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Abstract

Time series representation learning is the process of extracting condensed and
meaningful representations from raw sequential data, with unsupervised rep-
resentation learning offering methods to do so without the need for labelled
data. Reconstruction-based deep-learning methods are capable of deriving rep-
resentations from sequential data in an unsupervised setting and offer enhanced
interpretability due to their capability of decoding extracted representations;
however, these methods often fall short of contrastive-based methods regarding
the quality of representations, as the latter utilise contrastive learning to produce
representations that are as close as possible in the embedding space for similar
samples and far apart for dissimilar ones. We propose Time Series Representa-
tions Classroom (TSRC), a framework that leverages knowledge distillation and
curriculum learning to combine the interpretability of reconstruction-based meth-
ods with the capabilities of contrastive-based methods. This framework consists
of a hybrid loss function that combines reconstruction and contrastive losses and
a curriculum that guides the learning process. We compare the performance of
methods trained within the TSRC framework using the downstream task of time
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series clustering on 112 datasets from the UCR Archive against the same methods
trained without the TSRC framework and 4 baselines from the literature. Our
empirical results demonstrate that methods trained within the TSRC framework
deliver better results compared to the same methods trained without it, achieving
higher average rankings between 6.88% and 17.47% in external cluster evalua-
tion and between 62.15% and 75.07% in internal cluster evaluation. Furthermore,
the results demonstrate that models trained using the TSRC framework produce
representations that are more transferable, achieving, without additional tuning,
on average 14.02% higher average rankings in time series classification compared
to the same models trained without the TSRC framework.

Keywords: Representation Learning, Time Series, Contrastive Learning, Knowledge
Distillation, Curriculum Learning, Explainable Artificial Intelligence (XAI)
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1 Introduction

Time series analysis forms a prominent research area, with applications in various
downstream tasks, such as forecasting (De Gooijer and Hyndman, 2006), clustering
(Ma et al, 2019, 2021), classification (Ismail Fawaz et al, 2019), and anomaly detection
(Skaf and Horváth, 2022), as well as various domains, including finance (Sezer et al,
2020), environmental science (Chen et al, 2018), and healthcare (Skaf et al, 2023).

Unsupervised time series representation learning has proven to be an efficient
approach for distilling and extracting useful features from complex raw time series
data, enabling transfer learning to many downstream tasks given that the learned rep-
resentations can capture potentially valuable information within a time series (Meng
et al, 2023; Zhang et al, 2024a). To be effective in a diverse range of tasks and appli-
cations, representations should have the following two important characteristics: (1)
They should effectively preserve the rank order of similarities between instances in the
embedding space. In other words, representations of similar time series samples should
be as close as possible in the embedding space, while representations of samples that
are not similar to each other should be as far as possible in the embedding space. (2)
Representations should be as interpretable as possible. In particular, it should be pos-
sible to determine which element of the representations corresponds to which section
of the time series data.

Two commonly used strategies for representation learning are reconstruction- and
contrastive-based methods (Meng et al, 2023; Zhang et al, 2024a). Reconstruction-
based methods, also referred to as encoder-decoder (Enc-Dec) methods, operate by
jointly training an encoder that extracts representation from an input time series signal
and a decoder that works on reconstructing the signal from the extracted representa-
tion with the objective of minimising the error between the original and reconstructed
signals; the trained encoder can then be used to extract representations from time
series samples. Reconstruction-based methods commonly employ Recurrent Neural
Networks (RNNs) encoder-decoder architectures, which are natural choices for mod-
elling sequential data. However, RNNs (including GRU and LSTM variants) often
require significant amounts of training data to capture the underlying patterns in time
series (Goodfellow et al, 2016), while missing the ability to correctly capture the sim-
ilarity between instances and their orderings in the embedding space. These methods
can offer greater interpretability by having decodable representations. -based methods
are inherently interpretable; this interpretability comes from the possibility of visu-
alising and studying which segment of the time series is related to a specific element
of the representation and to observe what the model has learned during the training
process in general (Le Naour et al, 2023)—this is generally done by comparing the
original and the reconstructed signals (see Figure 1b).

Contrastive-based methods, typically implemented using an encoder-only architec-
ture (Zhang et al, 2024a), utilise the concept of contrastive learning. The model learns
by having a positive example and a negative example to generate representations that
are as close as possible in the embedding space for positive examples and as far as pos-
sible for negative examples using a triplet loss function (see Section 3.1). While these
methods stand out for their ability to preserve the similarity between instances in the
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Fig. 1: Comparing encoder-only and encoder-decoder methods regarding inter-
pretability for two time series with similar magnitude of different classes (normal
heartbeat versus myocardial infraction), taken from the ECG200 dataset that is part
of the UCR Archive. The representations of these two samples were extracted using
the two types of models, and a downstream task (classification) was performed using a
dedicated algorithm. (a) An incorrect decision made in the downstream task (classify-
ing both samples to be of the same class of normal heartbeat) that uses representations
extracted from an encoder-only method cannot be explained. (b) Encoder-decoder
methods can decode the representations and explain the decision made using its
extracted repersentation; in this example, reconstructing the two time series using
the decoder shows inaccuracies resulting in time series that are more similar than the
original ones (dŝ9,ŝ92 = 0.311 < ds9,s92 = 0.877)—clearly, the model did not learn to
accurately reconstruct the time series nor to distinguish between them properly. The
same process of checking the reconstructed samples against the original samples can
be used to explain decisions in case of other downstream tasks (such as clustering).

embedding space, they lack interpretability. This is a natural limitation of encoder-
only architectures, where there is no reverse method to decode the representation from
the embedding space into the original sample space. Figure 1 compares encoder-only
and encoder-decoder (Enc-Dec) methods and illustrates how Enc-Dec methods can be
beneficial in explaining decisions made based on the extracted representations as well
as in assessing what the model has learned.

To achieve representations that satisfy both of the aforementioned characteris-
tics, it would be advantageous to combine the strengths of both contrastive- and
reconstruction-based methods while mitigating their limitations, potentially by learn-
ing representations through contrastive learning in combination with a decoder that
can be used to assess the learned model and interpret the decisions made based on
the extracted representations. To accomplish this goal, we propose the Time Series
Representations Classroom (TSRC) framework that utilises the principles of knowl-
edge distillation (Hinton et al, 2015) – a technique for transferring knowledge from
a large, complex teacher model to a smaller, less-complex student model – and cur-
riculum learning (Bengio et al, 2009) – an approach that first learns simpler tasks
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and then gradually introduces more complex tasks. This dual approach leverages the
robust, detailed knowledge from a complex teacher model and the structured, progres-
sive training of curriculum learning, potentially improving the ability of the student
model to learn better representations.

Our proposed TSRC framework consists of two models: a teacher model and a
student model. The teacher model is first trained individually and then used to assist
in training the student model by providing hints during training in the form of a
hint loss, which quantifies how far the representations generated by the student model
are from the representations generated by the teacher model. The main goal of the
TSRC framework is to combine the power of a teacher model with a reconstruction-
based student model, with the aim of enabling the latter to achieve better results
in downstream tasks by improving on its weaknesses. The main contributions of this
study are as follows:
1. Developing a novel framework for unsupervised time series representation learning

that combines the benefits of contrastive- and reconstruction-based time series
representation learning methods.

2. Forming a hybrid loss function that combines both contrastive and reconstruction
losses to learn time series representations.

3. Constructing a curriculum tailored for time series representation learning that
utilises the designed loss function to train a student model using hints from a
teacher model.

4. Evaluating the performance of the framework using combinations of 2 contrastive-
based and 2 reconstruction-based methods on 112 widely-used datasets.

The remainder of this article is structured as follows: First, we discuss related work
in Section 2; next, we describe the proposed framework in Section 3, loss function
in Section 3.1 and curriculum in Section 3.2, followed by the experimental setup in
Section 4; after that, we report and summarise our major empirical results in Section
5, and finally discuss limitations and potential future work in Section 7.

2 Related Work

In this section, we review the existing literature on knowledge distillation and cur-
riculum learning and discuss their application in various domains. We then review the
existing literature on unsupervised time series representation learning methods and
discuss their different types and categories.

2.1 Knowledge Distillation and Curriculum Learning

Knowledge distillation, introduced by Hinton et al (2015), is a technique that involves
transferring knowledge from a large, complex teacher model to a smaller, less-complex
student model, with the goal of mimicking the behaviour of the teacher model; it
mainly works by transferring knowledge through soft labels or intermediate represen-
tations. Curriculum learning, introduced by Bengio et al (2009), is a technique inspired
by the human learning process, where simpler tasks are learned first, then more com-
plex tasks are gradually introduced; it mainly works by organising training data and
tasks in a meaningful order to achieve this gradual increase in task complexity during
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training. Both techniques have been predominantly used in domains such as computer
vision, reinforcement learning, and natural language processing (Habib et al, 2023;
Liu et al, 2023).

In time series analysis, these techniques have been used to a lesser extent. Qiao et al
(2023) introduced a distillation-based method that uses Soft-Dynamic Time Warp-
ing (Soft-DTW) for class-incremental learning on multivariate time series, achieving
improvements in stability and performance. Ay et al (2022) investigated knowledge dis-
tillation for fully convolutional networks in time series classification, obtaining results
similar to bigger models at reduced computational costs. Zhang et al (2024b) proposed
a Cross Reconstruction Transformer (CRT) for self-supervised time series representa-
tion learning that utilises curriculum learning to gradually increase the complexity of
the training process by increasing the sample dropping ratio, resulting in improved
representation quality and robustness. The combined use of knowledge distillation and
curriculum learning has not been well explored, with only a few studies reported in
the literature. One such example in the vision domain is by Zhao et al (2021), who
proposed a curriculum learning knowledge distillation framework for instance-level
sequence learning. This framework utilises a teacher-student architecture, where the
student model learns from easier picture instances at the beginning, then progresses
to more complex examples as its performance increases, all under the supervision of
a pre-trained teacher model.

Integrating knowledge distillation and curriculum learning into time series repre-
sentation learning involves several difficulties, such as handling various neural network
architectures and balancing loss functions specific to time series downstream tasks. To
the best of our knowledge, the combination of ideas from knowledge distillation and
curriculum in time series representation learning has not been previously explored,
which makes our TSRC framework the first significant effort in this direction.

2.2 Unsupervised Time Series Representation Learning

Time series representation learning is conceptualised as a transformative function f
that maps a specific segment Aj of a time series X = (x1, x2, . . . , xT ) onto a vector
space Rm as formalised in Equation 1. The segment Aj is defined as a contiguous
subsequence of X of size nj , such that Aj = (xj , xj+1, . . . , xj+nj−1) ∈ T nj , where
1 ≤ j < j + nj − 1 ≤ T and T nj :=

{
(x1, x2, . . . , xnj

) ∈ Rnj
∣∣ x1 ≺ x2 ≺ · · · ≺ xnj

}
is

the space of time series segments of length nj (where ≺ denotes that the elements are
strictly ordered in time, i.e., each element occurs chronologically after the previous
one).

f : T nj → Rm, f(Aj) = v = (v1, v2, . . . , vm) ∈ Rm (1)

According to the taxonomy provided by Meng et al (2023), unsupervised repre-
sentation learning for time series can be split into multiple categories, namely: (i)
deep clustering, (ii) reconstruction-based, and (iii) self-supervised learning methods
(Längkvist et al, 2014; Eldele et al, 2021; Yue et al, 2022).

Deep Clustering Methods. These methods aim to combine clustering and rep-
resentation learning by jointly learning representations and clustering assignments,
enabling iterative optimisation of a clustering-oriented objective to learn mappings
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from an input space to a new latent space. The main benefit of this category of meth-
ods is that the clustering results can be used as pseudo-labels to guide the learning
process towards more meaningful representation. Examples of these methods are Deep
Temporal Clustering Representation (DTCR) (Ma et al, 2019) and Clustering Repre-
sentation Learning on Incomplete Time Series Data (CRLI) (Ma et al, 2021). As these
methods incorporate a clustering algorithm during training, it makes them reliant on
its performance and potentially biased towards the cluster shapes it favours. The aim
of our research is to improve the rank order of similarities between instances in the
embedding space while maintaining interpretability by having a decoder, rather than
just improving clustering performance by making the representations form specific
shapes in the embedding space; therefore, this category of methods is not considered.

Reconstruction-based Methods. These methods aim to minimise the difference
between the reconstructed output and the raw input, to increase the ability of the
model to concentrate on key elements while filtering out irrelevant or noisy informa-
tion. They generally employ an Enc-Dec architecture (Meng et al, 2023). A prominent
example of such a method is TimeNet (Malhotra et al, 2017), which uses a sequence
autoencoder (SAE) network based on the Sequence-to-Sequence (Seq2Seq) model
(Sutskever et al, 2014) to transform variable-length time series into fixed-dimensional
representations. Deconv (Song et al, 2020) is another example; it employs deconvolu-
tional networks to reconstruct time series data by performing inverse convolution and
pooling operations, enabling the reconstruction of hidden representations within the
network. In our research, we selected student models from this category because they
offer interpretability through the possibility of decoding representations.

Self-Supervised Learning Methods. These approaches differ from fully unsuper-
vised methods described earlier by designing diverse pretext tasks that automatically
generate useful pseudo-labelled data from the original data. They utilise the inherent
structure of data to produce labels, which enables a model to learn meaningful repre-
sentations without manual annotation. This category of methods is further divided into
adversarial, predictive, and contrastive methods, each with advantages and drawbacks
(Meng et al, 2023).

Adversarial methods use the problem of distinguishing between real and fake data
as a pretext task to learn robust representations for time series. These methods typi-
cally establish a two-player mini-max game, in which the generator works to improve
its ability to confuse the discriminator and the discriminator aims to become bet-
ter at identifying real data from fake data. By iteratively training the generator and
discriminator in an adversarial manner, these methods allow the generator to learn
representations that capture the key characteristics of raw data. Examples of these
methods are TimeGAN (Yoon et al, 2019) and MAD-GAN (Li et al, 2019). Adversar-
ial methods were not considered in this research, as training adversarial methods can
be unstable and complex, and they require significant computational resources and
data (Goodfellow et al, 2016), which makes them unsuitable for our framework—the
teacher model in the framework must be stable and reliable to effectively guide the
student model.

Predictive methods use tasks such as predicting future, missing, or contextual
information as pretext tasks to predict partial data based on limited views; they learn
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representations by predicting future or mixed values of partial time series, predicting
whether time windows are sampled from the same temporal context, or predicting
cross-view representations of original samples. Examples of these methods include TST
(Zerveas et al, 2021) and EEG-SSL (Banville et al, 2019). These approaches were not
considered in this research, because predictive methods often involve designing specific
pretext tasks that may not generalise well across different applications and down-
stream tasks—tasks such as future value or temporal context prediction are highly
dependent on the nature of the time series data and specific downstream tasks. More-
over, the necessity of having these auxiliary tasks as an integral part of the training
process—which is usually achieved using a decoder—makes it unfeasible to integrate
an additional decoder for interpretability, which is a key goal of this research.

Contrastive methods utilise pretext tasks specificallyy designed to learn useful rep-
resentations by solving problems that mimic the structure or context of real tasks
without requiring labels (Zhang et al, 2024a). This is achieved by generating aug-
mented views of raw data through various transformations and then formulating
self-discrimination tasks through contrasting positive and negative instances, where
positive and negative instances refer to similar and dissimilar samples, respectively.
This approach embraces the underlying similarity across samples instead of directly
modelling the complex raw data, eliminating the need for reconstructing the entire
output and allowing for the detection of contextualised underlying causes of variation
(Mohamed et al, 2022). Contrastive methods balance data augmentation techniques
and architectural innovations to improve time series representations (Meng et al, 2023;
Zhang et al, 2024a). One example of such methods is Mixing Up Contrastive Learning
(MCL) (Wickstrøm et al, 2022), which employs a data augmentation approach that
generates new samples by combining two data samples with a mixing component; the
label smoothing-motivated pretext task is to predict the intensity of the mixing com-
ponent based on the two data samples and the augmented sample. A second example
is TS2Vec (Yue et al, 2022) which uses multiscale contextual information with gran-
ularities to differentiate between samples and generate different views (positive and
negative) through masking operations that randomly mask out some time steps; this
allows the learning of timestamp-level representations while simultaneously support-
ing instance-level representations of the full time series via a max pooling technique
across timestamps. Time-Contrastive Learning (TCL) (Hyvarinen and Morioka, 2016)
is another example, which derives representations using a multilayer perceptron (MLP)
in a nonlinear independent component analysis (ICA) model from uniform segments
of time series by distinguishing between these segments based on their representations.
The main advantage of contrastive methods is that they preserve the order of sim-
ilarities between instances in the embedding space. These methods typically employ
either an encoder-only architecture or incorporate an additional decoder to perform
auxiliary tasks, such as forecasting (Zhang et al, 2024a). Neither of these strategies
allows mapping from the embedding space back to the original space, which makes
these approaches inherently uninterpretable.

Other methods adopted different pretext tasks for self-supervised learning
(Foumani et al, 2024a) as opposed to using adversarial, predictive or contrastive tasks.
One such method is Series2Vec (Foumani et al, 2024b), which learns representations
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by predicting pairwise similarities between series in both the temporal and spectral
domains instead of using direct similarity measurements between positive and negative
pairs (which is used in contrastive tasks). Another example is Pre-trained HInception-
Time (PHIT) (Ismail-Fawaz et al, 2024), which generates flexible convolution filters
that can be applied across diverse datasets by identifying the originating dataset of
each time series sample. The primary goal of our work presented here is different from
that of these approaches; we aim to improve the rank ordering of representations that
is achievable using contrastive approaches. This rank ordering is a fundamental qual-
ity that is achievable when the similarity between pairs of time series is measured
(typically using contrastive learning). While the previously mentioned pretext tasks
are novel, the ability of methods such as Series2Vec and HInceptionTime to preserve
rank ordering remains unproven; therefore, these methods were not considered in this
study.

The goal of this study is to combine the interpretability of reconstruction-based
methods with the order-preservation quality of contrastive-based methods. Rather
than proposing a new representation learning algorithm, we propose TSRC, a frame-
work for combining existing algorithms from these two categories. Our framework
allows the use of a contrastive-based model as a teacher and a reconstruction-based
architecture as a student model.

3 Proposed Framework

Our proposed TSRC framework is designed with the aim of combining the power of
two classes of models: a contrastive- and a reconstruction-based model, by offering a
loss function that combines the abilities of contrastive and reconstruction losses so that
contrastive loss can accommodate having a decoder. The TSRC framework follows
the principles of knowledge distillation (Hinton et al, 2015) by utilising the multistage
distillation-based training approach and additionally integrating curriculum learning
(Bengio et al, 2009).

The TSRC framework consists of two encoders: one acting as a teacher and one
as a student, and a separate decoder that reconstructs the output of the student
encoder, as illustrated in Figure 2. The teacher encoder can be from any category of
time series unsupervised representation learning methods, encoder-only, or Enc-Dec
models, provided that representations can be generated using only the encoder after
training. The student model, however, must be a reconstruction-based model, as this
framework requires the student to have a decoder beside the encoder.

The hinting process from the teacher model to the student model, which follows a
designed curriculum, is at the heart of this framework. This is performed in an itera-
tive manner by comparing the representation of the input time series extracted by the
teacher and student models. The difference between these representations serves as a
hint provided by the teacher to the student model. In each iteration, this hint is pro-
vided in the form of a loss value based on a set of training samples following a defined
curriculum that determines the learning goal. This leads to the key components of
this framework: (i) a loss function that allows for joint unsupervised training of two
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Teacher
Encoder

Student
Encoder

Student
Decoder

Fig. 2: An illustration of the flow of TSRC framework process. Given a time series
sample X, representations rteacher and rstudent are extracted using a teacher and
student encoder, respectively, and a decoder is used to produce a reconstructed sample
X̂. After that, two losses, a hint loss and a reconstruction loss, are calculated and
joined using a coefficient λ. The combination nodes represent the process of adding
the components together according to the formula shown in the output component.
The “sum nodes”, shown as circles with an X inside (⊗), represent an aggregation of
input components according to the equation displayed in the output component.

models by integrating reconstruction loss and hint loss to balance representation learn-
ing and signal reconstruction (further discussed in Section 3.1) and (ii) a curriculum
that controls the process of progressively introducing the hint loss to the total loss
along the training epochs; the curriculum is implemented in the form of a number of
hyperparameters that are set before the training (further discussed in Section 3.2).

The remainder of this section outlines the loss function and the curriculum. In
addition, we explain the process of introducing what we call a hint during training
and its effect on the total loss.

3.1 Loss Function

In this section, we provide background information on contrastive loss for time series
representation learning. We then discuss two methods of combining contrastive and
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reconstruction losses, detailing the rationale behind the method selected for use in the
TSRC framework.

Contrastive Loss for Time Series Representation Learning. This loss func-
tion is commonly defined based on the idea of a triplet of samples: an anchor sample, a
positive sample that is similar to the anchor, and a negative sample that is dissimilar
from the anchor; positive and negative samples can be obtained using multiple methods
in an unsupervised manner (without using labelled data). The most popular approach
for creating positive and negative samples is data augmentation through hand-crafted
transformations, such as noise injection, window slicing, and window wrapping rules
(Zhang et al, 2024a). The goal of contrastive learning is to ensure that the positive
sample is closer to the anchor than the negative sample, by at least a certain mar-
gin; this forms a triplet loss. Deep learning-based methods that utilise contrastive
learning in time series representation learning commonly adopt an encoder-only archi-
tecture (Zhang et al, 2024a), where this encoder is trained by generating embeddings
(z = E(X)) of the series X. Equation 2 presents the contrastive loss for time series
representation learning.

LContrastive = max(d(za, zp)− d(za, zn) + δ, 0), (2)

where za, zp, zn are the embeddings of the anchor, positive and negative time series
samples, respectively, d(·) is the distance metric, such as Euclidean distance, and
δ is a hyperparameter that defines the minimum desired gap between the distance
from the anchor to the positive sample and the distance from the anchor to the neg-
ative sample. When d(za, zp) − d(za, zn) + δ ≤ 0, the triplet is considered “correctly
ordered” with respect to the margin, leading to zero, which indicates that the model
does not require adjustments for this particular triplet; otherwise, the model adjusts
its weights to produce embeddings that reduce this difference in future iterations.

In order to accommodate a decoder in combination with contrastive loss, in the
following sections, we propose to reconstruct the resulting representations based on a
reconstruction loss while training within the TSRC framework.

3.1.1 Näıve Hybrid Loss Training

One possible way to expand the contrastive loss function LContrastive is by directly
adding a reconstruction loss part, as shown in Equation 3.

LTotal = (1− λ) ·
(
1

α

)
· LReconstruction + λ ·

(
1

β

)
· LContrastive

= λ1 · LReconstruction + λ2 · LContrastive,

(3)

where LReconstruction = d(X̂,X) is the reconstruction loss according to a distance
metric d(·), such as Euclidean distance, λ1 = (1−λ) · 1α and λ2 = λ · 1β are the effective
weights for the reconstruction and contrastive loss functions, respectively, and α and β
are normalisation factors that aim to balance the contributions of each loss component
that has a different value range.

However, combining the two losses (contrastive and reconstruction losses) as intro-
duced in Equation 3 is not meaningful. The two components of the loss function are
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nonhomogeneous, with each having its own range of values. The contrastive loss is
calculated based on the values of the embeddings using a triplet loss, as shown in
Equation 2, which measures the difference between two distances, while the reconstruc-
tion loss is calculated based on the values of the original and reconstructed sample, X
and X̂, respectively, using a distance metric d(X̂,X). To ensure that the loss function
combining reconstruction and contrastive loss is meaningful, the following needs to be
considered:
1. Determining α and β: These hyperparameters are critical, because they reduce the

range of each loss term to a uniform scale in an attempt to make them homoge-
nous (see Equation 3). One way to compute α and β is by using the statistical
characteristics of the losses over a validation dataset; for example, α might be
determined as the average or maximum value of the contrastive loss measured
during the preliminary phase, and the same for β: α = E[LReconstruction], β =
E[LContrastive]. However, this approach relies on the assumption that these statis-
tics are stable and consistent, which might not hold, as the value of distance
metrics can span a very wide range, rendering the choice of suitable values for
these parameters difficult.

2. Dynamic normalisation of α and β: The contrast in loss values (i.e., the relative
difference or ratio between the reconstruction loss and the hint loss) can change
during training. During training, the contrast might fluctuate as the values of the
losses change in relation to changes in the weights of the model, leading to the
additional requirement of dynamically modifying the normalisation parameters
α and β; this in turn leads to additional computing cost.

3. Potential conflicts between loss functions: Even with successful determination of
initial values of α and β and dynamically modifying them during training, opti-
mising these two loss functions at the same time can lead to them contradicting
each other (unbalanced training). For example, given an encoder-decoder method,
this contradiction could occur because the contrastive loss pushes the embeddings
to be properly distant in the representation space based on their similarities, while
the reconstruction loss pushes for minimal distortion in the reconstructed output;
this joint objective can cause oscillations during training, preventing convergence
to an optimal solution for both the encoder and the decoder. Moreover, while
there are models in the literature (Meng et al, 2023; Zhang et al, 2024a) in which
contrastive and reconstruction losses are utilised individually (i.e., contrastive-
and reconstruction-based methods), there is no guarantee or evidence that using
them together simultaneously will train encoder-decoder methods successfully.

3.1.2 Multi-Stage Distillation-based Training

In this section, we address the three aforementioned issues by proposing another
approach for combining contrastive and reconstruction losses through multi-staged
training, which can be formulated as shown in Equation 4.

LTotal = (1− λ) · LReconstruction + λ · LHint

= (1− λ) · d(X̂,X) + λ · d(rstudent, rteacher),
(4)

where rteacher and rstudent denote the representations generated by the teacher and
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student models, LHint = d(rstudent, rteacher) is the hint loss according to a distance
metric d(·) such as the Euclidean distance, and λ is the weight of the hint loss.

In the first stage of training, a pre-trained encoder is obtained, which is used as
a teacher model in the second stage of training. In the second stage, knowledge is
distilled (Hinton et al, 2015) from this pre-trained encoder (teacher) to an encoder-
decoder model (student), so the latter learns how to extract embedding under the
supervision of the teacher model. In this approach, the loss function consists of a
hint loss that quantifies the difference between the representations produced by the
student encoder and the ones produced by the teacher encoder for the same sample,
and a reconstruction loss that quantifies the difference between the reconstructed and
original samples. This approach has the following advantages over that previously
mentioned in Section 3.1.1:
1. The two components of the loss function are homogeneous (Equation 4), which

eliminated the need to estimate additional normalisation factors; in this case,
there is neither computing overhead nor any additional difficulties regarding
dynamically normalising these factors during training.

2. There is only one hyperparameter to set, λ, which is used to determine the propor-
tion of each loss component in the total loss. A single hyperparameter is sufficient
because both sub-losses are homogeneous as a result of being calculated using
the same distance metric, d(·). This hyperparameter can either remain constant
throughout the training or can be changed following a given schedule, a curricu-
lum inspired by the concept of curriculum learning (Bengio et al, 2009), which
offers more flexibility and capacity to handle different cases of teacher and stu-
dent models with different performance differences. The curriculum is designed
by setting multiple hyperparameters (this is discussed in more detail in Sections
3.2 and 5.1).

3. There are no concerns about the two losses, contrastive and reconstruction losses,
contradicting each other, as each of them is trained individually. In addition,
the methods used to combine these losses (i.e., knowledge distillation (Hinton
et al, 2015) and curriculum learning (Bengio et al, 2009)) have been used in the
literature for several years and have demonstrated success in multiple domains.
This minimises the potential for conflicts or other issues during training.

3.2 Curriculum

The TSRC framework encompasses a curriculum, which is the method based on which
the knowledge from the teacher model is introduced to the student model. The cur-
riculum in principle controls how the loss function is dynamically calculated during
training, i.e., controlling the λ hyperparameter shown in Equation 4. This coefficient
determines the ratio of each of LReconstruction and LHint in calculating the total loss
LTotal during the training process.

To emphasise the difference between parameter λ while training and validation,
we use λtrain and λvalidation (see Equation 5). The importance of these components
stems from the fact that potential teacher and student models vary in performance,
and therefore, a curriculum can be designed to obtain the best possible outcome by
controlling the dynamic changes of λtrain during the training process based on the
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initial performance difference between the teacher and the student model; i.e., when
the teacher is significantly better than the student, we aim to start with a large λtrain
to give a higher weight to the hint loss at the beginning of the training process;
conversely, when the performance difference between the student and the teacher is
not significant, we aim to start with a low λtrain to give a higher weight to the
reconstruction loss. While λtrain changes during the training process, λvalidation is set
to remain constant to ensure a consistent evaluation. λvalidation is a design choice with
no impact on the training procedure, as its sole purpose is to identify and save the
“best” model throughout the training process, where the “best” model refers to the
student model that learnt the most from the teacher model during training according
to the loss function. λvalidation can be set to any number in the range [0, 1]. When it is
set to 0, the validation favours models with the best reconstruction loss (i.e., a model
with representations that can be best reconstructed by the student decoder), and
when it is set to 1, it favours models with the best contrastive loss (i.e., a model with
representations that are as close as possible to the teacher’s representation). Setting
λvalidation to values between 0 and 1 leads to a mix of both objectives. λvalidation
becomes more important when the goal is to extract representations using the encoder
from the “best” model identified through training and can be ignored when the goal is
to extract representations from the final model that is saved at the end of the training
process.

Designing the curriculum is done by setting all the hyperparameters shown in
Equation 5: a, b, ψ0, ψt, and τ . This equation shows how λtrain is calculated based
on the current training epoch ψ and the hyperparameters of the curriculum, while
λvalidation is a value that remains constant during training.

λtrain(ψ) =

{
a+ (b− a) ·

(
ψ−ψ0

ψt−ψ0

)τ
for ψ ≥ ψ0

0 for ψ < ψ0

; λvalidation ∈ [0, 1] (5)

• a and b denote the starting and final value of λtrain, respectively (a ≤ λtrain ≤ b).
Here, a, b ∈ [0, 1]; a ≤ b.

• ψ0 denotes the epoch in which the coefficient λtrain begins to have values greater
than 0 (see Equation 5), and ψt denotes the total number of training epochs. Here,
ψ0 < ψt.

• τ denotes the increment rate according to which λtrain increases during the training
process (see Equation 5). The increment rate controls how quickly the hint loss
weight increases during training, with three main cases for its value (see Figure 3):

▶ τ = 1: the increment is linear. In this case, λtrain increases at a constant rate
from a to b over the training epochs; the total loss smoothly transitions from
being more influenced by the reconstruction loss to being more influenced by the
hint loss in a balanced manner.

▶ τ > 1: the increment follows a convex curve shape, starting slow and acceler-
ating over time. In this case, at the beginning of training, λtrain increases very
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Fig. 3: Changes of the coefficient λtrain with respect to the epoch ψ and the hyper-
parameters of the designed curriculum (a, b, ψ0, ψt, and τ), considering different
scenarios based on the value of the increment rate τ . Here, a and b denote the start-
ing and final values of λtrain, respectively; ψ0 denotes the epoch where the coefficient
λtrain begins to have values greater than 0; ψt denotes the total number of training
epoch; and τ denotes the increment rate according to which λtrain increases during
the training process.

slowly, giving more weight to the reconstruction loss. As training progresses, λtrain
increases more rapidly, shifting the influence towards the hint loss.

▶ τ < 1: the increment follows a concave curve shape, starting fast and decelerating
over time. In this case, λtrain increases rapidly at the beginning, giving substantial
weight to the hint loss early in the training process. As training continues, the
rate of increase slows, stabilising the influence of the hint loss.

The previously mentioned hyperparameters control the influence of the teacher on
the student as well as how the hint loss is introduced during training by dynamically
adjusting λtrain throughout the training process. These hyperparameters should be
set for each experiment based on the goals and the teacher and student models (more
details about designing the curriculum for different model combinations are discussed
with examples in Section 5.1.) Algorithm 1 illustrates the multi-stage distillation-
based training with curriculum and validation used in our experiments. The flow of
the curriculum process is illustrated in Figure 2.
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Algorithm 1 Multi-Stage Distillation-based Training with Curriculum and Validation

Input: TeacherEncoder model, StudentEncoder model, Decoder model, Curriculum
(a, b, ψ0, ψt, τ , λvalidation), Distance metric d(·), Time series sample X, Validation
sample Xval

Output: Trained StudentEncoder, Trained Decoder

▷ Stage 1: Train the teacher encoder using contrastive loss function
1: TrainTeacherEncoder()

▷ Stage 2: train the student encoder using reconstruction loss with hints
2: best loss ←∞
3: for ψ from 1 to ψt do

Training Step:
▷ Extract representations using the Teacher Encoder

4: rteacher ← TeacherEncoder(X)
▷ Extract representations using the Student Encoder

5: rstudent ← StudentEncoder(X)

▷ Reconstruct the signal using the Decoder
6: X̂ ← Decoder(rstudent)
▷ Compute Hint Loss

7: LHint ← d(rstudent, rteacher)
▷ Compute Reconstruction Loss

8: LReconstruction ← d(X̂,X)
9: if ψ < ψ0 then

10: λtrain ← 0
11: else

12: λtrain ← a+ (b− a) ·
(
ψ−ψ0

ψt−ψ0

)τ
13: end if
14: LTotal ← (1− λtrain) · LReconstruction + λtrain · LHint

15: Update(StudentEncoder, Decoder, LTotal)

Validation Step:
16: rteacher val ← TeacherEncoder(Xval)
17: rstudent val ← StudentEncoder(Xval)
18: X̂val ← Decoder(rstudent val)
19: LHint val ← d(rstudent val, rteacher val)
20: LReconstruction val ← d(X̂val, Xval)
21: LTotal val ← (1− λvalidation) · LReconstruction val + λvalidation · LHint val

22: if LTotal val < best loss then
23: best loss ← LTotal val

24: SaveModel(StudentEncoder, Decoder)
25: end if
26: end for
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4 Setup of Experiments

This section outlines the datasets, the evaluation procedure, the evaluation metrics,
and the baseline methods used in our research study. It provides information on details
common to all experiments; individual experiments are motivated and described in
Section 5.

4.1 Datasets

In our experiments, we used the UCR Dataset Archive (Dau et al, 2019) with a total
number of 112 datasets1. For each dataset, 50% of the samples were used for training
and 50% for testing; 35% of the training samples were used for validation. The dataset
archive is publicly available2. A number of datasets (16 datasets) from the archive were
excluded, particularly the ones that have varied time series length and the ones that
contain missing values (NaN). Datasets with varied lengths were excluded in order to
have constant sequence lengths and consistent comparison, while datasets with missing
values were excluded because handling missing values adds a robustness requirement
for teacher and student models—in this research, we mainly assess the impact of the
TSRC framework, leaving the analysis of robustness to future work (see Section 7).
Given that the datasets in the UCR Archive are independent of each other, excluding
a number of them does not impact the assessment on the remainder. Moreover, the
remaining 112 datasets cover a broad range of practical applications, including sensors,
health, and other domains, and jointly represent a compelling benchmark.

4.2 Evaluation Procedure

As mentioned in Section 1, representations should preserve the rank order of similar-
ities, i.e., representations of similar time series samples should be as close as possible
in the embedding space, while representations of dissimilar samples should be as far
as possible in the embedding space. To quantify this, we chose a time series cluster-
ing downstream task, which makes it possible to directly assess the ability of a given
model to form clusters that mirror similarities and dissimilarities of the samples by
using an external clustering evaluation metric.

Following the work of Zhang et al (2019) and Ma et al (2019), we used the Rand
Index (RI) parameter for external cluster evaluation; however, instead of RI, we chose
to use Adjusted Rand Index (ARI), as the latter is adjusted for chance, providing a
more reliable measure of clustering performance in our use case as we are experiment-
ing on more datasets (compared to Zhang et al (2019) and Ma et al (2019)). ARI is
an external cluster evaluation metric that compares clustering results to ground truth
labels for each sample, assessing how well the clustering obtained from a given model
corresponds to those true labels. ARI values range from -1 to 1, with 1 representing
full agreement between clustering and ground truth, 0 suggesting random labelling,
and negative values showing less agreement than predicted by chance. A higher ARI
score demonstrates that the model can properly group similar samples together and

1Details about the full names of the datasets used in the experiments can be found in Appendix C.
2The UCR dataset archive can be downloaded from here: https://www.cs.ucr.edu/%7Eeamonn/time

series data 2018/
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separate dissimilar ones; therefore, a higher ARI score corresponds to better ability of
a model at extracting representations. ARI is calculated as

ARI =
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where n is the total number of object instances, nij is the number of object instances
in the ith cluster of the clustering and the jth group of the ground truth, and ai and
bj are the number of rows and columns of the contingency table, respectively.

In addition to external evaluation, we conducted internal evaluation to examine
the quality of clusters based on their structure (compactness and separation) without
reference to ground truth labels. In this context, we used Calinski-Harabasz Index
(CHI) as a metric. CHI is an internal cluster evaluation metric, with higher CHI
scores indicating that the model constructs well-defined clusters of representations that
preserve the rank order of similarities within the embedding space; therefore, a higher
CHI score corresponds to better ability of a model at extracting representations. CHI
is calculated as shown in Equation 7.

CH Index =
Tr(Bk)

Tr(Wk)
· N − k
k − 1

, (7)

where Tr(Bk) denotes the trace of the between-group dispersion matrix3, Tr(Wk)
denotes the trace of the within-cluster dispersion matrix, N denotes the total number
of samples in the dataset, and k denotes the number of clusters.

The evaluation process consists of comparing the clustering performance based on
the following three scenarios: training the teacher model alone, training the student
model alone, and training the student model with hints from the pre-trained teacher
model within the TSRC framework. The training is performed on the training set,
followed by extracting representations using the testing set. These representations are
then clustered using the K-means clustering algorithm, withK being set as the number
of classes for each dataset (calculated based on the labels provided with the dataset),
and evaluated internally and externally using CHI and ARI metrics, respectively. The
results of the three scenarios and both the internal and external cluster evaluations
are then collated. A Friedman test followed by a Nemenyi post-hoc test are then
performed for each evaluation metric to acquire final rankings and assess the statistical
significance of the results for both internal and external cluster evaluations. The results
of the tests are then visualised as Critical Difference Diagrams.

As demonstrated by Yue et al (2022), producing universal time series representa-
tions that are transferable between downstream tasks is a desirable property of time
series representation learning models. To facilitate comparison with related time series
classification methods (Middlehurst et al, 2024) and to evaluate the transferability of
the representations produced by the models trained using TSRC, we performed clas-
sification using the baseline models and models trained as described earlier. Following

3The trace of a matrix is defined as the sum of elements on the main diagonal (given a square matrix A,
the trace of A is defined as tr(A) =

∑n
i=1 aii).
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Yue et al (2022), we used Suport Vector Machine (SVM) with an RBF kernel as the
classification algorithm and accuracy as the evaluation metric.

Setting the Representation Length. The representation length is systematically
computed for each dataset, based on the length of the input time series and a com-
pression level (input hyperparameter). The calculation is performed as follows: Given
the length L of a time series segment and a compression level C, the length of the rep-
resentations Sout is derived as shown in Equation 8. The idea is to determine n such
that 2n is closest to the result of L/C; e.g., for L = 100 and C = 2, Sout = 26 = 64.

Sout =

{
2⌊log2(L/C)⌋, if

∣∣L
C − 2⌊log2(L/C)⌋

∣∣ ≤ ∣∣2⌈log2(L/C)⌉ − L
C

∣∣
2⌈log2(L/C)⌉, otherwise.

(8)

We set the compression level to 2 in all our experiments to provide a fair comparison
between the models across datasets. This minimises the effect of the length of time
series samples on the evaluation process, because the models are evaluated based on
their ability to extract representations of length 2n closest to half of the input time
series signal length. This approach of systematising representation length calculation
also facilitates experimentation on additional datasets or models in any follow-up work.

4.3 Baseline Models

In our experiments, we considered multiple models from the literature as teacher and
student models. The baselines were selected from contrastive- and reconstruction-
based models (with publicly available source code4.). We specifically selected these
models based on their prior performance on popular benchmarks and insights reported
in survey papers to be able to measure the impact of our framework, considering pre-
viously reported performance differences. The models considered in our experiments
are as follows:

• Contrastive-based models:

– TS2Vec (Yue et al, 2022): a contrastive-based model that utilises multiscale con-
textual information with different granularities to differentiate between samples.

– Mixing Up Contrastive Learning (MCL) (Wickstrøm et al, 2022): a contrastive-
based model that learns representations using noise injection.

• Reconstruction-based methods: each of the following methods is a reconstruction-
based model that utilises a sequence auto-encoder (SAE) network based on the
Seq2Seq model to transform variable-length time series into fixed-dimensional rep-
resentations; the encoder and the decoder are trained jointly with the goal of
minimising a reconstruction error.

– TimeNet (Malhotra et al, 2017): a reconstruction-based model that utilises GRU
layers.

– LSTM Autoencoder (LSTM-AE) (Malhotra et al, 2016): a reconstruction-based
model that utilises LSTM layers.

4Sources can be found in Appendix A
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We conducted preliminary experiments to evaluate the performance of baseline
models and used the results of these preliminary experiments to design subsequent
experiments. Furthermore, we evaluated the performance of the baseline models based
on the downstream task of time series clustering, as described in Section 4.2. Figures
4a and 4b show the Critical Difference (CD) diagrams for the baseline models for both
external and internal cluster evaluations, respectively.

In our experiments, we intentionally selected student models that ranked lower
compared to the teacher model based on external cluster evaluation (to ensure learning
opportunity). The choice of an external cluster evaluation metric was motivated by
the fact that these metrics measure the quality of embeddings in the embedding space
by objectively assessing how closely similar samples are grouped together and how
dissimilar samples are separated (based on ground truth labels). This aligns with
the primary goal of the TSRC framework, which is to utilise both contrastive- and
reconstruction-based methods to obtain the positioning of the embedding provided by
contrastive learning while maintaining the interpretability provided by the decoder
in reconstruction-based methods. While internal evaluation metrics are not used in
designing the experiments, they are used to gauge the impact of the TSRC framework
on the quality of the produced clusters, which in turn assesses whether it helps produce
more well-defined clusters or not. We discuss the experiments and reasoning behind
each of them in Section 5.1.
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(a) A CD diagram that shows the ranking of the external cluster evaluation using
Adjusted Rand Index (ARI).
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(b) A CD diagram that shows the ranking of the internal cluster evaluation using
Calinski-Harabasz Index (CHI).

Fig. 4: CD diagrams of clustering evaluation of the baseline models obtained by
performing a Friedman test followed by a Nemenyi post-hoc test.

5 Results

In this section, the experiments are outlined and described alongside our thought pro-
cess for both selecting the teacher and student models and designing the curriculum.
The findings from the experiments are then listed and summarised, and research ques-
tions are listed and answered. The results can be replicated using the code of the
framework and the experiments; it is open-source and available on GitHub 5.

5.1 Experiments

To study how the initial differences in the performances of the student and teacher
models can influence the efficacy of training, we conducted a total of three experiments,
where we covered various scenarios regarding the difference in performance between
the teacher and the student model (e.g., significant performance differences and similar
performance). The overall goal of these experiments was to evaluate the impact of
the TSRC framework on the student model in the downstream tasks of time series
clustering and classification. Specifically, we aimed to answer the following research
questions:

5https://github.com/ADA-research/TSRC
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1. Is the TSRC framework effective in allowing a reconstruction-based student model
to learn from a contrastive-based teacher model?

2. How does the choice of the teacher and student models affect the performance of
the TSRC framework?

3. How well do representations learned through the TSRC framework transfer to
other downstream tasks, particularly time series classification?

The experiments are structured as follows:

• Experiment 1: Both teacher and student models have a high rank in external clus-
ter evaluation (according to Figure 4a) and do not show a significant performance
difference (strong-strong). Accordingly, we select TS2Vec (Yue et al, 2022) as the
teacher model and TimeNet (Malhotra et al, 2017) as the student model. The cur-
riculum is designed such that it gives less influence to the teacher model (LHint) at
the beginning and increases its impact later in the training process. This is accom-
plished by setting the increment rate τ = 1.5 > 1.0 so that the value of the training
coefficient λtrain starts low, giving more weight to the reconstruction loss, and then
dynamically giving more weight to the hint loss, which is the teacher’s influence (see
Figures 5a and 3).

• Experiment 2: The teacher model has a high rank, the student has a lower rank in
external cluster evaluation, and there is a significant performance difference between
the two (strong-weak). In this experiment, we select TS2Vec (Yue et al, 2022) as
teacher model and LSTM-AE (Malhotra et al, 2016) as student model. The curricu-
lum is designed in a way to give more influence for the teacher model (LHint) at
the beginning, by setting the increment rate τ = 0.25 < 1.0 (see Figures 5b and 3).

• Experiment 3: Both teacher and student models have low performance rankings
in external cluster evaluation and show significant performance differences (weak-
weak). In this experiment, we select MCL (Wickstrøm et al, 2022) as the teacher
model and LSTM-AE (Malhotra et al, 2016) as the student model. The curriculum
is designed to give a head start (ψ0 = 25) to the student model to train without
any influence from the teacher model at the beginning (λtrain = 0 ⇒ LTotal =
LReconstruction); then the teacher influence is introduced in a balanced way, with
linear increment achieved by setting the increment rate τ = 1.0 (see Figures 5c and
3).

In these experiments, b, the final value of λtrain, is set based on both the perfor-
mance of the teacher model and the performance difference between the teacher and
student models. Specifically, when the teacher model is strong and the performance
difference from the student model is not significant, b is set to 0.9, to allow some con-
tribution from the student model at the end of training procedure (Experiment 1).
When the teacher model is strong and significantly outperforms the student model, b
is set to 1.0, to maximise the teacher’s influence (Experiment 2). When the teacher
model is not exceptionally strong but still better than the student model, b is set to
0.75, to reflect this moderate performance difference (Experiment 3).

In all experiments, ψt (the total number of epochs) was set to 500 to ensure a con-
sistent and fair comparison. In addition, as we seek to achieve the best interpretability
possible, we aim to obtain the model with the encoder that produces presentations that
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the decoder can reconstruct best; therefore, in our experiments, we set (λvalidation = 0)
– when λvalidation is set to 0, the validation favours models with the best reconstruction
loss, i.e., a model with representations that can be best reconstructed by the student
decoder (this is discussed in more detail in Section 3.2).

A summary of the hyperparameters (curricula) used in these experiments is
presented in Table 1 and illustrated in Figure 5. The results for clustering and clas-
sification are summarised in Tables 2 and 3, and illustrated in Figures 6 and 7,
respectively.
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Table 1: Summary of the experiments.

Experiment 1
(strong-strong)

Experiment 2
(strong-weak)

Experiment 3
(weak-weak)

Models

Teacher Model TS2Vec TS2Vec MCL
Student Model TimeNet LSTM-AE LSTM-AE

Curriculum hyperparameters

a 0.0 0.25 0.15
b 0.9 1.0 0.75
ψ0 0 0 25
ψt 500 500 500
τ 1.5 0.25 1.0

λvalidation 0.0 0.0 0.0
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(c) Experiment 3

Fig. 5: Change of the coefficient λtrain with respect to the hyperparameter settings
(curriculum) and the epoch ψ for each experiment.
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5.2 Discussion of Results

We conducted a total of three experiments (detailed in Section 5.1), in which we
selected different combinations of teacher and student models, created a curriculum
by adjusting the hyperparameters, and compared the performance of the student
model when trained with and without the framework. Each experiment was run five
times using different random seeds. To contextualise the performance of baseline mod-
els and models trained within the TSRC, we compared their clustering results to
those obtained using features extracted directly from raw data. These features were
extracted using a random sliding window approach6, where mean values are computed
over randomly selected intervals of the input time series. The number of sliding win-
dows is determined using Equation 8. This feature extractor was run five times using
the same random seeds as in other experiments.
Q1. Is the TSRC framework effective in allowing a reconstruction-based student model

to learn from a contrastive-based teacher model?
The results reported in Table 2 and Figure 6a show an overall improvement (on average
11.18%) in student model performance in terms of ranking in the external cluster evalu-
ation based on experiments on 112 datasets when the student model was trained within
the TSRC framework compared to performance when trained outside the framework.
The results of the external cluster evaluation show that reconstruction-based methods
could gain improvement in extracting clusterable representations, making them closer
in performance to contrastive learning methods while keeping their enhanced inter-
pretability (the trained decoder). In addition to improvements in external evaluation,
methods trained within the TSRC gained a boost in their internal cluster evaluation,
with an average improvement of 68.04% (see Figure 6b and Table 2), which means that
the TSRC framework enhanced the ability of these models to extract more well-defined
clusters. When looking at the clustering results acquired from the baseline models
(shown in Figure 6), two conclusions can be drawn: (1) originally, baseline models
produced worse representations than the features extracted from raw data (judged by
internal clustering quality, see Figure 6b); however, (2) when trained using the TSRC
framework, they produced significantly better representations than features extracted
from raw data (see Figure 6b) without sacrificing external clustering performance (see
Figure 6a).
Q2. How does the choice of the teacher and student models affect the performance of

the TSRC framework?
The degree of improvement varied in proportion to the difference in performance
between student and teacher models. In Experiment 2, the performance of the student
model improved significantly, compared to when it was trained outside the TSRC,
whereas in Experiment 1, there was an improvement below statistical significance
(see Figure 6a and Table 1). To further inspect the results of Experiment 3, which
are ambiguous in Figure 6a – there is no significant difference between LSTM-AE
w/ TSRC (MCL) and both MCL and LSTM-AE, but there is a significant difference
between MCL and LSTM-AE –, we conducted a Wilcoxon signed-rank test on the

6We used the RandomIntervalFeatureExtractor implementation from “sktime” framework; implemen-
tation details are available here: https://www.sktime.net/en/v0.36.0/api reference/auto generated/sktime.
transformations.panel.summarize.RandomIntervalFeatureExtractor.html.
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(a) CD diagram of external cluster evaluation using Adjusted Rand Index (ARI) of
the models considered in the experiments and the baselines obtained by performing a
Friedman test followed by a Nemenyi post-hoc test.

12345678

LSTM-AE
MCL

TimeNet
TS2Vec Raw Data

TimeNet w/ TSRC (TS2Vec)
LSTM-AE w/ TSRC (MCL)
LSTM-AE w/ TSRC (TS2Vec)

CD

(b) CD diagram of internal cluster evaluation using Calinski-Harabasz Index (CHI) of
the models considered in the experiments and the baselines obtained by performing a
Friedman test followed by a Nemenyi post-hoc test.

Fig. 6: Critical Difference (CD) diagrams of external and internal cluster evaluation of
the results of the experiments and the baselines, using Adjusted Rand Index (ARI) and
Calinski-Harabasz Index (CHI), respectively. The results were obtained by performing
a Friedman test followed by a Nemenyi post-hoc test.

results of the student model and the student model trained using TSRC (i.e, LSTM-AE
and LSTM-AE w/ TSRC (MCL), respectively). The result showed clearly that, at a
standard significance level of 0.05, the observed difference in performance between the
student and teacher models is significant (p = 0.013). These results can be explained
by considering the initial ranking of the pool of baseline methods, as shown in Figure
4a. In Experiments 2 and 3, there was a significant difference between the performance
values of the chosen student and teacher models, leading to a significant improvement
in the performance of the student model. However, in Experiment 1, there was no
significant difference between the chosen teacher and student models.
Q3. How effectively do representations learned through the TSRC framework transfer

to other downstream tasks, particularly time series classification?
Classification was performed using the baseline models and models trained in the
experiments described in Section 5.1. To ensure that transferability is properly
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Table 2: The table shows the average rank of the external cluster evaluation using
ARI and the internal cluster evaluation using CHI of the models considered in the
experiments. The results were obtained by performing a Friedman test followed
by a Nemenyi post-hoc test. It also shows the percentage rank improvement for
the student models trained within the TSRC framework compared to the same
student models trained individually. The naming convention used in this table for
the TSRC framework is as follows: {student model name} w/ TSRC ({teacher
model name})

External Cluster Evaluation (Adjusted Rand Index (ARI))

Average Rank Average Rank Improvement (%)

Student models w/ TSRC framework

TimeNet w/ TSRC (TS2Vec) 3.95 9.20% (Compared to TimeNet)
LSTM-AE w/ TSRC (TS2Vec) 4.44 17.47% (Compared to LSTM-AE)
LSTM-AE w/ TSRC (MCL) 5.01 6.88% (Compared to LSTM-AE)

Baselines

TS2Vec 3.97 -
Raw Data 4.15 -
TimeNet 4.35 -
MCL 4.75 -
LSTM-AE 5.38 -

Internal Cluster Evaluation (Calinski-Harabasz Index (CHI))

Average Rank Average Rank Improvement (%)

Student models w/ TSRC framework

LSTM-AE w/ TSRC (TS2Vec) 1.71 75.07% (Compared to LSTM-AE)
LSTM-AE w/ TSRC (MCL) 2.77 66.91% (Compared to LSTM-AE)
TimeNet w/ TSRC (TS2Vec) 2.40 62.15% (Compared to TimeNet)

Baselines

Raw Data 3.62 -
TS2Vec 6.19 -
TimeNet 6.34 -
MCL 6.61 -
LSTM-AE 6.86 -

evaluated, we did not re-evaluate the baseline methods, select new teacher-student
combinations, or design new curricula based on classification performance; we used
models trained using the curricula shown in Table 1. The classification results are pre-
sented in Table 3 and illustrated using the CD diagram in Figure 7. As can be observed
from Table 3 and Figure 7, student models trained within the TSRC framework—
using a suitable teacher model—extracted representations that achieved similar or
better classification performance compared to the same models trained without TSRC.
Specifically, as shown in Table 3, TimeNet w/ TSRC (TS2Vec) and LSTM-AE w/
TSRC (TS2Vec) were significantly better than TimeNet and LSTM-AE with average
rank improvements of 18.06% and 9.99%, respectively. Although LSTM-AE w / TSRC
(MCL) performs worse than MCL by 0.77% according to the results in Table 3, as
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Fig. 7: Critical Difference (CD) diagrams of evaluations of the experiments and the
baselines using Accuracy on the downstream task of time series classification. The
results were obtained by performing a Friedman test followed by a Nemenyi post-hoc
test.

Table 3: The table shows the average rank of the classficaiton evaluations using
Accuracy of the models considered in the experiments. The results were obtained
by performing a Friedman test followed by a Nemenyi post-hoc test. It also shows
the percentage rank improvement for the student models trained within the TSRC
framework compared to the same student models trained individually. The naming
convention used in this table for the TSRC framework is as follows: {student
model name} w/ TSRC ({teacher model name})

Classification Evaluation (Accuracy)

Average Rank Average Rank Improvement (%)

Student models w/ TSRC framework

TimeNet w/ TSRC (TS2Vec) 3.04 18.06% (Compared to TimeNet)
LSTM-AE w/ TSRC (TS2Vec) 4.69 9.99% (Compared to LSTM-AE)
LSTM-AE w/ TSRC (MCL) 2.06 -0.77% (Compared to LSTM-AE)

Baselines

TS2Vec 2.34 -
MCL 3.50 -
TimeNet 3.71 -
LSTM-AE 5.21 -

Figure 7 shows, this performance difference is not statistically significant. These results
suggest that TSRC not only enhances interpretability and the positions of samples in
the embedding space but also improves the transferability of learned representations.

Based on these observations, we suggest the following general rule of thumb for
using our new framework: given a properly designed curriculum, the teacher model
should have a higher rank than the student model, with a significant difference in
performance, to be able to effectively distil better knowledge from the teacher model.

The results presented in Table 2 suggest that the TSRC framework can assist
reconstruction-based methods to extract better representations in terms of both inter-
nal and external cluster evaluation metrics without sacrificing the interpretability
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provided by the decoder. This satisfies both of the desirable characteristics of the rep-
resentations: representations are better positioned in the embedding space (improved
external and internal cluster evaluation) and are interpretable (the models resulting
from the framework are encoder-decoder models, which are inherently interpretable
(Le Naour et al, 2023)). Furthermore, the results presented in Table 3 suggest that
the TSRC improves the transferability of learned representations to other downstream
tasks, which is also a desirable characteristic (Yue et al, 2022).

6 Conclusion

In this article, we have introduced the Time Series Representations Classroom (TSRC)
framework and the accompanying loss function and curriculum, which we used to
jointly train two models, a teacher and student model, to perform time series represen-
tation learning and evaluated it using the downstream tasks of time series clustering
and classification. We demonstrated that this framework combines the benefits of
contrastive- and reconstruction-based methods by combining their respective loss
functions.

Our new framework can be used to improve the ability of reconstruction-based
methods to extract more clusterable representations compared to when training is per-
formed without the framework, while maintaining interpretability by making available
a decoder after the training process. In our experiments, the Time Series Represen-
tations Classroom (TSRC) framework achieved a higher average ranking by at least
6.88% and up to 17.47% in external cluster evaluation, and by at least 62.15% and
up to 75.07% in internal cluster evaluation. We have demonstrated that performance
improvement is dependent on the difference in performance between the chosen teacher
and student models and the designed curriculum. Our experiments provide insights
into how these two models are chosen and how the curriculum is designed. Further-
more, our experiments demonstrated that the TSRC improved the transferability of
the learned representations, where models trained using this framework achieved a
higher average ranking in time series classification by 14.02% on average.

7 Limitations and Future Work

In our study, we have not considered adaptation to larger amounts of data (e.g., mul-
tiple datasets at once) of both the teacher and student models; in all our experiments,
the teacher model was trained using one dataset at a time. In addition, robustness to
anomalies and missing values was not taken into account when selecting the teacher
and student models.

A promising avenue for future research consists of training a teacher model on
multiple datasets, and then reusing it to teach one or more students; this could also
include analysing and assessing the robustness of the teacher model and its impact
on performance, potentially leading to pre-trained teacher models that can be used as
a backbone for multiple runs of the TSRC framework (so far, the robustness of time
series representation learning has not been much explored in the literature (Zhang
et al, 2024a)).
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Moreover, our experiments have been designed by manually selecting the teacher
and student models and crafting a curriculum for each, which requires significant
domain expertise and insight into the performance of both models. In order to
democratise the usage of our framework, future work could include utilising Auto-
mated Machine Learning (AutoML) by building a search space that encompasses all
hyperparameters, including choices for the student model, teacher model, and curricu-
lum (Baratchi et al, 2024) to automatically select models and craft curricula based
on previous performance; this could also consider model robustness when performing
the selection. Additionally, future work could involve adding more choices for student
and teacher models to the framework, allowing for more teacher-student model com-
binations in an attempt to realise a unified and standardised library, similar to ULTS
(Meng et al, 2023).
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Appendix A Code Sources for The Baseline Models

In Table A1, we list the code sources we used to implement the baseline models
discussed in Section 4.3.

Model Source

TS2Vec (Yue et al, 2022) https://github.com/zhihanyue/ts2vec
TimeNet (Malhotra et al, 2017) https://github.com/mqwfrog/ULTS/tree/main/models/TimeNet
MCL (Wickstrøm et al, 2022) https://github.com/Wickstrom/MixupContrastiveLearning
LSTM-AE (Malhotra et al, 2016) https://github.com/PyLink88/Recurrent-Autoencoder

Table A1: Code source for baseline models considered in our study.

Appendix B Note on the Classification Results
(Transferability)

Although we have demonstrated that representations extracted using TSRC in an
unsupervised fashion are transferable to downstream tasks that are inherently super-
vised (classification), in case enough labels for training and validating are available, it
might be better to use supervised training methods for representation learning. Using
TSRC only for downstream tasks that are inherently based on supervised learning
makes selecting the teacher model and designing a curriculum a more difficult task
than using supervised learning-based methods (other than TSRC).

Appendix C Detailed Results

In Tables C2 and C3, we list the full results of the external and the internal cluster
evaluations conducted in our experiments, discussed in Section 5, for every dataset we
considered. In Table C4 we list the detailed results for the classification downstream
task. Every experiment was run 5 times; the random seeds used in the 5 runs are: 1,
3, 5, 7, and 9.

Table C2: Detailed results of the external cluster evaluation from the experiments
and the evaluation of the baselines. The number denotes (mean ± standard deviation)
of the ARI metric from 5 runs of each experiment. The rows represent the datasets
and the columns represent the model, either a baseline or a model trained within the
TSRC framework. The naming convention used in this table for the TSRC framework
is as follows: {student model name} w/ TSRC ({teacher model name}).

Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

ACSF1 0.09 ± 0.00 0.22 ± 0.01 0.18 ± 0.03 0.26 ± 0.01 0.22 ± 0.02 0.20 ± 0.04 0.24 ± 0.01 0.19 ± 0.01
Adiac 0.14 ± 0.01 0.12 ± 0.03 0.25 ± 0.01 0.30 ± 0.02 0.15 ± 0.01 0.23 ± 0.04 0.18 ± 0.03 0.22 ± 0.03
ArrowHead 0.09 ± 0.01 0.05 ± 0.01 -0.01 ± 0.00 0.09 ± 0.04 0.05 ± 0.02 0.11 ± 0.03 0.09 ± 0.03 0.03 ± 0.03
BME 0.35 ± 0.01 0.22 ± 0.07 -0.00 ± 0.00 0.25 ± 0.07 0.37 ± 0.18 0.33 ± 0.13 0.21 ± 0.10 0.31 ± 0.11
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

Beef 0.06 ± 0.01 0.04 ± 0.00 0.08 ± 0.03 0.18 ± 0.07 0.08 ± 0.04 0.11 ± 0.02 0.04 ± 0.00 0.11 ± 0.05
BeetleFly 0.12 ± 0.00 0.12 ± 0.00 0.20 ± 0.04 0.04 ± 0.05 0.10 ± 0.05 0.04 ± 0.05 0.12 ± 0.00 0.11 ± 0.03
BirdChicken -0.05 ± 0.00 -0.01 ± 0.00 -0.03 ± 0.02 -0.01 ± 0.03 -0.01 ± 0.00 -0.03 ± 0.02 -0.01 ± 0.00 -0.00 ± 0.01
CBF 0.25 ± 0.04 0.26 ± 0.13 0.63 ± 0.05 0.30 ± 0.13 0.18 ± 0.04 0.28 ± 0.13 0.72 ± 0.09 0.81 ± 0.07
Car 0.12 ± 0.01 0.02 ± 0.00 0.06 ± 0.01 0.15 ± 0.04 0.08 ± 0.02 0.13 ± 0.04 0.06 ± 0.03 0.08 ± 0.02
Chinatown 0.08 ± 0.01 0.71 ± 0.28 0.08 ± 0.02 0.03 ± 0.03 0.56 ± 0.30 0.60 ± 0.28 0.02 ± 0.02 0.03 ± 0.05
ChlorineConcentration -0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00
CinCECGTorso 0.13 ± 0.00 0.03 ± 0.01 0.08 ± 0.02 0.07 ± 0.02 0.10 ± 0.01 0.03 ± 0.01 0.05 ± 0.03 0.04 ± 0.01
Coffee 0.01 ± 0.02 0.05 ± 0.00 -0.02 ± 0.00 -0.00 ± 0.01 0.05 ± 0.00 0.18 ± 0.16 0.05 ± 0.01 0.05 ± 0.03
Computers -0.00 ± 0.00 -0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 -0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.00
CricketX 0.07 ± 0.01 0.03 ± 0.00 0.10 ± 0.00 0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
CricketY 0.09 ± 0.01 0.07 ± 0.01 0.12 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.13 ± 0.01
CricketZ 0.07 ± 0.01 0.03 ± 0.00 0.13 ± 0.01 0.09 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.07 ± 0.03 0.08 ± 0.01
Crop 0.26 ± 0.02 0.25 ± 0.02 0.27 ± 0.01 0.27 ± 0.01 0.26 ± 0.04 0.24 ± 0.04 0.25 ± 0.02 0.24 ± 0.01
DiatomSizeReduction 0.48 ± 0.01 0.43 ± 0.15 0.03 ± 0.00 0.11 ± 0.16 0.82 ± 0.02 0.77 ± 0.07 0.83 ± 0.05 0.86 ± 0.01
DistalPhalanxOutlineAgeGroup 0.45 ± 0.02 0.36 ± 0.11 0.39 ± 0.01 0.39 ± 0.03 0.44 ± 0.01 0.33 ± 0.11 0.44 ± 0.02 0.44 ± 0.01
DistalPhalanxOutlineCorrect -0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00
DistalPhalanxTW 0.75 ± 0.01 0.69 ± 0.11 0.73 ± 0.01 0.34 ± 0.07 0.68 ± 0.13 0.29 ± 0.02 0.74 ± 0.01 0.74 ± 0.01
ECG200 0.25 ± 0.02 0.19 ± 0.06 0.16 ± 0.09 0.22 ± 0.17 0.23 ± 0.06 0.29 ± 0.04 0.24 ± 0.04 0.25 ± 0.03
ECG5000 0.62 ± 0.05 0.44 ± 0.03 0.46 ± 0.01 0.28 ± 0.04 0.48 ± 0.06 0.36 ± 0.04 0.46 ± 0.02 0.48 ± 0.02
ECGFiveDays 0.08 ± 0.02 0.24 ± 0.05 0.01 ± 0.01 0.10 ± 0.07 0.15 ± 0.16 0.38 ± 0.22 0.00 ± 0.01 0.00 ± 0.01
EOGHorizontalSignal 0.17 ± 0.02 0.10 ± 0.00 0.28 ± 0.02 0.19 ± 0.04 0.15 ± 0.01 0.10 ± 0.00 0.10 ± 0.00 0.14 ± 0.04
EOGVerticalSignal 0.07 ± 0.01 0.04 ± 0.00 0.05 ± 0.00 0.08 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00
Earthquakes -0.01 ± 0.01 0.24 ± 0.01 -0.06 ± 0.01 -0.00 ± 0.00 0.25 ± 0.00 0.13 ± 0.08 0.23 ± 0.00 0.24 ± 0.01
ElectricDevices 0.17 ± 0.03 0.13 ± 0.02 0.25 ± 0.02 0.04 ± 0.00 0.14 ± 0.02 0.13 ± 0.04 0.25 ± 0.02 0.25 ± 0.02
EthanolLevel 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00
FaceAll 0.24 ± 0.04 0.13 ± 0.07 0.16 ± 0.02 0.18 ± 0.02 0.08 ± 0.03 0.16 ± 0.08 0.16 ± 0.02 0.22 ± 0.04
FaceFour 0.39 ± 0.08 0.21 ± 0.01 0.07 ± 0.05 0.34 ± 0.14 0.19 ± 0.06 0.20 ± 0.08 0.20 ± 0.05 0.27 ± 0.15
FacesUCR 0.15 ± 0.03 0.16 ± 0.02 0.19 ± 0.02 0.17 ± 0.03 0.20 ± 0.03 0.09 ± 0.02 0.24 ± 0.01 0.27 ± 0.03
FiftyWords 0.29 ± 0.02 0.11 ± 0.01 0.30 ± 0.02 0.23 ± 0.01 0.24 ± 0.04 0.11 ± 0.04 0.14 ± 0.03 0.20 ± 0.04
Fish 0.09 ± 0.01 0.07 ± 0.01 0.08 ± 0.02 0.25 ± 0.05 0.09 ± 0.01 0.11 ± 0.01 0.08 ± 0.01 0.11 ± 0.02
FordA -0.00 ± 0.00 -0.00 ± 0.00 0.01 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00
FordB 0.00 ± 0.00 -0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 0.00 ± 0.00
FreezerRegularTrain 0.28 ± 0.01 0.20 ± 0.07 0.24 ± 0.01 0.05 ± 0.03 0.26 ± 0.01 0.09 ± 0.08 0.23 ± 0.03 0.24 ± 0.01
FreezerSmallTrain 0.32 ± 0.00 0.24 ± 0.08 0.21 ± 0.01 0.05 ± 0.04 0.12 ± 0.10 0.27 ± 0.06 0.23 ± 0.01 0.23 ± 0.01
Fungi 0.52 ± 0.02 0.08 ± 0.02 0.54 ± 0.05 0.50 ± 0.08 0.31 ± 0.08 0.36 ± 0.11 0.13 ± 0.04 0.27 ± 0.08
GunPoint -0.00 ± 0.01 0.01 ± 0.01 0.05 ± 0.04 0.02 ± 0.03 0.01 ± 0.01 0.02 ± 0.03 0.00 ± 0.02 -0.01 ± 0.00
GunPointAgeSpan -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 0.06 ± 0.04 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00
GunPointMaleVersusFemale 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.12 ± 0.11 0.21 ± 0.00 0.13 ± 0.10 0.21 ± 0.00 0.17 ± 0.08
GunPointOldVersusYoung 0.28 ± 0.00 0.29 ± 0.02 0.28 ± 0.00 0.23 ± 0.09 0.56 ± 0.34 0.28 ± 0.00 0.28 ± 0.00 0.28 ± 0.00
Ham -0.01 ± 0.00 -0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.00 0.03 ± 0.03
Haptics 0.06 ± 0.00 0.03 ± 0.00 0.07 ± 0.02 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.02
Herring -0.01 ± 0.00 -0.01 ± 0.00 -0.02 ± 0.00 -0.00 ± 0.02 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.01
HouseTwenty 0.05 ± 0.00 0.04 ± 0.00 0.00 ± 0.01 0.08 ± 0.02 0.04 ± 0.00 0.03 ± 0.02 0.03 ± 0.00 0.03 ± 0.01
InlineSkate 0.03 ± 0.00 0.03 ± 0.01 0.02 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.00 0.03 ± 0.01
InsectEPGRegularTrain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
InsectEPGSmallTrain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.73 ± 0.22 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
InsectWingbeatSound 0.24 ± 0.03 0.21 ± 0.06 0.32 ± 0.02 0.26 ± 0.02 0.29 ± 0.04 0.17 ± 0.05 0.27 ± 0.02 0.29 ± 0.03
ItalyPowerDemand 0.00 ± 0.00 0.02 ± 0.01 0.05 ± 0.05 0.08 ± 0.06 0.00 ± 0.00 0.05 ± 0.08 0.08 ± 0.05 0.05 ± 0.04
LargeKitchenAppliances 0.03 ± 0.01 -0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.01 ± 0.02
Lightning2 0.10 ± 0.03 0.01 ± 0.01 -0.00 ± 0.00 0.11 ± 0.10 0.01 ± 0.02 0.01 ± 0.05 0.01 ± 0.01 0.00 ± 0.01
Lightning7 0.31 ± 0.01 0.10 ± 0.01 0.11 ± 0.02 0.27 ± 0.06 0.19 ± 0.02 0.13 ± 0.01 0.16 ± 0.07 0.27 ± 0.03
Mallat 0.70 ± 0.05 0.04 ± 0.01 0.83 ± 0.04 0.30 ± 0.03 0.41 ± 0.05 0.06 ± 0.02 0.31 ± 0.36 0.31 ± 0.29
Meat 0.44 ± 0.04 0.05 ± 0.02 -0.01 ± 0.02 0.43 ± 0.06 0.34 ± 0.11 0.20 ± 0.04 0.42 ± 0.20 0.38 ± 0.18
MedicalImages 0.06 ± 0.01 0.05 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.04 ± 0.01
MiddlePhalanxOutlineAgeGroup 0.45 ± 0.00 0.44 ± 0.03 0.47 ± 0.01 0.36 ± 0.05 0.44 ± 0.01 0.42 ± 0.02 0.44 ± 0.03 0.44 ± 0.02
MiddlePhalanxOutlineCorrect -0.00 ± 0.00 -0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.01
MiddlePhalanxTW 0.52 ± 0.09 0.52 ± 0.09 0.54 ± 0.01 0.29 ± 0.11 0.46 ± 0.11 0.32 ± 0.04 0.51 ± 0.09 0.57 ± 0.01
MixedShapesRegularTrain 0.47 ± 0.01 0.34 ± 0.15 0.50 ± 0.01 0.22 ± 0.05 0.36 ± 0.08 0.05 ± 0.01 0.24 ± 0.11 0.29 ± 0.15
MixedShapesSmallTrain 0.47 ± 0.01 0.15 ± 0.11 0.49 ± 0.02 0.27 ± 0.06 0.34 ± 0.06 0.06 ± 0.04 0.11 ± 0.08 0.20 ± 0.11
MoteStrain 0.15 ± 0.11 0.30 ± 0.15 0.04 ± 0.01 0.12 ± 0.12 0.34 ± 0.05 0.18 ± 0.08 0.12 ± 0.14 0.31 ± 0.07
NonInvasiveFetalECGThorax1 0.27 ± 0.02 0.16 ± 0.05 0.38 ± 0.01 0.32 ± 0.02 0.36 ± 0.05 0.14 ± 0.03 0.30 ± 0.02 0.35 ± 0.02
NonInvasiveFetalECGThorax2 0.27 ± 0.01 0.38 ± 0.03 0.37 ± 0.02 0.33 ± 0.01 0.45 ± 0.02 0.20 ± 0.04 0.35 ± 0.02 0.38 ± 0.02
OSULeaf 0.15 ± 0.01 0.06 ± 0.01 0.21 ± 0.04 0.08 ± 0.02 0.10 ± 0.01 0.12 ± 0.02 0.07 ± 0.04 0.08 ± 0.02
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

OliveOil 0.81 ± 0.06 0.09 ± 0.00 0.14 ± 0.02 0.75 ± 0.10 0.18 ± 0.12 0.12 ± 0.02 0.09 ± 0.00 0.31 ± 0.11
PhalangesOutlinesCorrect 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.00
Phoneme -0.01 ± 0.00 0.02 ± 0.00 0.06 ± 0.01 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.01
PigAirwayPressure 0.05 ± 0.01 0.03 ± 0.00 0.18 ± 0.02 0.05 ± 0.01 0.03 ± 0.00 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.01
PigArtPressure 0.08 ± 0.01 0.01 ± 0.01 0.44 ± 0.02 0.14 ± 0.01 0.00 ± 0.01 0.03 ± 0.01 0.03 ± 0.02 0.03 ± 0.03
PigCVP 0.06 ± 0.00 0.01 ± 0.01 0.12 ± 0.01 0.02 ± 0.01 0.05 ± 0.02 0.02 ± 0.02 0.03 ± 0.03 0.04 ± 0.02
Plane 0.75 ± 0.02 0.53 ± 0.01 0.89 ± 0.05 0.66 ± 0.07 0.43 ± 0.05 0.80 ± 0.05 0.53 ± 0.08 0.68 ± 0.09
PowerCons 0.56 ± 0.09 0.01 ± 0.00 0.41 ± 0.09 0.03 ± 0.04 0.01 ± 0.00 0.41 ± 0.27 0.55 ± 0.04 0.58 ± 0.04
ProximalPhalanxOutlineAgeGroup 0.53 ± 0.01 0.49 ± 0.07 0.48 ± 0.02 0.23 ± 0.09 0.49 ± 0.07 0.46 ± 0.13 0.52 ± 0.01 0.52 ± 0.01
ProximalPhalanxOutlineCorrect 0.07 ± 0.00 0.07 ± 0.01 0.00 ± 0.01 0.02 ± 0.01 0.06 ± 0.01 0.05 ± 0.02 -0.00 ± 0.01 0.01 ± 0.02
ProximalPhalanxTW 0.42 ± 0.02 0.38 ± 0.05 0.37 ± 0.03 0.28 ± 0.03 0.47 ± 0.05 0.30 ± 0.02 0.49 ± 0.09 0.46 ± 0.07
RefrigerationDevices 0.00 ± 0.00 0.01 ± 0.00 0.06 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00
Rock 0.06 ± 0.00 0.07 ± 0.01 0.07 ± 0.00 0.20 ± 0.05 0.06 ± 0.00 0.07 ± 0.01 0.08 ± 0.01 0.12 ± 0.04
ScreenType 0.01 ± 0.00 0.01 ± 0.01 0.03 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01
SemgHandGenderCh2 -0.02 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.01 -0.02 ± 0.01 -0.01 ± 0.00 -0.01 ± 0.01 0.01 ± 0.02 -0.01 ± 0.01
SemgHandMovementCh2 0.14 ± 0.00 0.09 ± 0.00 0.18 ± 0.01 0.12 ± 0.00 0.12 ± 0.01 0.12 ± 0.02 0.09 ± 0.05 0.12 ± 0.02
SemgHandSubjectCh2 0.08 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.10 ± 0.01 0.10 ± 0.02 0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0.02
ShapeletSim -0.01 ± 0.00 -0.01 ± 0.00 1.00 ± 0.00 0.00 ± 0.01 -0.01 ± 0.00 0.00 ± 0.01 -0.01 ± 0.00 -0.01 ± 0.00
ShapesAll 0.30 ± 0.00 0.22 ± 0.05 0.43 ± 0.01 0.36 ± 0.01 0.31 ± 0.02 0.14 ± 0.03 0.23 ± 0.02 0.33 ± 0.01
SmallKitchenAppliances 0.00 ± 0.00 0.09 ± 0.05 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.15 ± 0.07 0.00 ± 0.00 0.00 ± 0.00
SmoothSubspace 0.32 ± 0.05 0.22 ± 0.11 0.13 ± 0.04 0.13 ± 0.05 0.43 ± 0.06 0.27 ± 0.11 0.48 ± 0.07 0.44 ± 0.12
SonyAIBORobotSurface1 0.04 ± 0.05 0.49 ± 0.16 0.01 ± 0.01 0.05 ± 0.05 0.31 ± 0.23 0.27 ± 0.22 0.02 ± 0.02 0.04 ± 0.07
SonyAIBORobotSurface2 0.13 ± 0.07 0.22 ± 0.04 0.09 ± 0.06 0.25 ± 0.12 0.26 ± 0.02 0.19 ± 0.03 0.19 ± 0.05 0.19 ± 0.03
StarLightCurves 0.52 ± 0.00 0.53 ± 0.04 0.48 ± 0.01 0.28 ± 0.21 0.55 ± 0.01 0.36 ± 0.18 0.52 ± 0.02 0.53 ± 0.06
Strawberry -0.03 ± 0.00 -0.01 ± 0.01 -0.00 ± 0.00 -0.01 ± 0.02 0.01 ± 0.02 0.12 ± 0.06 0.00 ± 0.01 -0.00 ± 0.00
SwedishLeaf 0.26 ± 0.02 0.25 ± 0.03 0.39 ± 0.04 0.28 ± 0.03 0.30 ± 0.05 0.31 ± 0.02 0.39 ± 0.03 0.37 ± 0.05
Symbols 0.68 ± 0.01 0.49 ± 0.15 0.87 ± 0.02 0.62 ± 0.03 0.65 ± 0.02 0.60 ± 0.06 0.72 ± 0.04 0.84 ± 0.01
SyntheticControl 0.53 ± 0.04 0.56 ± 0.04 0.93 ± 0.02 0.33 ± 0.06 0.54 ± 0.04 0.43 ± 0.03 0.59 ± 0.08 0.59 ± 0.04
ToeSegmentation1 -0.00 ± 0.00 -0.00 ± 0.00 0.16 ± 0.01 -0.00 ± 0.00 0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.00 -0.00 ± 0.00
ToeSegmentation2 0.01 ± 0.01 0.02 ± 0.00 0.11 ± 0.02 0.01 ± 0.02 0.03 ± 0.00 -0.01 ± 0.01 0.04 ± 0.01 0.05 ± 0.04
Trace 0.37 ± 0.00 0.24 ± 0.06 0.43 ± 0.02 0.27 ± 0.12 0.58 ± 0.06 0.62 ± 0.03 0.37 ± 0.22 0.55 ± 0.08
TwoLeadECG 0.01 ± 0.01 0.02 ± 0.02 -0.00 ± 0.00 0.02 ± 0.02 0.01 ± 0.02 0.02 ± 0.03 0.00 ± 0.00 -0.00 ± 0.00
TwoPatterns 0.05 ± 0.01 -0.00 ± 0.00 0.62 ± 0.07 0.02 ± 0.01 0.00 ± 0.00 0.04 ± 0.01 0.65 ± 0.05 0.64 ± 0.10
UMD 0.18 ± 0.04 0.01 ± 0.02 0.00 ± 0.00 0.14 ± 0.03 0.11 ± 0.11 0.14 ± 0.01 0.11 ± 0.05 0.15 ± 0.03
UWaveGestureLibraryAll 0.44 ± 0.01 0.13 ± 0.14 0.27 ± 0.03 0.35 ± 0.02 0.25 ± 0.17 0.10 ± 0.03 0.23 ± 0.18 0.23 ± 0.13
UWaveGestureLibraryX 0.30 ± 0.01 0.17 ± 0.04 0.29 ± 0.04 0.26 ± 0.03 0.22 ± 0.03 0.18 ± 0.04 0.30 ± 0.03 0.29 ± 0.03
UWaveGestureLibraryY 0.29 ± 0.00 0.27 ± 0.03 0.18 ± 0.01 0.25 ± 0.03 0.28 ± 0.01 0.27 ± 0.03 0.18 ± 0.02 0.19 ± 0.02
UWaveGestureLibraryZ 0.28 ± 0.01 0.25 ± 0.01 0.30 ± 0.03 0.24 ± 0.01 0.29 ± 0.01 0.19 ± 0.04 0.30 ± 0.03 0.31 ± 0.02
Wafer -0.01 ± 0.00 -0.01 ± 0.00 0.02 ± 0.04 0.01 ± 0.02 -0.01 ± 0.00 -0.00 ± 0.00 0.02 ± 0.03 0.00 ± 0.00
Wine -0.00 ± 0.01 -0.01 ± 0.00 -0.01 ± 0.01 0.04 ± 0.05 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.02
WordSynonyms 0.16 ± 0.02 0.06 ± 0.01 0.20 ± 0.02 0.14 ± 0.01 0.16 ± 0.01 0.09 ± 0.02 0.12 ± 0.02 0.20 ± 0.02
Worms 0.03 ± 0.00 0.04 ± 0.00 0.05 ± 0.01 0.00 ± 0.01 0.06 ± 0.01 0.03 ± 0.02 0.06 ± 0.02 0.05 ± 0.01
WormsTwoClass 0.00 ± 0.00 -0.00 ± 0.00 0.05 ± 0.02 -0.00 ± 0.00 0.00 ± 0.01 -0.01 ± 0.00 -0.00 ± 0.00 0.00 ± 0.01
Yoga -0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

Table C3: Detailed results of the internal cluster evaluation from the experiments
and the evaluation of the baselines. The number denotes (mean ± standard deviation)
of the CHI metric from 5 runs of each experiment. The rows represent the datasets
and the columns represent the model, either a baseline or a model trained within the
TSRC framework. The naming convention used in this table for the TSRC framework
is as follows: {student model name} w/ TSRC ({teacher model name}).

Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

ACSF1
10.42 ±
0.88

124.22 ±
27.73

164.76 ±
33.72

67.70 ±
13.01

106.62 ±
23.38

417.49 ±
413.78

131.00 ±
10.24

87.38 ±
14.33

Adiac
131.97 ±
9.10

549.68 ±
322.67

106.86 ±
19.94

93.71 ±
9.83

410.73 ±
136.96

110.43 ±
29.15

350.71 ±
103.66

187.46 ±
17.90
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

ArrowHead
25.07 ±
1.53

119.86 ±
32.01

63.58 ±
9.14

33.99 ±
6.30

70.94 ±
24.64

56.73 ±
20.18

89.98 ±
10.55

67.48 ±
13.25

BME
40.96 ±
0.33

182.64 ±
78.64

462.14 ±
80.76

24.75 ±
3.34

64.21 ±
8.69

90.85 ±
30.39

378.58 ±
91.95

190.43 ±
66.15

Beef
29.63 ±
0.12

1212.85 ±
418.01

44.79 ±
6.51

25.39 ±
7.57

180.20 ±
140.03

1517.10 ±
851.21

962.64 ±
83.37

37.08 ±
16.03

BeetleFly
4.10 ±
0.00

59.23 ±
0.42

7.39 ±
0.91

6.38 ±
0.80

53.02 ±
6.79

53.98 ±
23.93

54.46 ±
1.85

31.48 ±
7.71

BirdChicken
5.94 ±
0.08

118.07 ±
2.39

17.77 ±
2.11

8.41 ±
2.01

117.47 ±
0.56

107.78 ±
52.19

122.15 ±
6.69

28.36 ±
7.23

CBF
102.11 ±
1.38

329.46 ±
43.82

176.18 ±
9.18

80.65 ±
13.61

332.66 ±
55.38

137.79 ±
33.53

319.67 ±
51.40

308.15 ±
31.66

Car
32.55 ±
0.87

182.98 ±
49.58

36.39 ±
3.58

27.06 ±
7.60

49.70 ±
6.58

29.88 ±
6.65

72.72 ±
12.38

35.82 ±
4.79

Chinatown
102.23 ±
2.69

310.98 ±
110.82

160.53 ±
24.57

34.46 ±
9.65

218.00 ±
110.81

61.59 ±
4.12

337.55 ±
32.16

278.67 ±
48.45

ChlorineConcentration
1270.52 ±
25.26

1934.83 ±
403.04

1589.63 ±
124.18

402.83 ±
21.48

1767.53 ±
220.68

2712.97 ±
1991.95

1810.60 ±
59.14

1775.03 ±
142.86

CinCECGTorso
129.18 ±
0.89

1217.46 ±
464.73

155.92 ±
5.05

126.41 ±
11.05

261.26 ±
38.34

21680.61 ±
26412.26

1753.56 ±
2365.44

824.69 ±
575.77

Coffee
10.21 ±
0.33

74.91 ±
0.70

22.52 ±
1.71

17.65 ±
4.63

75.00 ±
0.09

37.29 ±
6.97

67.44 ±
9.96

39.33 ±
19.52

Computers
21.11 ±
0.18

392.82 ±
7.85

107.84 ±
2.35

47.75 ±
7.70

68.54 ±
13.71

217.59 ±
95.72

316.16 ±
82.40

146.70 ±
24.72

CricketX
47.44 ±
0.58

2657.57 ±
2100.09

47.95 ±
6.45

43.81 ±
2.30

305.70 ±
96.82

788.38 ±
370.96

229.03 ±
80.27

118.27 ±
18.45

CricketY
43.72 ±
1.18

1083.23 ±
1391.25

46.42 ±
1.95

45.78 ±
2.87

114.23 ±
22.79

782.68 ±
338.23

364.89 ±
116.55

109.86 ±
6.41

CricketZ
44.91 ±
0.65

1307.69 ±
1355.67

50.10 ±
1.55

46.59 ±
2.07

126.13 ±
38.93

1287.80 ±
774.12

326.09 ±
138.09

97.10 ±
17.33

Crop
3576.22 ±
253.76

4740.96 ±
602.79

5812.62 ±
767.73

1311.51 ±
137.92

4395.74 ±
712.15

5988.21 ±
3852.82

11202.62 ±
1237.83

16281.47 ±
2552.36

DiatomSizeReduction
207.46 ±
1.21

197.88 ±
47.44

2956.71 ±
655.70

229.03 ±
72.48

232.12 ±
69.76

271.11 ±
169.77

240.38 ±
48.80

256.52 ±
79.62

DistalPhalanxOutlineAgeGroup
256.38 ±
7.73

918.44 ±
630.80

196.52 ±
39.53

64.21 ±
21.28

840.56 ±
264.88

163.48 ±
37.31

635.83 ±
157.88

833.18 ±
144.97

DistalPhalanxOutlineCorrect
419.06 ±
28.46

689.94 ±
197.02

266.65 ±
40.83

76.79 ±
8.26

659.77 ±
67.60

180.54 ±
41.98

960.87 ±
323.30

952.64 ±
166.31

DistalPhalanxTW
132.89 ±
5.96

992.60 ±
316.76

182.51 ±
17.25

50.74 ±
8.47

523.34 ±
114.55

120.35 ±
23.66

763.11 ±
144.47

685.53 ±
149.89

ECG200
59.14 ±
1.03

117.69 ±
29.81

27.16 ±
1.18

35.21 ±
13.81

93.78 ±
14.19

76.63 ±
30.90

123.51 ±
41.77

101.97 ±
32.55

ECG5000
940.62 ±
19.61

1923.72 ±
183.76

920.97 ±
153.75

357.19 ±
25.11

1943.39 ±
450.53

1267.25 ±
489.49

1449.68 ±
249.80

1401.31 ±
114.55

ECGFiveDays
94.23 ±
0.70

245.13 ±
36.56

125.02 ±
6.40

80.43 ±
8.85

163.44 ±
19.70

118.63 ±
26.15

191.62 ±
37.55

188.01 ±
11.23

EOGHorizontalSignal
40.90 ±
2.24

2197.58 ±
0.17

56.59 ±
2.15

49.80 ±
1.57

191.04 ±
9.65

2197.42 ±
0.04

2344.05 ±
572.85

249.34 ±
181.02

EOGVerticalSignal
59.79 ±
3.37

2101.07 ±
23.84

109.80 ±
26.45

75.77 ±
14.68

1850.36 ±
438.64

2067.36 ±
341.45

14737.07 ±
26277.54

662.20 ±
589.28

Earthquakes
1.56 ±
0.01

336.26 ±
33.68

148.73 ±
37.29

26.04 ±
4.32

570.12 ±
16.71

398.72 ±
642.18

630.95 ±
140.28

208.79 ±
36.27

ElectricDevices
205.80 ±
4.77

2434.59 ±
534.75

2437.92 ±
422.36

574.87 ±
52.19

1437.68 ±
97.80

3682.77 ±
1196.05

4373.51 ±
953.11

4131.23 ±
658.92

EthanolLevel
90.13 ±
0.29

1313.48 ±
1292.16

80.49 ±
4.54

89.83 ±
9.91

687.49 ±
304.95

1432.24 ±
375.18

578.09 ±
210.31

610.79 ±
215.12

FaceAll
29.92 ±
3.51

643.23 ±
638.79

130.99 ±
19.08

86.23 ±
4.61

724.12 ±
543.53

825.05 ±
889.09

816.53 ±
159.43

302.28 ±
68.70

FaceFour
10.28 ±
0.22

62.81 ±
13.59

47.76 ±
7.45

18.19 ±
2.49

43.12 ±
8.23

38.94 ±
15.92

83.15 ±
7.54

34.84 ±
7.58

FacesUCR
43.89 ±
4.01

366.55 ±
132.60

117.77 ±
12.02

90.27 ±
10.19

209.52 ±
33.71

451.72 ±
139.61

355.97 ±
34.24

282.78 ±
53.49

FiftyWords
16.04 ±
0.52

306.64 ±
206.88

16.53 ±
0.45

29.60 ±
2.05

70.29 ±
5.45

278.33 ±
80.79

129.90 ±
33.57

56.82 ±
11.26
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

Fish
37.50 ±
0.32

166.38 ±
41.21

52.29 ±
3.40

35.28 ±
8.18

66.84 ±
7.44

150.05 ±
97.95

133.12 ±
21.13

66.34 ±
10.68

FordA
99.59 ±
4.35

1385.37 ±
344.74

759.46 ±
16.38

322.96 ±
31.81

716.64 ±
677.81

3378.38 ±
480.73

3397.21 ±
380.83

2481.79 ±
355.34

FordB
43.60 ±
6.81

1403.24 ±
452.30

429.30 ±
18.24

256.06 ±
17.97

1492.93 ±
879.70

2842.84 ±
1414.37

3057.92 ±
106.78

1558.49 ±
144.65

FreezerRegularTrain
1357.32 ±
8.27

2365.61 ±
674.45

1340.27 ±
164.83

306.22 ±
33.85

3573.46 ±
155.38

515.70 ±
182.94

1845.31 ±
279.12

1893.76 ±
139.33

FreezerSmallTrain
1535.63 ±
12.54

2129.89 ±
588.97

1150.65 ±
187.99

278.71 ±
12.96

2739.45 ±
753.94

626.99 ±
135.89

1550.30 ±
137.16

1537.79 ±
212.49

Fungi
22.00 ±
0.57

233.52 ±
132.04

15.02 ±
0.47

25.35 ±
5.57

55.20 ±
4.35

153.28 ±
66.93

162.26 ±
43.95

32.46 ±
5.21

GunPoint
73.16 ±
25.07

198.39 ±
81.66

46.47 ±
3.48

27.86 ±
8.57

208.26 ±
29.28

56.54 ±
11.53

169.77 ±
47.43

121.35 ±
52.16

GunPointAgeSpan
816.01 ±
0.00

2432.25 ±
2206.51

679.39 ±
76.15

62.64 ±
5.10

614.35 ±
177.81

374.09 ±
236.73

665.01 ±
83.99

719.45 ±
93.70

GunPointMaleVersusFemale
875.76 ±
0.00

2996.61 ±
2229.31

609.62 ±
58.43

88.48 ±
20.16

613.22 ±
281.03

702.90 ±
553.97

802.20 ±
179.00

700.82 ±
121.09

GunPointOldVersusYoung
1017.57 ±
0.00

3360.71 ±
1259.68

924.98 ±
252.28

171.13 ±
120.25

705.58 ±
329.87

1213.48 ±
587.20

1000.60 ±
174.62

849.74 ±
131.24

Ham
8.40 ±
0.70

63.67 ±
19.85

43.00 ±
2.20

21.29 ±
1.57

68.23 ±
25.33

51.90 ±
23.65

75.13 ±
23.70

39.28 ±
3.52

Haptics
60.02 ±
0.89

297.42 ±
136.02

34.53 ±
6.45

41.92 ±
6.60

127.08 ±
30.98

4025.27 ±
7581.81

336.20 ±
272.49

64.85 ±
22.88

Herring
23.97 ±
1.68

95.94 ±
19.16

30.93 ±
1.25

17.56 ±
4.03

41.88 ±
8.53

62.74 ±
23.47

103.88 ±
8.85

26.50 ±
5.92

HouseTwenty
10.19 ±
0.00

269.31 ±
46.04

41.21 ±
11.04

30.44 ±
14.58

269.24 ±
7.98

201.52 ±
79.36

221.67 ±
46.25

94.52 ±
52.97

InlineSkate
77.53 ±
0.52

1116.93 ±
64.69

107.62 ±
26.13

64.43 ±
3.74

210.84 ±
218.23

1197.76 ±
286.92

603.82 ±
267.57

132.41 ±
29.40

InsectEPGRegularTrain
14393.62 ±
0.00

13544.35 ±
331.53

8881.58 ±
984.90

4539.69 ±
1636.80

14744.91 ±
49.29

47071.32 ±
68200.74

17562.31 ±
1576.79

11455.13 ±
1428.16

InsectEPGSmallTrain
11887.39 ±
0.00

10347.89 ±
543.92

5855.65 ±
913.47

1386.40 ±
1541.13

11188.37 ±
176.09

835415.32 ±
1348449.69

11934.29 ±
1621.46

8552.22 ±
892.29

InsectWingbeatSound
89.89 ±
10.31

1255.08 ±
566.93

146.93 ±
3.75

139.33 ±
9.75

542.88 ±
79.21

972.96 ±
426.95

431.85 ±
32.06

355.56 ±
29.21

ItalyPowerDemand
434.72 ±
16.57

1093.36 ±
229.66

245.92 ±
39.15

93.96 ±
9.45

1129.04 ±
285.70

193.43 ±
13.15

458.23 ±
88.68

563.53 ±
131.01

LargeKitchenAppliances
8.52 ±
0.39

1459.60 ±
489.35

629.69 ±
69.42

71.97 ±
25.05

452.74 ±
229.48

691.60 ±
276.74

570.70 ±
237.38

177.84 ±
64.72

Lightning2
8.50 ±
0.17

82.02 ±
23.60

133.91 ±
4.54

18.04 ±
2.35

64.46 ±
7.62

39.61 ±
17.91

61.30 ±
15.90

75.42 ±
17.05

Lightning7
10.85 ±
0.37

248.41 ±
107.10

46.59 ±
4.56

19.25 ±
2.81

74.47 ±
6.02

87.94 ±
20.25

171.18 ±
51.35

56.09 ±
10.27

Mallat
196.53 ±
5.64

2450.76 ±
526.34

114.11 ±
2.21

139.17 ±
16.80

681.62 ±
1060.76

4028.21 ±
1788.94

1509.89 ±
645.83

472.06 ±
341.06

Meat
31.42 ±
1.92

124.33 ±
34.75

64.30 ±
11.59

23.22 ±
3.15

80.98 ±
18.75

109.48 ±
46.80

54.84 ±
15.11

38.20 ±
7.31

MedicalImages
70.41 ±
6.66

207.66 ±
22.00

155.84 ±
8.42

87.08 ±
6.91

253.67 ±
16.57

157.22 ±
37.77

290.63 ±
42.96

284.52 ±
42.79

MiddlePhalanxOutlineAgeGroup
235.09 ±
11.89

553.85 ±
102.31

228.01 ±
24.82

53.25 ±
5.92

494.29 ±
127.79

135.72 ±
40.58

535.31 ±
83.13

668.62 ±
31.17

MiddlePhalanxOutlineCorrect
260.29 ±
7.19

283.82 ±
45.15

271.17 ±
29.74

78.74 ±
8.92

507.85 ±
158.97

246.79 ±
47.06

617.12 ±
155.28

674.46 ±
164.56

MiddlePhalanxTW
124.32 ±
3.74

416.95 ±
109.66

177.41 ±
16.94

52.04 ±
16.45

691.33 ±
264.08

132.73 ±
38.03

356.09 ±
40.26

348.81 ±
73.20

MixedShapesRegularTrain
250.04 ±
8.65

1078.63 ±
1146.46

250.42 ±
2.72

256.58 ±
22.31

369.83 ±
35.36

4634.49 ±
1093.49

1777.01 ±
1314.89

675.91 ±
354.75

MixedShapesSmallTrain
222.81 ±
6.89

2194.41 ±
1780.04

223.76 ±
10.37

214.10 ±
9.12

358.75 ±
52.90

5039.43 ±
2068.30

2378.67 ±
1275.04

577.14 ±
257.75

MoteStrain
66.01 ±
12.66

529.38 ±
89.48

175.93 ±
18.86

108.62 ±
12.58

762.44 ±
268.14

128.74 ±
14.15

359.45 ±
63.53

432.87 ±
103.16

NonInvasiveFetalECGThorax1
116.37 ±
4.22

1692.81 ±
2013.36

113.83 ±
9.02

147.05 ±
11.41

219.54 ±
65.70

6949.35 ±
5327.56

304.73 ±
34.76

202.75 ±
24.11
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

NonInvasiveFetalECGThorax2
108.45 ±
3.85

201.38 ±
40.55

135.59 ±
18.38

165.80 ±
13.70

196.98 ±
20.31

1640.75 ±
646.38

247.46 ±
15.25

220.10 ±
38.34

OSULeaf
22.79 ±
0.82

536.56 ±
240.02

28.41 ±
1.88

32.79 ±
2.15

159.74 ±
19.20

80.13 ±
26.68

1109.81 ±
986.35

111.63 ±
12.73

OliveOil
20.80 ±
1.08

234.24 ±
3.97

15.93 ±
0.95

22.68 ±
6.26

129.15 ±
78.20

181.71 ±
63.69

232.01 ±
2.13

289.27 ±
519.77

PhalangesOutlinesCorrect
713.74 ±
55.79

1422.08 ±
381.39

651.02 ±
122.60

206.59 ±
24.48

1713.95 ±
953.47

584.09 ±
269.92

1082.19 ±
344.82

1517.80 ±
590.63

Phoneme
2.80 ±
0.11

161.39 ±
142.82

31.82 ±
0.87

30.11 ±
2.42

63.46 ±
8.21

423.81 ±
263.05

259.25 ±
88.22

229.99 ±
192.89

PigAirwayPressure
33.24 ±
1.09

17621.79 ±
2986.64

42.49 ±
2.01

43.71 ±
5.39

22346.02 ±
1182.10

6448.94 ±
4965.81

10921.98 ±
7018.33

9966.10 ±
6292.60

PigArtPressure
4.56 ±
0.21

4204.80 ±
1017.83

36.22 ±
0.72

15.47 ±
0.99

538.06 ±
369.68

1988.19 ±
2054.40

491.14 ±
258.15

430.79 ±
339.58

PigCVP
5.90 ±
2.37

2529.64 ±
995.25

496.42 ±
102.12

18.64 ±
1.03

437.03 ±
726.10

1340.27 ±
717.44

2854.01 ±
3977.08

976.59 ±
1821.02

Plane
84.89 ±
7.11

278.77 ±
45.91

47.89 ±
5.64

46.83 ±
11.79

324.25 ±
93.59

60.38 ±
9.12

286.56 ±
56.02

170.18 ±
21.83

PowerCons
52.32 ±
0.95

1609.13 ±
1143.69

113.41 ±
4.12

37.81 ±
9.98

222.43 ±
28.75

79.14 ±
16.10

223.98 ±
40.79

194.12 ±
15.23

ProximalPhalanxOutlineAgeGroup
264.42 ±
15.26

931.82 ±
394.43

274.78 ±
31.04

63.18 ±
9.31

1073.35 ±
172.50

123.77 ±
25.29

923.75 ±
356.41

1113.26 ±
210.42

ProximalPhalanxOutlineCorrect
625.64 ±
9.50

950.90 ±
639.27

363.89 ±
62.96

90.34 ±
9.28

1268.07 ±
376.44

232.61 ±
92.42

608.29 ±
144.12

809.12 ±
304.92

ProximalPhalanxTW
170.91 ±
10.19

615.71 ±
126.54

162.33 ±
21.38

59.82 ±
7.78

979.74 ±
414.93

120.64 ±
38.41

843.83 ±
280.23

704.32 ±
87.27

RefrigerationDevices
2.31 ±
0.07

958.00 ±
272.99

85.71 ±
7.46

36.99 ±
4.89

348.20 ±
59.14

1070.67 ±
1259.64

138.22 ±
56.28

309.15 ±
42.41

Rock
23.00 ±
0.65

158.36 ±
19.61

53.25 ±
4.93

19.15 ±
3.62

121.71 ±
17.94

209.37 ±
72.24

206.52 ±
109.95

56.35 ±
30.87

ScreenType
29.73 ±
0.44

847.34 ±
97.04

110.23 ±
11.10

61.85 ±
9.72

113.96 ±
8.03

452.97 ±
153.93

524.32 ±
183.58

158.89 ±
45.06

SemgHandGenderCh2
252.36 ±
0.00

1303.29 ±
658.79

508.18 ±
62.74

177.96 ±
59.56

419.86 ±
44.78

2572.77 ±
2670.11

807.56 ±
210.77

469.77 ±
75.16

SemgHandMovementCh2
83.03 ±
0.66

1905.65 ±
1023.34

453.12 ±
23.52

125.75 ±
13.99

258.39 ±
46.42

1728.12 ±
1082.02

816.06 ±
426.83

227.77 ±
17.14

SemgHandSubjectCh2
101.15 ±
0.20

1813.92 ±
487.70

481.21 ±
35.12

127.36 ±
8.06

332.97 ±
48.74

1496.57 ±
948.48

752.76 ±
270.49

335.38 ±
103.66

ShapeletSim
1.14 ±
0.01

220.04 ±
5.65

33.79 ±
5.08

10.31 ±
1.55

223.20 ±
2.00

103.31 ±
72.83

249.00 ±
19.61

143.72 ±
13.56

ShapesAll
34.87 ±
0.80

300.98 ±
246.26

24.73 ±
1.17

50.08 ±
4.18

85.42 ±
10.46

1422.50 ±
811.99

475.02 ±
59.18

83.88 ±
17.11

SmallKitchenAppliances
16.81 ±
2.02

242.37 ±
32.48

878.05 ±
35.87

53.38 ±
7.21

204.48 ±
39.59

674.97 ±
131.90

534.87 ±
327.67

244.90 ±
35.22

SmoothSubspace
16.68 ±
0.74

502.93 ±
150.33

59.82 ±
5.61

27.92 ±
2.34

240.28 ±
87.05

92.47 ±
24.95

415.44 ±
162.27

201.77 ±
88.83

SonyAIBORobotSurface1
30.82 ±
2.25

218.12 ±
51.41

99.96 ±
14.13

49.77 ±
6.94

186.89 ±
52.17

88.21 ±
18.84

235.74 ±
100.87

148.52 ±
13.52

SonyAIBORobotSurface2
140.14 ±
18.82

1240.63 ±
533.93

95.13 ±
11.39

87.46 ±
13.25

1117.32 ±
231.08

169.89 ±
13.37

661.62 ±
286.52

334.52 ±
93.95

StarLightCurves
5613.60 ±
24.23

8393.80 ±
3098.03

2070.60 ±
143.99

752.96 ±
74.51

4591.01 ±
2604.00

14816.50 ±
18168.33

15279.79 ±
9886.39

12506.95 ±
5139.68

Strawberry
293.56 ±
2.55

349.45 ±
80.62

425.25 ±
21.27

115.66 ±
14.19

315.24 ±
47.69

111.76 ±
23.18

373.53 ±
15.27

408.76 ±
41.56

SwedishLeaf
44.22 ±
0.86

158.60 ±
24.41

97.32 ±
9.17

60.52 ±
3.24

121.30 ±
13.24

78.88 ±
7.07

330.04 ±
36.26

251.39 ±
42.37

Symbols
295.00 ±
13.13

7235.79 ±
4928.51

488.74 ±
53.25

157.69 ±
15.66

995.07 ±
268.88

15893.09 ±
13026.99

4737.76 ±
1184.24

1427.63 ±
96.92

SyntheticControl
52.39 ±
0.58

1019.55 ±
594.45

225.02 ±
8.83

42.53 ±
3.99

1208.12 ±
801.82

83.95 ±
16.50

1530.31 ±
663.15

1023.76 ±
152.23

ToeSegmentation1
15.61 ±
3.16

225.27 ±
9.21

51.80 ±
8.37

25.63 ±
3.53

210.85 ±
14.27

127.53 ±
61.28

216.10 ±
15.03

65.86 ±
11.77

ToeSegmentation2
14.75 ±
0.93

157.07 ±
0.84

27.98 ±
5.24

17.40 ±
1.74

156.67 ±
0.91

75.04 ±
21.81

136.59 ±
30.47

53.33 ±
9.42
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Dataset Raw Data LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

Trace
133.63 ±
1.50

915.26 ±
1118.23

70.32 ±
8.19

36.22 ±
2.93

557.86 ±
283.68

269.86 ±
190.79

359.08 ±
69.95

261.07 ±
58.66

TwoLeadECG
304.88 ±
41.98

424.74 ±
123.10

325.83 ±
25.15

124.70 ±
9.47

474.95 ±
134.63

184.47 ±
32.04

607.00 ±
81.06

644.90 ±
103.06

TwoPatterns
134.53 ±
10.18

3261.84 ±
540.08

597.56 ±
45.62

281.11 ±
25.79

4677.33 ±
5578.97

1360.44 ±
775.11

2182.31 ±
492.06

1337.50 ±
140.69

UMD
34.60 ±
0.77

58.87 ±
5.35

208.07 ±
16.08

33.99 ±
5.70

46.87 ±
6.56

119.39 ±
104.41

314.24 ±
149.05

148.52 ±
13.37

UWaveGestureLibraryAll
214.36 ±
1.65

3422.33 ±
2628.67

128.07 ±
4.30

309.14 ±
24.62

658.19 ±
358.97

12692.25 ±
5734.10

2386.08 ±
2330.83

628.99 ±
457.70

UWaveGestureLibraryX
401.83 ±
18.52

876.26 ±
183.98

242.19 ±
16.65

342.59 ±
13.45

446.76 ±
60.30

2476.73 ±
1335.96

593.92 ±
73.96

734.17 ±
327.65

UWaveGestureLibraryY
618.86 ±
15.13

720.85 ±
168.63

277.75 ±
5.40

358.56 ±
41.29

542.03 ±
89.02

1884.45 ±
582.29

624.05 ±
16.56

679.71 ±
75.15

UWaveGestureLibraryZ
457.57 ±
11.47

795.90 ±
64.95

270.29 ±
12.61

359.78 ±
28.90

526.44 ±
59.18

2590.14 ±
428.03

651.74 ±
82.19

569.68 ±
54.93

Wafer
6429.07 ±
4.80

5456.71 ±
1244.88

2004.10 ±
192.31

669.64 ±
54.47

8953.39 ±
1702.72

2214.34 ±
759.89

2090.32 ±
181.30

1902.95 ±
209.46

Wine
18.69 ±
2.93

55.94 ±
13.78

41.02 ±
2.10

18.71 ±
3.79

33.06 ±
5.19

133.25 ±
192.82

111.66 ±
34.72

48.29 ±
11.50

WordSynonyms
20.10 ±
0.93

269.52 ±
59.45

25.22 ±
2.80

40.03 ±
3.83

95.94 ±
20.68

162.90 ±
62.43

101.93 ±
15.25

65.83 ±
5.51

Worms
10.07 ±
0.12

394.48 ±
6.15

22.74 ±
3.37

18.98 ±
1.48

103.10 ±
68.16

1252.17 ±
227.58

149.01 ±
118.86

57.47 ±
3.39

WormsTwoClass
17.40 ±
0.14

268.58 ±
1.22

32.79 ±
4.33

23.65 ±
1.19

50.21 ±
6.22

404.59 ±
353.53

191.95 ±
86.71

47.24 ±
4.81

Yoga
859.80 ±
49.86

1429.04 ±
964.82

494.60 ±
50.15

331.77 ±
48.57

973.13 ±
144.93

2286.78 ±
562.95

731.20 ±
83.56

650.72 ±
101.61

Table C4: Detailed results of the evaluations of of the experiments and the base-
lines using Accuracy on the downstream task of time series classification. The number
denotes (mean ± standard deviation) of the Accuracy metric from 5 runs of each
experiment. The rows represent the datasets and the columns represent the model,
either a baseline or a model trained within the TSRC framework. The naming conven-
tion used in this table for the TSRC framework is as follows: {student model name}
w/ TSRC ({teacher model name}).

Dataset LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

ACSF1 0.62 ± 0.04 0.60 ± 0.01 0.64 ± 0.05 0.61 ± 0.02 0.59 ± 0.04 0.63 ± 0.03 0.62 ± 0.05
Adiac 0.54 ± 0.06 0.68 ± 0.02 0.69 ± 0.02 0.60 ± 0.04 0.51 ± 0.06 0.57 ± 0.02 0.66 ± 0.02
ArrowHead 0.54 ± 0.04 0.87 ± 0.02 0.86 ± 0.02 0.59 ± 0.06 0.66 ± 0.08 0.65 ± 0.06 0.72 ± 0.06
BME 0.75 ± 0.04 0.94 ± 0.01 0.97 ± 0.02 0.88 ± 0.08 0.79 ± 0.05 0.83 ± 0.05 0.96 ± 0.03
Beef 0.28 ± 0.05 0.39 ± 0.07 0.54 ± 0.06 0.45 ± 0.03 0.39 ± 0.08 0.31 ± 0.08 0.52 ± 0.03
BeetleFly 0.70 ± 0.00 0.82 ± 0.12 0.70 ± 0.04 0.73 ± 0.06 0.67 ± 0.06 0.70 ± 0.00 0.72 ± 0.05
BirdChicken 0.34 ± 0.02 0.73 ± 0.04 0.66 ± 0.02 0.33 ± 0.02 0.42 ± 0.05 0.35 ± 0.03 0.63 ± 0.08
CBF 0.97 ± 0.02 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.00
Car 0.29 ± 0.06 0.68 ± 0.03 0.68 ± 0.04 0.43 ± 0.05 0.44 ± 0.07 0.39 ± 0.04 0.56 ± 0.04
Chinatown 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.02 0.97 ± 0.00
ChlorineConcentration 0.99 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 1.00 ± 0.00 0.78 ± 0.13 0.93 ± 0.01 0.97 ± 0.01
CinCECGTorso 0.55 ± 0.04 1.00 ± 0.00 0.94 ± 0.02 0.91 ± 0.04 0.64 ± 0.09 0.75 ± 0.20 0.80 ± 0.11
Coffee 0.50 ± 0.00 0.72 ± 0.19 0.85 ± 0.04 0.50 ± 0.00 0.64 ± 0.17 0.56 ± 0.13 0.61 ± 0.16
Computers 0.60 ± 0.00 0.60 ± 0.03 0.56 ± 0.04 0.64 ± 0.02 0.58 ± 0.02 0.62 ± 0.01 0.60 ± 0.02
CricketX 0.17 ± 0.02 0.68 ± 0.01 0.54 ± 0.02 0.42 ± 0.03 0.26 ± 0.06 0.39 ± 0.07 0.57 ± 0.03
CricketY 0.18 ± 0.01 0.68 ± 0.02 0.49 ± 0.02 0.34 ± 0.02 0.28 ± 0.04 0.33 ± 0.06 0.61 ± 0.03
CricketZ 0.17 ± 0.02 0.73 ± 0.03 0.57 ± 0.01 0.24 ± 0.04 0.27 ± 0.05 0.34 ± 0.07 0.45 ± 0.08
Crop 0.71 ± 0.01 0.71 ± 0.01 0.69 ± 0.01 0.72 ± 0.01 0.67 ± 0.03 0.70 ± 0.01 0.71 ± 0.01
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Dataset LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

DiatomSizeReduction 0.88 ± 0.02 0.96 ± 0.00 0.97 ± 0.01 0.98 ± 0.02 0.94 ± 0.01 0.97 ± 0.01 0.96 ± 0.00
DistalPhalanxOutlineAgeGroup 0.79 ± 0.02 0.77 ± 0.00 0.76 ± 0.03 0.78 ± 0.02 0.79 ± 0.02 0.79 ± 0.02 0.79 ± 0.02
DistalPhalanxOutlineCorrect 0.78 ± 0.03 0.82 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.75 ± 0.02 0.77 ± 0.02 0.77 ± 0.02
DistalPhalanxTW 0.75 ± 0.01 0.72 ± 0.01 0.71 ± 0.02 0.75 ± 0.01 0.71 ± 0.02 0.75 ± 0.01 0.75 ± 0.01
ECG200 0.79 ± 0.04 0.83 ± 0.01 0.87 ± 0.03 0.83 ± 0.04 0.82 ± 0.03 0.80 ± 0.02 0.85 ± 0.02
ECG5000 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.94 ± 0.00 0.95 ± 0.00 0.95 ± 0.00
ECGFiveDays 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.01 0.94 ± 0.02 0.96 ± 0.02 0.98 ± 0.01
EOGHorizontalSignal 0.15 ± 0.00 0.70 ± 0.01 0.58 ± 0.04 0.50 ± 0.04 0.16 ± 0.00 0.18 ± 0.01 0.50 ± 0.12
EOGVerticalSignal 0.18 ± 0.00 0.62 ± 0.02 0.48 ± 0.04 0.25 ± 0.06 0.22 ± 0.03 0.20 ± 0.03 0.34 ± 0.08
Earthquakes 0.82 ± 0.00 0.79 ± 0.01 0.80 ± 0.00 0.81 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.80 ± 0.01
ElectricDevices 0.70 ± 0.01 0.79 ± 0.01 0.60 ± 0.01 0.72 ± 0.01 0.67 ± 0.04 0.78 ± 0.01 0.76 ± 0.01
EthanolLevel 0.36 ± 0.05 0.45 ± 0.01 0.40 ± 0.06 0.40 ± 0.03 0.37 ± 0.01 0.39 ± 0.03 0.41 ± 0.03
FaceAll 0.65 ± 0.10 0.92 ± 0.01 0.80 ± 0.01 0.74 ± 0.08 0.53 ± 0.13 0.71 ± 0.04 0.92 ± 0.02
FaceFour 0.57 ± 0.07 0.91 ± 0.02 0.88 ± 0.02 0.67 ± 0.05 0.60 ± 0.09 0.53 ± 0.01 0.81 ± 0.06
FacesUCR 0.80 ± 0.04 0.92 ± 0.01 0.79 ± 0.02 0.87 ± 0.02 0.63 ± 0.02 0.84 ± 0.00 0.93 ± 0.01
FiftyWords 0.41 ± 0.02 0.74 ± 0.01 0.61 ± 0.03 0.59 ± 0.01 0.37 ± 0.06 0.45 ± 0.03 0.61 ± 0.06
Fish 0.39 ± 0.03 0.81 ± 0.02 0.79 ± 0.03 0.51 ± 0.04 0.41 ± 0.03 0.47 ± 0.03 0.63 ± 0.06
FordA 0.64 ± 0.01 0.91 ± 0.00 0.65 ± 0.01 0.72 ± 0.05 0.59 ± 0.02 0.64 ± 0.02 0.86 ± 0.03
FordB 0.66 ± 0.02 0.88 ± 0.00 0.57 ± 0.02 0.67 ± 0.03 0.57 ± 0.04 0.63 ± 0.03 0.81 ± 0.04
FreezerRegularTrain 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.78 ± 0.03 0.99 ± 0.00 0.99 ± 0.00
FreezerSmallTrain 0.97 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.87 ± 0.05 0.99 ± 0.00 0.99 ± 0.00
Fungi 0.46 ± 0.04 0.93 ± 0.00 0.93 ± 0.05 0.70 ± 0.09 0.55 ± 0.07 0.41 ± 0.04 0.65 ± 0.14
GunPoint 0.57 ± 0.12 0.54 ± 0.11 0.92 ± 0.02 0.52 ± 0.31 0.74 ± 0.09 0.67 ± 0.20 0.57 ± 0.15
GunPointAgeSpan 0.89 ± 0.05 0.97 ± 0.00 0.95 ± 0.02 0.92 ± 0.02 0.91 ± 0.03 0.90 ± 0.01 0.94 ± 0.02
GunPointMaleVersusFemale 0.85 ± 0.04 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.92 ± 0.05 0.97 ± 0.01 0.98 ± 0.01
GunPointOldVersusYoung 0.96 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ham 0.52 ± 0.02 0.64 ± 0.02 0.74 ± 0.02 0.52 ± 0.03 0.54 ± 0.03 0.53 ± 0.05 0.64 ± 0.02
Haptics 0.35 ± 0.03 0.44 ± 0.02 0.38 ± 0.01 0.40 ± 0.05 0.35 ± 0.03 0.39 ± 0.05 0.43 ± 0.04
Herring 0.61 ± 0.00 0.61 ± 0.00 0.60 ± 0.07 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00
HouseTwenty 0.68 ± 0.03 0.91 ± 0.02 0.73 ± 0.09 0.65 ± 0.03 0.65 ± 0.04 0.67 ± 0.03 0.72 ± 0.09
InlineSkate 0.38 ± 0.04 0.53 ± 0.00 0.40 ± 0.03 0.44 ± 0.04 0.43 ± 0.08 0.36 ± 0.09 0.49 ± 0.03
InsectEPGRegularTrain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
InsectEPGSmallTrain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
InsectWingbeatSound 0.52 ± 0.10 0.67 ± 0.00 0.65 ± 0.01 0.63 ± 0.01 0.48 ± 0.06 0.60 ± 0.01 0.66 ± 0.01
ItalyPowerDemand 0.95 ± 0.01 0.94 ± 0.01 0.96 ± 0.00 0.96 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01
LargeKitchenAppliances 0.59 ± 0.01 0.74 ± 0.01 0.51 ± 0.02 0.58 ± 0.02 0.49 ± 0.04 0.52 ± 0.04 0.69 ± 0.02
Lightning2 0.64 ± 0.02 0.62 ± 0.02 0.74 ± 0.02 0.67 ± 0.02 0.64 ± 0.03 0.66 ± 0.03 0.64 ± 0.02
Lightning7 0.42 ± 0.05 0.68 ± 0.03 0.65 ± 0.04 0.61 ± 0.02 0.56 ± 0.04 0.55 ± 0.05 0.65 ± 0.03
Mallat 0.33 ± 0.01 1.00 ± 0.00 0.91 ± 0.03 0.89 ± 0.13 0.63 ± 0.06 0.57 ± 0.35 0.95 ± 0.02
Meat 0.70 ± 0.04 0.96 ± 0.01 0.95 ± 0.02 0.94 ± 0.03 0.78 ± 0.06 0.92 ± 0.04 0.97 ± 0.01
MedicalImages 0.66 ± 0.02 0.75 ± 0.01 0.69 ± 0.04 0.70 ± 0.03 0.62 ± 0.03 0.68 ± 0.01 0.73 ± 0.01
MiddlePhalanxOutlineAgeGroup 0.72 ± 0.02 0.71 ± 0.03 0.73 ± 0.01 0.74 ± 0.02 0.73 ± 0.00 0.75 ± 0.01 0.72 ± 0.03
MiddlePhalanxOutlineCorrect 0.76 ± 0.02 0.75 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.71 ± 0.02 0.73 ± 0.02 0.76 ± 0.02
MiddlePhalanxTW 0.62 ± 0.01 0.59 ± 0.00 0.58 ± 0.05 0.63 ± 0.01 0.60 ± 0.01 0.61 ± 0.01 0.62 ± 0.02
MixedShapesRegularTrain 0.80 ± 0.10 0.96 ± 0.00 0.89 ± 0.01 0.92 ± 0.00 0.66 ± 0.02 0.84 ± 0.09 0.91 ± 0.02
MixedShapesSmallTrain 0.76 ± 0.07 0.96 ± 0.00 0.89 ± 0.02 0.93 ± 0.01 0.68 ± 0.21 0.80 ± 0.08 0.92 ± 0.02
MoteStrain 0.91 ± 0.01 0.91 ± 0.02 0.92 ± 0.01 0.91 ± 0.02 0.91 ± 0.01 0.91 ± 0.01 0.92 ± 0.01
NonInvasiveFetalECGThorax1 0.57 ± 0.07 0.88 ± 0.00 0.76 ± 0.03 0.81 ± 0.04 0.58 ± 0.03 0.79 ± 0.02 0.85 ± 0.03
NonInvasiveFetalECGThorax2 0.82 ± 0.03 0.90 ± 0.00 0.78 ± 0.01 0.88 ± 0.01 0.71 ± 0.06 0.84 ± 0.02 0.89 ± 0.02
OSULeaf 0.46 ± 0.03 0.73 ± 0.02 0.53 ± 0.02 0.55 ± 0.02 0.49 ± 0.01 0.47 ± 0.04 0.61 ± 0.02
OliveOil 0.41 ± 0.07 0.67 ± 0.03 0.86 ± 0.04 0.61 ± 0.12 0.51 ± 0.06 0.53 ± 0.00 0.76 ± 0.04
PhalangesOutlinesCorrect 0.76 ± 0.01 0.79 ± 0.01 0.78 ± 0.01 0.77 ± 0.01 0.73 ± 0.02 0.76 ± 0.01 0.77 ± 0.01
Phoneme 0.15 ± 0.00 0.34 ± 0.01 0.13 ± 0.01 0.15 ± 0.00 0.14 ± 0.01 0.17 ± 0.03 0.21 ± 0.04
PigAirwayPressure 0.07 ± 0.00 0.40 ± 0.04 0.13 ± 0.03 0.08 ± 0.02 0.07 ± 0.01 0.07 ± 0.00 0.08 ± 0.02
PigArtPressure 0.05 ± 0.02 0.85 ± 0.01 0.26 ± 0.03 0.07 ± 0.03 0.09 ± 0.02 0.10 ± 0.01 0.09 ± 0.03
PigCVP 0.06 ± 0.01 0.32 ± 0.03 0.10 ± 0.02 0.12 ± 0.03 0.06 ± 0.02 0.08 ± 0.06 0.11 ± 0.03
Plane 0.95 ± 0.03 0.99 ± 0.00 0.98 ± 0.01 0.97 ± 0.02 0.95 ± 0.03 0.98 ± 0.02 0.99 ± 0.01
PowerCons 0.75 ± 0.06 0.93 ± 0.01 0.95 ± 0.03 0.94 ± 0.01 0.96 ± 0.02 0.89 ± 0.02 0.94 ± 0.01
ProximalPhalanxOutlineAgeGroup 0.83 ± 0.01 0.78 ± 0.00 0.80 ± 0.01 0.83 ± 0.01 0.80 ± 0.01 0.81 ± 0.02 0.82 ± 0.01
ProximalPhalanxOutlineCorrect 0.77 ± 0.01 0.78 ± 0.03 0.80 ± 0.01 0.78 ± 0.01 0.75 ± 0.02 0.77 ± 0.01 0.79 ± 0.01
ProximalPhalanxTW 0.81 ± 0.01 0.78 ± 0.01 0.81 ± 0.01 0.79 ± 0.01 0.76 ± 0.02 0.79 ± 0.01 0.81 ± 0.01
RefrigerationDevices 0.55 ± 0.01 0.66 ± 0.01 0.37 ± 0.02 0.53 ± 0.01 0.50 ± 0.03 0.49 ± 0.02 0.55 ± 0.02
Rock 0.42 ± 0.06 0.69 ± 0.05 0.67 ± 0.02 0.49 ± 0.04 0.50 ± 0.07 0.48 ± 0.07 0.59 ± 0.06
ScreenType 0.42 ± 0.02 0.44 ± 0.01 0.43 ± 0.02 0.43 ± 0.01 0.41 ± 0.02 0.42 ± 0.02 0.44 ± 0.04
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Dataset LSTM-AE TS2Vec MCL TimeNet
LSTM-AE
w/ TSRC
(MCL)

LSTM-AE
w/ TSRC
(TS2Vec)

TimeNet
w/ TSRC
(TS2Vec)

SemgHandGenderCh2 0.75 ± 0.02 0.94 ± 0.01 0.89 ± 0.03 0.90 ± 0.01 0.73 ± 0.03 0.67 ± 0.09 0.88 ± 0.03
SemgHandMovementCh2 0.33 ± 0.02 0.84 ± 0.01 0.71 ± 0.03 0.64 ± 0.03 0.42 ± 0.06 0.44 ± 0.14 0.63 ± 0.10
SemgHandSubjectCh2 0.49 ± 0.02 0.91 ± 0.01 0.80 ± 0.03 0.80 ± 0.03 0.52 ± 0.06 0.61 ± 0.11 0.83 ± 0.03
ShapeletSim 0.52 ± 0.01 1.00 ± 0.00 0.53 ± 0.03 0.52 ± 0.01 0.45 ± 0.09 0.47 ± 0.02 0.45 ± 0.04
ShapesAll 0.51 ± 0.06 0.84 ± 0.01 0.69 ± 0.03 0.72 ± 0.02 0.47 ± 0.03 0.60 ± 0.03 0.76 ± 0.02
SmallKitchenAppliances 0.63 ± 0.01 0.59 ± 0.03 0.52 ± 0.01 0.63 ± 0.02 0.62 ± 0.04 0.61 ± 0.01 0.64 ± 0.02
SmoothSubspace 0.86 ± 0.04 0.70 ± 0.03 0.82 ± 0.02 0.86 ± 0.02 0.83 ± 0.02 0.81 ± 0.03 0.85 ± 0.02
SonyAIBORobotSurface1 0.95 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.00 0.95 ± 0.02 0.88 ± 0.05 0.96 ± 0.02
SonyAIBORobotSurface2 0.91 ± 0.01 0.89 ± 0.01 0.92 ± 0.02 0.91 ± 0.01 0.87 ± 0.02 0.88 ± 0.02 0.93 ± 0.01
StarLightCurves 0.94 ± 0.00 0.98 ± 0.00 0.94 ± 0.01 0.97 ± 0.00 0.84 ± 0.02 0.92 ± 0.03 0.93 ± 0.04
Strawberry 0.88 ± 0.02 0.95 ± 0.01 0.95 ± 0.00 0.90 ± 0.02 0.90 ± 0.02 0.90 ± 0.01 0.92 ± 0.01
SwedishLeaf 0.73 ± 0.02 0.88 ± 0.01 0.79 ± 0.02 0.82 ± 0.01 0.71 ± 0.03 0.79 ± 0.01 0.87 ± 0.00
Symbols 0.82 ± 0.13 0.98 ± 0.00 0.94 ± 0.01 0.95 ± 0.01 0.84 ± 0.04 0.92 ± 0.02 0.97 ± 0.01
SyntheticControl 0.93 ± 0.02 0.99 ± 0.00 0.90 ± 0.01 0.96 ± 0.03 0.94 ± 0.01 0.92 ± 0.04 0.97 ± 0.02
ToeSegmentation1 0.67 ± 0.02 0.92 ± 0.01 0.65 ± 0.06 0.67 ± 0.05 0.62 ± 0.06 0.59 ± 0.04 0.63 ± 0.05
ToeSegmentation2 0.75 ± 0.00 0.91 ± 0.02 0.81 ± 0.02 0.75 ± 0.00 0.72 ± 0.06 0.74 ± 0.01 0.77 ± 0.03
Trace 0.57 ± 0.05 0.98 ± 0.00 0.87 ± 0.01 0.83 ± 0.06 0.78 ± 0.03 0.60 ± 0.12 0.96 ± 0.02
TwoLeadECG 0.85 ± 0.02 0.98 ± 0.00 0.96 ± 0.01 0.88 ± 0.03 0.91 ± 0.03 0.90 ± 0.02 0.93 ± 0.02
TwoPatterns 0.45 ± 0.02 1.00 ± 0.00 0.87 ± 0.03 0.52 ± 0.03 0.49 ± 0.06 1.00 ± 0.00 1.00 ± 0.00
UMD 0.54 ± 0.03 0.82 ± 0.02 0.83 ± 0.04 0.60 ± 0.07 0.61 ± 0.04 0.58 ± 0.09 0.65 ± 0.04
UWaveGestureLibraryAll 0.60 ± 0.20 0.97 ± 0.00 0.92 ± 0.01 0.80 ± 0.14 0.50 ± 0.14 0.70 ± 0.24 0.84 ± 0.20
UWaveGestureLibraryX 0.69 ± 0.02 0.82 ± 0.00 0.76 ± 0.00 0.78 ± 0.00 0.67 ± 0.02 0.80 ± 0.01 0.80 ± 0.02
UWaveGestureLibraryY 0.70 ± 0.01 0.76 ± 0.01 0.71 ± 0.01 0.73 ± 0.01 0.61 ± 0.01 0.74 ± 0.01 0.75 ± 0.00
UWaveGestureLibraryZ 0.68 ± 0.02 0.77 ± 0.00 0.72 ± 0.01 0.74 ± 0.01 0.58 ± 0.02 0.73 ± 0.01 0.76 ± 0.01
Wafer 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Wine 0.59 ± 0.09 0.83 ± 0.02 0.87 ± 0.05 0.80 ± 0.07 0.64 ± 0.06 0.73 ± 0.11 0.78 ± 0.05
WordSynonyms 0.36 ± 0.01 0.72 ± 0.01 0.62 ± 0.01 0.53 ± 0.01 0.41 ± 0.04 0.51 ± 0.04 0.61 ± 0.02
Worms 0.43 ± 0.01 0.43 ± 0.00 0.42 ± 0.02 0.43 ± 0.00 0.44 ± 0.04 0.43 ± 0.01 0.48 ± 0.03
WormsTwoClass 0.50 ± 0.01 0.64 ± 0.02 0.54 ± 0.03 0.49 ± 0.05 0.52 ± 0.02 0.54 ± 0.03 0.52 ± 0.03
Yoga 0.84 ± 0.02 0.97 ± 0.00 0.89 ± 0.01 0.93 ± 0.01 0.80 ± 0.03 0.91 ± 0.01 0.95 ± 0.01
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