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Abstract. Hyperparameter optimization (HPO) aims to design ma-
chine learning algorithms that generalize well to unseen data by repeat-
edly evaluating hyperparameter configurations using a validation proce-
dure. When the validation performance of these configurations is overly
optimistic compared to the performance on an unseen test set, this is
referred to as meta-overfitting. We decompose meta-overfitting into two
types: (i) selection-based and (ii) adaptive overfitting. Selection-based
overfitting occurs when testing many configurations, which increases the
chance of finding a configuration that performs well on the validation
set by chance but performs suboptimal on the test set. Adaptive overfit-
ting arises from advanced HPO methods, such as Bayesian optimization,
which iteratively utilize validation results of earlier configurations to pro-
pose new configurations increasingly tailored to the specific validation
set. We provide one of the largest empirical studies of meta-overfitting
in the context of HPO for the Combined Algorithm Selection and Hyper-
parameter Optimization (CASH) problem, analyzing random search and
Bayesian optimization for 48 classification and 16 regression datasets
using holdout validation. We show evidence of adaptive overfitting in
Bayesian optimization for 41 classification datasets, and consistent with
prior work, we show that multiclass datasets are less affected by this
phenomenon. Additionally, we find that optimization procedures for re-
gression datasets are surprisingly resilient to adaptive overfitting. Fur-
thermore, we explore the effect of various design choices in the validation
procedure (i.e., 10-fold cross-validation and varying holdout set sizes) on
meta-overfitting.
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1 Introduction

Designing a machine learning pipeline involves selecting various components and
tuning their hyperparameters. Hyperparameter optimization (HPO) supports
the human in the loop by automatically searching for an optimal pipeline that
best generalizes to unseen data, reducing manual effort and empowering non-
experts to create complex machine learning workflows [3]. Simultaneously opti-
mizing both the pipeline components as well as their hyperparameters is defined
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as the combined algorithm selection and hyperparameter optimization (CASH)
problem [23].

The generalization performance of hyperparameter configurations is com-
monly estimated using nested resampling techniques such as k-fold cross-validation
or a holdout set. To evaluate an HPO method on unseen data, the dataset is
first split into a train and test set. Since the test set can only be used once,
the train set is further divided into a train and validation set to evaluate the
various configurations suggested throughout the HPO process. Typically, the
best-performing configuration on the validation set is selected and evaluated on
the test set. Instead of a single holdout set, cross-validation can be applied at
either or both levels to improve robustness. These resampling splits are gener-
ally predetermined and remain fixed throughout the HPO process. In practical
learning scenarios, limited data often restricts the size of resampling splits used
for evaluation, leading to less statistically robust estimates of generalization per-
formance [18]. When the performance estimates obtained during validation are
overly optimistic compared to the actual performance the pipeline achieves on
unseen test data, this is referred to as meta-overfitting, described by the meta-
overfitting error (MOE) [1], which measures the difference between the validation
estimation and the actual generalization performance. In the context of HPO,
meta-overfitting arises because many hyperparameter configurations are evalu-
ated, some naturally performing well on validation data due to chance alone [18].
Since HPO optimizes for the best validation performance, it tends to favor these
overfitted configurations over others that might generalize better to unseen data.
In this work, we refer to this type of meta-overfitting as selection-based overfit-
ting.

Moreover, we hypothesize that meta-overfitting occurs due to the sequential
nature of many hyperparameter optimization strategies, which leverage infor-
mation from previous evaluations to propose configurations increasingly tailored
to the specific validation procedure. While this approach may improve valida-
tion performance, it does not necessarily enhance the ability to generalize to
unseen data. This phenomenon is in a more general context called adaptive
data analysis [6], highlighting the risks of adaptively refining solutions based on
limited validation data. When this adaptivity leads to overly optimistic perfor-
mance estimates, it is termed adaptive overfitting. Given that state-of-the-art
HPO techniques, such as Bayesian optimization, inherently rely on adaptive
mechanisms to iteratively refine hyperparameter configurations, it is critical to
assess whether the solutions they propose are overfitted due to either adaptive
or selection-based effects.

In this study, we conduct a comprehensive empirical investigation into meta-
overfitting arising from random search and Bayesian optimization, offering one of
the first large-scale analyses of this phenomenon in HPO for the CASH problem.
Our key contributions are as follows:

1. We advance the understanding of meta-overfitting in HPO by examining its
effects across 64 diverse classification and regression datasets.
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2. On four binary classification datasets, we explore the mitigating effect of
10-fold cross-validation (10CV).

3. We identify adaptive overfitting as a significant contributor to meta-overfitting
in HPO and provide, to the best of our knowledge, the first evidence of its
presence in Bayesian optimization across most of the classification datasets
analyzed.

4. We examine the impact of varying validation set sizes on selection-based
and adaptive overfitting, extrapolating the practical implications of meta-
overfitting across scenarios with differing levels of data availability.

2 Related Work

In this section, we review the background of selection-based and adaptive over-
fitting and argue their inherent connection to HPO techniques. Furthermore, we
review related work on meta-overfitting in HPO, specifically when using state-
of-the-art Bayesian optimization.

Selection-based overfitting: Selecting the hypothesis with the highest cross-
validation performance from multiple evaluations can lead to biased results and
poor generalization [16,18], the phenomenon we refer to as selection-based over-
fitting. Subsequent research demonstrated that algorithms for variable selection,
also referred to as feature selection, frequently overfit the cross-validation pro-
cess [21]. Empirical studies reveal that manual model selection and hyperpa-
rameter tuning frequently result in models that perform better on validation
data than they do on unseen test sets, regardless of whether this performance
has been determined by a single nested holdout set or nested cross-validation
procedures [5]. Circling back, since HPO algorithms repeatedly evaluate hyper-
parameter configurations [3], they are susceptible to selection-based overfitting.

Adaptive data analysis and overfitting: Beyond the context of HPO, a
famous example of adapting analyses based on validation results is Freedman’s
paradox [10], which demonstrates that selecting randomly sampled features based
on their correlation with a target can yield statistically significant regression re-
sults on the validation set, ultimately leading to poor generalization. Similarly,
adaptive data analysis, introduced by Dwork et al. [6], explores how adapting
models or hypotheses based on intermediate evaluation undermines the statis-
tical validity of the validation results. They show the risk of overfitting to the
validation process, often referred to as adaptive overfitting, grows with the num-
ber of adaptively chosen evaluations but decreases as the size of the validation
dataset increases. Theoretically, multiclass classification was shown to be more
resilient to adaptive overfitting compared to binary classification [8]. This effect
was empirically observed in HPO using Bayesian optimization in this work.

Despite theoretical concerns, a meta-analysis of Kaggle competitions re-
ported minimal signs of adaptive overfitting [22]. Similarly, studies on widely-
used benchmarks like MNIST, CIFAR-10, and ImageNet have found limited
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evidence of adaptive overfitting [19,20,24], suggesting that the practical impact
of adaptive overfitting may be context-dependent. Investigating adaptive over-
fitting in the context of HPO is particularly interesting since Bayesian optimiza-
tion, which is one of the most commonly used techniques for HPO, inherently
selects new hyperparameter configurations based on the performance of previous
configurations evaluated on the validation set [2].

Overfitting in HPO: Meta-overfitting in HPO, also known as overtuning
or oversearching [16, 17], remains a relatively underexplored topic in the lit-
erature [3, 15]. Recent studies have begun addressing this gap. Lévesque [13]
conducted a comprehensive evaluation, revealing significant meta-overfitting in
Bayesian optimization when tuning SVM hyperparameters across 118 datasets.
This study also demonstrated that reshuffling the validation split after each eval-
uation improved both stability and overall performance. Subsequent research
confirmed these findings, showing that generalization performance with reshuf-
fled holdout splits per iteration often matches that of 5-fold cross-validation [15].
Furthermore, early stopping was identified as a viable approach to mitigate
meta-overfitting when optimizing hyperparameters for XGBoost and random
forests [14]. Fabris and Freitas [7] identified evidence of meta-overfitting in the
AutoML tool Auto-sklearn [9], offering a notable exploration of this phenomenon
in the context of the CASH problem. However, the generalizability of their re-
sults is constrained by two factors: the reliance on a single run per dataset
and the incorporation of post-hoc ensembles (i.e., instead of utilizing the best
configuration based on the HPO procedure, several of the best configurations
are combined into an ensemble). The use of ensembles is reported to improve
generalization over individual pipelines, thus reducing meta-overfitting [9].

Our work extends prior research by analyzing 64 datasets (with 100 repeti-
tions each), spanning classification and regression, and uniquely isolating adap-
tive overfitting as a key contributor to meta-overfitting in HPO for the CASH
problem.

3 Problem Definition

We formalize the CASH problem and describe our method for quantifying meta-
overfitting in HPO. The CASH problem involves finding the optimal combination
of a learning algorithm A ∈ A and its hyperparameters λ ∈ Λ to minimize a
loss function L (e.g., error rate, RMSE) on validation data Dval after training
on Dtrain. As introduced by Thornton et al. [23], the CASH problem is defined
as:

A∗, λ∗ ∈ argmin
A∈A,λ∈Λ

L(Aλ,Dtrain,Dval) (1)

During the HPO process, many hyperparameter configurations are evaluated on
Dval, possibly with an overly optimistic estimation compared to evaluation on
a completely unseen, ideally large, test set Dtest, which remains inaccessible to
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the HPO algorithm during optimization. We measure this effect with the meta-
overfitting error (MOE), which we formally define as:

MOE (Aλ,Dtrain,Dval,Dtest) := L(Aλ,Dtrain,Dtest)− L(Aλ,Dtrain,Dval) (2)

In this work, an iteration is defined as a single step in the HPO process where
one configuration is proposed and evaluated. A repetition refers to a complete
HPO procedure, consisting of multiple iterations. We assess meta-overfitting in
HPO using two metrics: the average meta-overfitting error (MOEavg) and the
resulting meta-overfitting error (MOE res). Let [Aλ]i,j denote the hyperparame-
ter configuration from iteration i during repetition j. Additionally, let [Aλ]

∗
i,j be

the best-found hyperparameter configuration in an HPO process for a given rep-
etition j when completed until iteration i. The resulting meta-overfitting error
is defined as:

MOE res(Dtrain,Dval,Dtest, i) :=
1

n

n∑
j=1

MOE ([Aλ]
∗
i,j ,Dtrain,Dval,Dtest) (3)

In the context of HPO applications, this corresponds to the meta-overfitting
error of the configuration that the algorithm would select if stopped at that
iteration, averaged over various repetitions.

Furthermore, we define the average meta-overfitting error for iteration i as
the mean meta-overfitting error of all configurations suggested in that iteration
across n repetitions:

MOEavg(Dtrain,Dval,Dtest, i) :=
1

n

n∑
j=1

MOE ([Aλ]i,j ,Dtrain,Dval,Dtest) (4)

This measure focuses on the meta-overfitting of configurations selected specif-
ically at iteration i, rather than tracking the best configuration found up to
that point (as in Equation 3). If the MOEavg increases across iterations of i, we
found empirical evidence for adaptive overfitting, since the effect of selection-
based meta-overfitting has been accounted for.

4 Experimental setup

We aim to experimentally assess the impact of both selection-based overfitting
and adaptive overfitting over a wide range of datasets. Additionally, we aim to
assess which factors can mitigate this effect.

Datasets: We investigate meta-overfitting using holdout evaluation on 64 datasets:
48 classification datasets from the OpenML-CC18 benchmark [4] and 16 regres-
sion datasets from the AutoML benchmark [11]. Datasets with more than 50
features and two regression datasets (due to compatibility issues) were excluded.
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For experiments on 10-fold cross-validation and varying validation set sizes, we
used the same four binary classification datasets, chosen for their large size (nec-
essary for validation size experiments) and to manage computational resource
constraints.

Search space: The search space consists of all algorithms and hyperparameters
that can be searched over by the hyperparameter optimization algorithm. The
pipeline includes the following components: two categorical value encoders, three
missing value imputers, four feature selectors, eight scalers, three dimensionality
reduction techniques, 17 classifiers, and 15 regressors. Additionally, most of these
components are configurable with hyperparameters.

Implementation: Bayesian optimization was implemented using SMAC3 [12].
For comprehensive details on the search space, datasets, and experimental im-
plementation, we refer to our GitHub repository.1

Experiments: The following three experiments were conducted:

1. Large-scale holdout validation: We employ a holdout set for both valida-
tion, used by the HPO algorithm to evaluate and select configurations, and
test, which remains fully inaccessible to the HPO algorithm. For datasets
over 3 000 instances, splits were fixed at 1 000 (train), 500 (validation), and
the remainder as test data. Smaller datasets used a 40/20/40% split. This
division between training, validation and test data is broadly adopted in
machine learning [3].

2. 10-fold cross-validation (10CV): Due to computational constraints, ex-
periments were restricted to four datasets. We performed cross-validation,
generating 10 different validation scores, which were averaged to estimate val-
idation performance. For testing, we used a single large holdout set. Rather
than retraining models on the full training set to obtain test performance,
we evaluated the predictions from all 10 models on the test set and averaged
their individual performances.

3. Holdout with varying validation sizes: Validation sizes ranged from 100
to 10 000 instances, with 1 000 train instances fixed for comparability. The
experiment was conducted on the same four datasets used in the 10-fold
cross-validation experiment.

Each dataset was evaluated using 100 repetitions, with 250 iterations of both
random search and Bayesian optimization per repetition, to assess the various
forms of meta-overfitting across two HPO methods with different search charac-
teristics. This resulted in 6.6 million pipelines trained and tested on validation
and test sets. The experiments spanned roughly 13 days, utilizing 20 Intel Xeon
2.20GHz machines with two cores each.
1 https://github.com/ADA-research/OverfittingCASH

https://github.com/ADA-research/OverfittingCASH
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5 Results and Discussion

We present our results visually using the adult dataset, which consists of 15
features, 48,842 instances, and a binary target variable. We extend these findings
to all 64 datasets analyzed. First, we examine the impact of meta-overfitting
(Section 5.1). Next, we investigate adaptive overfitting and provide empirical
evidence of its occurrence (Section 5.2). Finally, we analyze how the validation
set size influences meta-overfitting (Section 5.3).

5.1 Analysis of meta-overfitting in HPO

As discussed previously, meta-overfitting can be categorized into two types:
(i) selection-based overfitting and (ii) adaptive overfitting. In Figure 1, we demon-
strate this effect by comparing performance evaluations on both the validation
and the test set, where each point represents a hyperparameter configuration
suggested by an HPO algorithm. Note that generally configurations are evalu-
ated only on the validation set, and the best-performing configuration is then
assessed on the test set. However, for experimental purposes, we evaluate all
configurations on both datasets. The validation set consists of 500 instances,
while the independent test set contains approximately 47 000 instances. Config-
urations located to the right of the diagonal in the figure perform better on the
validation set than on the test set and thus exhibit meta-overfitting. Because an
HPO procedure typically selects the right-most configuration, which is generally
(but not necessarily) on the right side of the diagonal, it is likely to produce
a meta-overfitted configuration – the effect we refer to as selection-based meta-
overfitting. This effect becomes apparent in the case of random search, illustrated
in Figure 1 (left). Additionally, Bayesian optimization tends to concentrate its
search around more overfitted regions in later iterations, as it gains more infor-
mation from previous evaluations on the validation set, as illustrated in Figure 1
(right). The additional meta-overfitting introduced by this effect is referred to as
adaptive overfitting. Both types of meta-overfitting are visually present across
the datasets analyzed.

To better understand and quantify meta-overfitting in HPO, we analyze the
hyperparameter configurations ultimately chosen during the optimization pro-
cess. Specifically, at each iteration, we select the configuration that achieves the
highest performance according to the validation procedure up to that point. The
extent of meta-overfitting exhibited by these chosen configurations is quantified
using the resulting meta-overfitting error, as defined in Equation 3.

Figure 2 (left) illustrates the average progression of accuracy scores through-
out the HPO optimization process. Two key insights can be drawn from this fig-
ure. First, the difference between the best and selected configurations shows that
there are configurations that outperform the selected ones but are not chosen,
highlighting the potential for performance improvement if more reliable valida-
tion estimates were employed. Second, after a certain number of iterations, no
significantly better configurations are identified for the test set, while the val-
idation performance continues to improve, particularly in the case of Bayesian
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Fig. 1: Test and validation accuracy scores of highest performing configurations
produced by random search (left) and Bayesian optimization (right) on the adult
dataset. The color indicates in what iteration they were suggested.
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Fig. 2: Left: Average accuracy of the selected configuration from Bayesian opti-
mization and random search on the holdout validation and test sets, along with
the test set accuracy of the best configuration on the test set, using the adult
dataset. Right: Resulting MOE for holdout validation and 10CV from Bayesian
optimization and random search on the adult dataset.

optimization. This suggests that the selected configurations increasingly overfit
the validation set, with no corresponding improvement in generalization per-
formance beyond a certain point in the optimization process. Figure 2 (right)
illustrates the meta-overfitting error of the configurations selected during each
iteration, averaged across 100 repetitions. These findings highlight the practi-
cal implications of meta-overfitting. Specifically, after 250 iterations of Bayesian
optimization, the selected configuration is expected to exhibit an average overfit-
ting error of 1.3% when using 10-fold cross-validation as the internal validation
procedure. This error increases to 2.2% when holdout validation is used.
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Across datasets: These results are generalizable to other datasets. On the four
binary classification datasets we used to investigate 10-fold cross-validation, the
final configurations identified by Bayesian optimization exhibited meta-overfitting
errors ranging from 1.0% to 3.7% in accuracy, with an average of 1.8%. These
findings raise important questions about the use of 10-fold cross-validation as a
benchmarking practice, especially when the same fixed cross-validation strategy
is applied for both internal validation and final assessment. In such cases, a por-
tion of the observed performance improvement may result from overfitting the
validation procedure rather than genuinely enhancing the generalizability of the
hyperparameter optimization process.

Furthermore, on 29 binary classification datasets using holdout validation,
we observe an average meta-overfitting error of 3.3% in accuracy for the final se-
lected configuration identified by Bayesian optimization, with a median of 2.3%.
Similarly, for 19 multiclass classification datasets, the average meta-overfitting
error is 2.9% accuracy, with a median of 2.3%. These findings are particularly
relevant to common practices in widely used HPO frameworks, such as Auto-
sklearn [9], which employs internal holdout validation by default. They highlight
the importance of addressing meta-overfitting when designing robust and reliable
machine learning pipelines with HPO.

5.2 Adaptive overfitting across datasets

In this section, we present evidence of adaptive overfitting in Bayesian optimiza-
tion applied to the CASH problem. Adaptive overfitting occurs when hyperpa-
rameter configurations become increasingly tailored to the validation procedure.
This arises because Bayesian optimization incorporates growing amounts of in-
formation from prior evaluations into its surrogate model, leading to configura-
tions that are progressively fine-tuned to the validation set. Therefore, adaptive
overfitting can be observed as a linear relationship between the degree of meta-
overfitting in a hyperparameter configuration and the iteration in which that
configuration is suggested by Bayesian optimization. This means that hyperpa-
rameter configurations proposed in later iterations tend to exhibit greater levels
of meta-overfitting, on average. In contrast, for random search, the iterations are
independent of one another. As a result, there is no systematic pattern of meta-
overfitting across iterations, and we would expect the average meta-overfitting
for any given iteration to be approximately zero.

Figure 3 (left) illustrates the linear relationship between the average meta-
overfitting error (defined in Equation 4) of a hyperparameter configuration and
the iteration in which it was suggested on the adult dataset. This relationship
is evident regardless of whether holdout evaluation or 10-fold cross-validation is
employed, providing strong evidence of adaptive overfitting in both validation
procedures. This implies that configurations suggested in the early iterations of
Bayesian optimization are generally not overfitted, but configurations proposed
in the final iterations tend to exhibit an average overfitting of approximately 0.5%
accuracy for 10-fold cross-validation and 0.8% accuracy for holdout validation.
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Fig. 3: Left: Average MOE of different HPO algorithms using holdout valida-
tion and 10CV on the adult dataset, showing a linear relationship for Bayesian
optimization. Right: Box-plots of Spearman’s coefficients of all 64 datasets con-
sidered using holdout validation, calculated using 100 repetitions per dataset.

Extrapolating these observations to the full range of 64 datasets, we quantify
adaptive overfitting using Spearman’s rank-order correlation coefficient, which is
suited for assessing relationships between variables that are not all normally dis-
tributed, such as the iterations uniformly spanning from 1 to 250. A higher coef-
ficient indicates a stronger linear relationship between iterations and the average
meta-overfitting error, signifying a more pronounced effect of adaptive overfit-
ting. To account for testing multiple hypotheses, we apply the highly conservative
Bonferroni correction within dataset types (binary, multiclass, and regression).
This adjustment raises the threshold for statistical significance, ensuring that ob-
served linear relationships are unlikely to be false positives. Using this approach,
we assess the linear relationships between the average meta-overfitting error of a
hyperparameter configuration and the iteration in which it was suggested. When
using the holdout method, we find statistically significant results for 25 out of 29
binary classification datasets, 16 out of 19 multiclass classification datasets, and
3 out of 16 regression datasets. For 10-fold cross-validation, all 4 binary classifi-
cation datasets show significant adaptive overfitting. Figure 3 (right) shows the
distribution of Spearman’s correlation coefficients of all datasets in each problem
type for the holdout method. We statistically compare the coefficients of binary
and multiclass datasets. Shapiro-Wilk tests confirm normality for both samples,
and Levene’s test verifies homogeneity of variances, allowing the use of an in-
dependent samples t-test. Supported by this test, we conclude that multiclass
classification datasets exhibit significantly less adaptive overfitting compared to
binary classification datasets (t(46) = 2.3, p = .03), confirming prior work [8].
However, further research is needed to substantiate this finding and explore the
influence of the number of classes on adaptive overfitting. Additionally, our re-
sults indicate that regression datasets are highly resilient to adaptive overfitting.
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Fig. 4: Left: Effect of the validation set size on the stability and generalization
of HPO for the adult dataset. Right: Meta-overfitting error for random search
and Bayesian optimization across validation set sizes for the adult dataset. The
BO/RS line illustrates the factor by which the selected configurations of Bayesian
optimization exhibit greater resulting MOE compared to random search.

5.3 Effects of different validation set sizes

Finally, we study the effect of validation set size on meta-overfitting and the gen-
eralizability of HPO algorithms using four binary classification datasets, as mo-
tivated in Section 4. Figure 4 (left) illustrates how larger validation sets improve
stability and generalization performance. Figure 4 (right) highlights differences in
meta-overfitting for random search and Bayesian optimization across validation
sizes. For small validation sets, the selection-based overfitting in random search is
comparable to the meta-overfitting in Bayesian optimization, suggesting a mini-
mal role for adaptive overfitting. As validation sizes increase, the meta-overfitting
in random search diminishes, as expected. However, for Bayesian optimization,
meta-overfitting maintains a factor for increasing validation sizes. For instance,
configurations selected by Bayesian optimization are 1.1 times more overfitted
than those of random search at 100-instance validation sets, rising to 3.3 times
for 5 000 instances. Similar results are observed across all four datasets. These
findings suggest adaptive overfitting is still persistent with large validation sets,
warranting caution even when validation sets contain thousands of instances.
However, despite the effects of meta-overfitting, it remains clear that Bayesian
optimization performs better than random search.

6 Conclusions

This study explores meta-overfitting in HPO for the CASH problem through an
empirical analysis of 64 datasets covering classification and regression. We for-
malized meta-overfitting and decomposed it into two primary sources: (i) selection-
based and (ii) adaptive overfitting. We show that both random search and
Bayesian optimization exhibit meta-overfitting. Our results empirically confirm
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the logical fact that in random search, meta-overfitting arises solely from selection-
based overfitting, whereas in Bayesian optimization, there is also evidence of
adaptive overfitting. Using a single holdout validation set, Bayesian optimiza-
tion produced configurations with an average meta-overfitting error of 3.3% accu-
racy on binary classification datasets and 2.9% accuracy on multiclass datasets.
While 10-fold cross-validation reduced this error, configurations still showed an
average meta-overfitting error of 1.8% accuracy on four binary classification
datasets. Furthermore, we identified statistically significant adaptive overfitting
in Bayesian optimization for HPO in the CASH problem, an effect not previ-
ously measured in this context to the best of our knowledge. Significant adaptive
overfitting was observed in 25 of the 29 binary classification datasets and 16 of
the 19 multiclass classification datasets, with multiclass datasets showing sig-
nificantly less adaptive overfitting, consistent with prior theory [8]. Regression
datasets, however, appeared notably resistant to this effect. Finally, we inves-
tigated how validation set size affects meta-overfitting. In random search, the
meta-overfitting error of selected hyperparameter configurations diminished with
larger validation sets. However, in Bayesian optimization, the meta-overfitting
error remained more robust, suggesting that adaptive overfitting can be a con-
cern even with validation sets containing thousands of instances.

Recommendations: We advise machine learning practitioners to be cautious
about potentially overfitted results being produced by HPO algorithms, partic-
ularly when validation results are directly used to guide the suggestion of new
hyperparameter configurations. Similarly, we recommend avoiding fixed 10-fold
cross-validation when benchmarking HPO algorithms and instead resampling
the training and validation splits, either at each iteration, following [15], or at
least during the evaluation of the selected hyperparameter configuration.

Future work: Future research could further explore meta-overfitting, espe-
cially in relation to HPO techniques like ensembling and meta-learning, com-
monly used in state-of-the-art HPO frameworks. Investigating adaptive overfit-
ting in HPO and applying strategies from adaptive data analysis to mitigate its
effects also presents a compelling avenue for future studies.

Disclosure-of-interests: The authors have no competing interests to declare
that are relevant to the content of this article.
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