37% 0.171

CNN (nf = 1) 91.85% 0.292

5.1 Architecture

After running all combinations for each architecture, we conducted a total of
36 experiments for each MNIST subset. In the 7 vs 1 MNIST subset, a manual
inspection of the generated images revealed two experiments that resulted in
GAN mode collapse, both from the original architecture and α = 30. In contrast,
for the 5 vs 3 MNIST subset, no GANs collapsed.

From the non-collapsed GANs, we compared the experiments’ ACD and FID
scores. Fig. 2 illustrates the distributions of ACD and FID scores for all exper-
iments, categorized by architecture (original versus updated) and dataset. We
observed that the ACD values are lower for the updated architecture than the
original architecture, whereas the FID scores are proportionally higher.

To evaluate the behaviour of GASTeN in regions of low confidence, we gener-
ated 10,000 images and computed both their global FID score and the FID score
for images with ACD < 0.1. This analysis used the selected GASTeN hyperpa-
rameters that yielded the lowest ACD scores for each classifier and corresponding
architecture. Detailed GASTeN hyperparameters are in Table 2. Table 3 show
the average and standard deviation of the results over three runs, along with the
percentages of images falling within this ACD range.

We observe that although the original architecture yields the best FID scores
overall, there is a significant reduction in the number of images when considering
only images close to the decision boundary. In this low-confidence region, the
reduction is so drastic that we cannot compute the FID scores for two of the
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(a) ACD distribution (b) FID distribution

Fig. 2: Comparison of FID and ACD scores across all hyperparameter configu-
rations, not collapsed, grouped by dataset and architecture.

Table 2: Performance metrics of different classifiers with various architectures
and loss functions, for MNIST subset 5 vs 3.

Classifier Architecture Loss Hyperparameters FID ACD

CNN (nf = 1) original CD β = 5; α = 20 7.44 0.221
updated CD β = 10; α = 30 22.37 0.083
updated Gaussian β = 5; α = 1; σ2 = 0.005 28.42 0.081

CNN (nf = 2) original CD β = 10; α = 30 9.54 0.290
updated CD β = 10; α = 25 23.42 0.116
updated Gaussian β = 10; α = 1; σ2 = 0.005 29.95 0.103

CNN (nf = 4) original CD β = 10; α = 30 13.46 0.331
updated CD β = 10; α = 30 26.69 0.127
updated Gaussian β = 5; α = 1; σ2 = 0.005 34.63 0.110

classifiers, due to a requirement of at least 2048 images. For the CNN with 1
filter on the original architecture, the FID score increases but not as significantly
as with the updated version. Contrariwise, for the updated architecture, the FID
score remains consistent in the low-confidence region, which is an advantage.

In addition to quantitatively evaluating our approach, we manually inspect
the generated images. Fig. 3 resembles the one shown by Cunha et al. , where
images on the far left are classified with high confidence as negative by the clas-
sifier, and those on the far right are classified with high confidence as positive.
We conclude that the images are both realistic and ambiguous when the clas-
sifier probability is 0.5. Both the original and updated architectures generate
images of very similar quality. However, the updated version has the advantage
of producing more images close to the decision boundary.

Overall, we conclude that the updated architecture is superior, achieving
lower ACD values while maintaining FID scores that result in realistic images.
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Architecture Loss Classifier FID FID #images
(global) (ACD < 0.1) (ACD < 0.1)

CNN (nf=1 ) 5.84 ± 0.11 9.21 ± 0.08 2620.33 ± 29.67
original CD CNN (nf=2 ) 7.82 ± 0.10 - 2021.00 ± 46.81

CNN (nf=4 ) 11.82 ± 0.04 - 1578.67 ± 37.00

CNN (nf=1 ) 20.54 ± 0.04 20.10 ± 0.08 6756.00 ± 2.64
updated CD CNN (nf=2 ) 20.68 ± 0.28 20.37 ± 0.61 4777.33 ± 21.12

CNN (nf=4 ) 24.72 ± 0.11 24.09 ± 0.12 4595.00 ± 24.24

Table 3: Comparison of FID scores for the original and updated architectures
with CD loss and different CNN configurations for MNIST subset 5 vs 3.

5.2 Losses

After selecting the updated architecture as the best one, we tested whether the
FID and ACD scores improved with the new Gaussian loss. By running all
combinations of hyperparameters for the new architecture and both losses, we
conducted 54 experiments for each MNIST subset. Manual inspection revealed
that none of the GANs collapsed.

Fig. 4 illustrates the distributions of ACD and FID scores for all experiments,
categorized by type of loss (CD or Gaussian) and dataset. The difference in
the distributions is not as apparent as before, with both ACD and FID scores
tending to be lower when using the Gaussian loss. When selecting GASTeN
hyperparameters to achieve lower ACD or FID values, the version with Gaussian
loss consistently attains the minimum values.

When comparing Table 4 with Table 3, we observe that the FID scores are
slightly higher than those from GASTeN with CD loss. However, with the Gaus-
sian loss, the FID score remains consistent even when we select only the images
close to the decision boundary.

Architecture Loss Classifier FID FID #images
(global) (ACD < 0.1) (ACD < 0.1)

CNN (nf=1 ) 26.61 ± 0.09 26.14 ± 0.10 6613.33 ± 61.76
updated Gaussian CNN (nf=2 ) 28.64 ± 0.03 28.56 ± 0.18 5482.33 ± 24.54

CNN (nf=4 ) 32.77 ± 0.23 32.18 ± 0.36 5073.66 ± 14.22

Table 4: Comparison of FID scores for the updated architecture with Gaussian
loss and different CNN configurations for MNIST subset 5 vs 3.

In addition to quantitatively evaluating our approach, we manually inspect
the generated images. Observing Fig. 5, we conclude that the images are both
realistic and ambiguous when the classifier probability is 0.5, with quality very
similar to the previously shown samples.
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(a) Original architecture with CD loss

(b) Updated architecture with CD loss

Fig. 3: Sample of images generated for the best GASTeN ACD score during stress
testing of a CNN with 4 filters, trained on the MNIST 5 vs 3 dataset.

Overall, the new Gaussian loss does not immediately outperform the CD loss,
as the FID and ACD scores are very similar based on our limited experiments.
However, the Gaussian loss offers a significant advantage: it allows us to tune the
variance hyperparameter, enabling adjustable tolerance for generating images
around the mean of 0.5 probability. Therefore, we select the Gaussian loss and
the winning loss.

6 Conclusions

This research proposes an improved GASTeN framework with architectural mod-
ifications and a new generator loss. This GAN-based framework generates real-
istic synthetic data in the low-confidence region of a given classifier.

Our study on binary classification tasks using MNIST dataset subsets found
that while the original GASTeN architecture yields the highest FID scores, the
updated version achieves lower ACD values and consistent performance across
low-confidence regions. Both architectures produce realistic and ambiguous im-
ages; however, the updated one is more reliable, with no instances of GAN mode
collapse. The introduction of Gaussian loss enhances this architecture by allow-
ing for adjustable tolerance in image generation around the decision boundary,
thereby improving its robustness and applicability.

Ultimately, the generated images can be integrated into model cards, pro-
viding valuable insights into the classifier’s decision-making processes and im-
proving transparency in machine learning models. Future work should extend
the GASTeN framework to more complex tasks and multi-class classifications.
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(a) ACD distribution (b) FID distribution

Fig. 4: Comparison of FID and ACD scores across all hyperparameters, grouped
by dataset and optimization measure loss.

Fig. 5: Sample of images generated by GASTeN (with updated architecture and
Gaussian loss) for the hyperparameters that attained the best ACD score during
stress testing of a CNN with 4 filters, trained on the MNIST 5 vs 3 dataset.
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