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Abstract. Detecting and analyzing group behavior from spatio-temporal
trajectories is an interesting topic in various domains, such as autonomous
driving, urban computing, and social sciences. This paper revisits the
group detection problem from spatio-temporal trajectories and proposes
“WavenetNRI”, a graph neural network (GNN) based method. The pro-
posed WavenetNRI extends the previously proposed neural relational
inference (NRI) method (an unsupervised learning approach for infer-
ring interactions from observational data) in two directions: (1) sym-
metric edge features and edge updating processes are applied to gen-
erate symmetric edge representations corresponding to the symmetric
binary group relationships; (2) a gated dilated residual causal convolu-
tional (GD-RCC) block is adopted to capture both short and long de-
pendency of the edge feature sequences. We evaluated the performance
of the proposed model on three simulation datasets and three real-world
pedestrian datasets, using the Group Mitre metric to measure the qual-
ity of the predicted groups. We compared WavenetNRI with four base-
line methods, including two clustering-based and two classification-based
methods. In these experiments, NRI and WavenetNRI outperformed all
other baselines on the group-interaction simulation datasets, while NRI
performed slightly better than WavenetNRI. On the pedestrian datasets,
the WavenetNRI outperformed other classification-based baselines. How-
ever, it did not compete against the clustering-based methods. Our abla-
tion study showed that while both proposed changes cannot be effective
at the same time, either of them can improve the performance of the
original NRI on one dataset type.

Keywords: Group Detection · spatio-temporal data · Deep learning.
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1 Introduction

Detecting group behaviors based on users’ spatio-temporal trajectories has
numerous social and urban applications [1,10,4]. For example, detecting groups
of pupils playing in a schoolyard facilitates psychologists in understanding pupils’
social behavior [10]. Most previous studies in group detection tasks relied on
heavy feature engineering [13,16]. These approaches extract selected features
from raw trajectory data based on domain knowledge specific to an application
area. This restricts generalization to other similar problems. This approach may
also ignore informative underlying spatio-temporal patterns that are present in
the raw data.

Recently, graph neural networks (GNNs) showed strong potential for rela-
tional reasoning [2]. GNNs could be used in group detection by modeling agents
(or members of a community) as nodes and their relationships as edges. For
example, Thompson et al. [14] proposed a graph convolutional network (GCN)
to detect conversational groups among static agents involved in the same con-
versation.

In contrast with static groups, moving groups might dynamically change their
distance from other groups in the same environment. This adds extra challenges
to the group detection task. Kipf et al. [7] proposed a GNN-based method,
Neural Relational Inference (NRI), which applied a GNN to infer the interactions
between moving particles given their spatio-temporal sequences in a physical
system. In this work, the interactions in a physical system are assumed constant
among certain pairs of particles over the given time window. In a realistic social
group setting, however, individuals often change their interaction partners. This
renders the group detection problem a more challenging task compared to the
interaction detection tasks considered by Kipf et al. [7]. For example, while the
atoms in a molecule constantly interact with particular atoms over time, children
playing in a playground might switch their playmates.

The strong performance of the NRI model in recovering the ground-truth
interaction graphs makes it a suitable candidate to be further investigated in
group detection tasks. The current study extends the original NRI method in
two directions to extend its use from interaction detection to the more complex
and realistic social group detection task: (1) We propose a GNN architecture
for capturing both short and long dependence in the group detection task where
the interactions between agents may change over time. For this purpose, the
1D convolutional layer in NRI is replaced with a gated dilated residual causal
convolutional (GD-RCC) block, as proposed by Wavenet [11]. (2) The original
NRI builds and updates edge features by simply concatenating the node features,
which does not satisfy the symmetric property of group relationships. We propose
using symmetric temporal edge features and symmetric edge updating to tackle
this problem.

Overall, this paper makes the following contributions:

– We propose a framework for group detection building upon the NRI inter-
action detection method. Our framework can capture short and long depen-
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dencies in the spatio-temporal data and can satisfy the symmetric property
of group behavior.

– We extend NRI by applying the Louvain community detection algorithm to
transform the predicted interactions into predicted groups.

– We evaluate our group detection framework using three group-interaction
simulation datasets and three pedestrian datasets and further compare our
method against four state-of-the-art methods.

– We investigate the effectiveness of our two proposed changes, namely, the
GD-RCC block and symmetric temporal edge feature with symmetric edge
updating processes, on the original NRI in an ablation study.

The rest of the paper is organized as follows. In Section 2, we formulate the
group detection problem. Section 3 discusses the related works. We present our
proposed methodology in Section 4. In Section 5, the experiments are discussed.
Finally, Section 6 presents conclusions and future research directions.

2 Problem Formulation

Assume given the spatio-temporal trajectories of N agents in a time window
with a duration of T time steps, where the spatio-temporal measurements (e.g.,
position, speed, acceleration, etc.) of each agent i ∈ 1, ..., N at a time step
t ∈ 1, ..., T is denoted by Xt

i and the spatio-temporal sequences of all agents are
denoted by Xt

1:N . The goal is to detect groups C = {cj |j = 1, ...,K} of agents,
where K ≤ N is the number of groups, assuming that the group relationships
are constant in a time window, while agents could interact with other agents
from a different group. We aim to learn the probability of pairwise interactions
Î between agents within the time window given X1:T

1:N , i.e., P (Î|X), such that
the predicted pairwise interactions reflect the group memberships of agents in
community detection algorithms.

Our proposed method to solve this problem employs a GNN encoder to pre-
dict pairwise interactions Î. The Louvain community detection algorithm [3]
transforms the predicted pairwise interactions Î into predicted groups Ĉ. We
train the GNN encoder in a supervised way using the ground-truth pairwise
group relationships G where G(i,j) = 1 denotes that agent i and agent j are
in the same group and otherwise G(i,j) = 0. In the training phase, the goal is

to minimize the difference between G and Î by minimizing the weighted cross-
entropy loss function.

3 Related work

This section discusses the related work in group detection algorithms and
further explores studies that proposed GNN models for spatio-temporal data.

Group Detection: Many previous studies in group detection tasks are
based on classic machine learning methods with hand-crafted features [16,13].
Yamaguchi et al. [16] proposed an SVM-based framework applying normalized
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histograms of distances, velocity, and direction features to classify the binary
group detection. Using supervised clustering, Solera et al. [13] proposed a struc-
tural SVM [15] framework to find groups of pedestrians based on hand-crafted
features, e.g., distance, motion causality, trajectory shape, and paths conver-
gence. Despite acceptable results, generating hand-crafted features needs do-
main knowledge. Besides, these features usually depend on particular data types
and applications, e.g., the features created for detecting pedestrians walking on
streets may not apply to other complex social settings (e.g., children playing).

To address this problem, many recent studies proposed deep learning-based
methods. In GD-GAN [5], an LSTM-based generator predicts future trajectories.
In this work, groups are detected by clustering the hidden states of this LSTM-
based generator. Contrary to GD-GAN, which predicts future trajectories, our
work predicts the pairwise interactions using a GNN encoder. This is beneficial
because it can be directly trained with the ground-truth group relationships
without special optimization algorithms, such as the Block-coordinate Frank-
Wolfe (BCFW) algorithm, in a computationally efficient way. [9].

GNN for spatio-temporal Data: Most GNN-based works for spatio-
temporal data, such as TrafficGraphNet [8], focus on improving the performance
of forecasting tasks. This approach learns the node representations by aggregat-
ing the nodes’ neighborhoods and does not directly model the pairwise inter-
actions or group relationships needed for group detection tasks. Methods such
as NRI [7] that focus on predicting the edges between nodes can denote the
interaction or relation types between nodes. For instance, the encoder part of
NRI [7] applies a GNN-encoder to predict the interaction types between particles
in a physical system. In our study, we extended the encoder part of NRI, which
predicts the interactions between agents for a group detection task.

4 Methodology

In this section, we first present the interaction model implemented using a
GNN encoder. Next, the two main proposed features of this model, (i) symmetric
edge features and (ii) GD-RCC, are each discussed separately. We employ a GNN
encoder, based on NRI [7], and a GD-RDCC block, based on Wavenet [11], to
create our proposed model “WavenetNRI”.

4.1 GNN Encoder: Interactions Modelling

The core part of the proposed method is a GNN encoder proposed in NRI
[7], which predicts the distribution of the interaction and non-interaction edges.
In NRI, the initial edge features and edge updating are implemented by concate-
nating the features of the end nodes as follows:

et(i,j) = [Xt
i , X

t
j ](t ∈ 1, ..., T ), h1

j = fv(
∑

i̸=j

h1
(i,j)), h2

(i,j) = fe([h
1
i , h

1
j ]) (1)
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Where the spatio-temporal sequence of agent i at period of time t ∈ 1, ..., T is
denoted by Xt

i. The initial edge feature of the agents i and j at time step t is
denoted by et(i,j). [·, ·] denotes concatenation. h1

j and fe denotes node representa-
tion of the agent j and edge updating function, respectively. The edge and node
updating functions fe and fv are multilayer perceptrons (MLPs). NRI further
applies a 1D convolutional layer with attentive pooling to transform the edge
sequence et(i,j) into the vector representations of edges h1

(i,j) =
∑

t a
tst, where

a and s are attention score and edge representation, respectively (details are
shown in Figure 1).

There are several limitations in the GNN encoder of the original NRI method:
(1) Building and updating edge features, and representations by simply concate-
nating the node features (shown in Equation 1) cannot explicitly model the
spatial differences of agents. Furthermore, the results of this concatenation are
not symmetric, which may not satisfy the symmetric nature of group relation-
ships. (2) Using only one convolutional layer may not capture the long-term
interactions of the sequences of edge features. To tackle these limitations, we
made the following changes to the original NRI:

– We included the spatial differences between agents and temporal increments
in the initial temporal edge features et(i,j) and updated the edge features
by element-wise product of the end nodes’ representations. Consequently,
the final edge vector representations h2

(i,j) are symmetric and capture both

spatial differences between the agents and their movements (explained in
Section 4.2.

– We replaced the single 1D convolutional layer in NRI with a GD-RCC block
based on Wavenet model [11] to learn the temporary edge features and cap-
ture both short and long-term interactions of the edge feature sequences
(explained in Section 4.3).

4.2 Symmetric edge features and updating

In our proposed method, the edge features are constructed by concatenating
the spatial differences of the node measurements and the temporal increments,
which is formulated as follows:

et(i,j) = [∥Xt
i −Xt

j∥, ∆Xt
i ⊙∆Xt

j ], t ∈ 1, ..., T − 1, ∆Xt
i = Xt+1

i −Xt
i (2)

Where the Euclidean distance between agent i and agent j is denoted by ∥Xt
i −

Xt
j∥ and is used to model the spatial difference between agents and their move-

ments (temporal increments). The element-wise production of the increments of
the two agents is denoted by ∆Xt

i ⊙ ∆Xt
j . We achieve two benefits with this

formulation: (i) the temporal edge et(i,j) captures both the spatial difference be-
tween agent i and agent j as well as the temporal increments of the agents;
(ii) the edge features are symmetric, i.e., et(i,j) = et(j,i), corresponding to the
symmetric properties of the pairwise group relationships.

The edge sequences et(i,j) are passed to a GD-RCC block to get the vector

representations of edges, denoted by h1
(i,j). For a node j, the vector representation
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h1
(i,j) of incoming edges are aggregated and fed to a node updating function fv

to get a higher level node representation h1
j of the node j, which is the same as

the node updating process in NRI as shown in Equation 1.

These node representations are combined by element-wise production and
fed to another neural network fe to get final edge representations h2

(i,j), which
represents the logits of categorical distributions of edges, shown in Equation 3.
Through this process, the final edge representation h2

(i,j) captures not only the
interaction between node i and node j but also the interactions of node i and
node j with other nodes [7].

h1
j = fv(

∑

i̸=j

h1
(i,j)), h2

(i,j) = fe([h
1
(i,j), h

1
i ⊙ h1

j ]) (3)

After supervised training, a community detection algorithm is applied to the
interaction graphs to find clusters denoting groups.

4.3 GD-RCC block

A GD-RCC block [11] is used to transform the edge sequences et(i,j) into

the vector representation h1
(i,j). The causal convolution preserves the order of

the edge sequences by using features from past time steps. With dilated con-
volutional kernels, the receptive fields are expanded exponentially by staking
convolutional layers [11]. The skip connection, a 1D CNN, solves the gradient
vanishing problem when increasing the number of layers [6]. The gating activa-
tion function, as formulated in Equation 4, regulates the information flow and
performs significantly better than rectified linear activation (ReLU) [11]:

el+1 = tanh(W 1
l ∗ el)⊙ σ(W 2

l ∗ el) (4)

Where l is the layer index.W 1
l andW 2

l are two different learnable 1D-convolution
parameters of the layer l; el denotes the hidden states of edge features of the layer
l. ∗ denotes the convolutional operation. σ and ⊙ denote the Sigmoid function
and element-wise multiplication, respectively.

A 1D convolutional layer with attentive pooling over all time steps is applied
afterward to get the vector representations of the edges h1

(i,j). This process is
visualized in Figure 1.

During the supervised training phase, the ground-truth pairwise group rela-
tionships G(i,j) are used as labels; i.e., G(i,j) = 1 denotes agent i and agent j are
in the same group while G(i,j) = 0 denotes otherwise. Due to the imbalanced

distribution of the labels, the weighted cross-entropy H(Î , G), as described in
Equation 5, is used as a loss function in which the rare labels are assigned higher
weights:

H(Î , G) = −
∑

(i,j)

[wGG(i,j)log(I(i,j),2) + wNG(1−G(i,j))log(I(i,j),1)], (5)
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Fig. 1. 1D GD-RCC CNN block (green dashed line block) with Attentive Pooling (red
dashed line block) calculated over the sequence of edges et. The edge feature sequences
e1:T will be fed into a 1D GD-RCC CNN block with skip connections to get hidden
states o1:T . Here each mi denotes a node in the first hidden layer. W 1

l and W 2
l denote

two different learnable convolutional parameters of the layer l (the blue arrows). Ws

denotes the 1D CNN skip connection (the green arrow). The hidden states o1:T will be
fed into two 1D CNNs fpred (predicts the edge representation st (the red arrows)) and
fscore (predicts the attention score at (the yellow arrows)). The vector representations
of edges is h1

(i,j).

Where wG = nG+nNG

2nG
and wNG = nG+nNG

2nNG
denote the weight of the group label

and the weight of the non-group label, respectively. While nG and nNG are the
number of group labels and non-group labels in the training dataset, respectively.
By minimizing the weighted cross-entropy, the encoder is optimized to identify
the “interaction” versus “no interaction” relation between agents.

5 Experiments

We studied the performance of our method on two types of datasets, i.e., real-
world and simulated datasets. Before presenting the results, we first discuss these
dataset types, the evaluation metrics, baseline measures, and the experimental
setup.

5.1 Dataset

We trained and validated our model on three simulation datasets and three
real-world pedestrian datasets. In pedestrian datasets, people walk in different
group settings without interacting with other group members. In contrast, in
the simulation datasets, cross-group interactions between particles are possible.
The real-world datasets have been widely used by other researchers. Due to the
lack of interaction between different groups in the pedestrian datasets, the de-
veloped methods can be tailored only to improve performance on these datasets
and often are not applicable in real-world scenarios. Therefore, we chose to use
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simulation data, in addition to the pedestrian datasets, to increase the diver-
sity of the datasets by considering the probability of cross-group interactions.
This probability is mostly close to zero in pedestrian datasets. This enabled us
to simulate more accurately real-world communities, such as schoolyards, where
pupils from a particular group might have temporary interactions with peers
from different groups over time.
Pedestrian datasets: We selected three public pedestrian datasets, namely
zara01, BIWI ETH and BIWI Hotel [12]. We used the sequences of annotated
locations of the pedestrians, i.e., the trajectories, as input features to detect
pedestrians walking in groups. The duration of measurement, the number of
pedestrians, and the number of groups are listed in Table 1 per dataset.

Table 1. The specification of pedestrian datasets

Dataset Name Duration(s) Number of Pedestrians Number of Groups

zara01 360.4 148 45

BIWI ETH 713.4 360 65

BIWI Hotel 722.4 389 41

Group-interaction simulation datasets: To simulate group interactions, we
extended the spring simulator introduced by Kipf et al. [7], which simulates the
movement of particles randomly connected by a spring in a 2D box. We ex-
tended this simulation by defining groups of particles such that particles within
a group have a higher probability of having interaction. In our proposed group-
interaction simulation, the probability that particle vi and particle vj interact
with each other given their group relation G(i,j) is formulated as follows:

P (I(i,j) = 1|G(i,j)) = 1− exp(−a(G(i,j) + b)), (a > 0, b > 0) (6)

Where interaction and group relationship between particles vi and vj is denoted
by I(i,j) and G(i,j), respectively. G(i,j) = 1 if vi and vj are in the same group
otherwise G(i,j) = 0. The values of a and b control group interaction and non-
group interaction probabilities. Specifically, the value of a controls the overall
magnitude of the probabilities, and the value of b impacts the non-group interac-
tion probability. The specification of the three simulation datasets is described in
Table 2. Each dataset has 2500 simulations, which include the locations and ve-
locities of the particles over time. The duration of each simulation is 20 seconds,
corresponding to 50 time steps.

5.2 Evaluation metrics

We applied Group Mitre ∆GM (C, Ĉ) [13] to measure the quality of the pre-
dicted groups, where C and Ĉ are disjoint sets denoting the true groups and
predicted groups, respectively. The exact procedure for calculating the Group
Mitre (precision and recall) is presented in the work of Solera et al. [13], and we
omitted the details due to the limit in space.
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Table 2. The specification of the group-interaction simulation datasets.

Dataset Number of a b Probability of Probability of
Particles Group Interaction Non-Group Interaction

Simulation I 5 3 0.02 95.3% 5.8%

Simulation II 10 3 0.02 95.3% 5.8%

Simulation III 10 3 0.05 95.7% 13.9%

5.3 Baselines

We compared the results of our method with the following four baselines:

– ATTR[16] is a classification-based method that adopts a linear SVM to
classify the binary group relationships based on hand-crafted histograms of
distance, direction, and velocity. The regularisation parameter is set to 10.

– S-SVM[13] is a clustering-based method that uses a structured SVM to
predict the pairwise similarities of the agents and further applies a correlation
clustering component to predict the clusters. S-SVM is trained with the
BCFW [9] algorithm. The regularisation parameter is set to 10.

– GD-GAN[5] is a clustering-based method that adopts an LSTM-based
GAN to predict the future trajectory of agents. The DBSCAN algorithm
is applied to the hidden states of the LSTM to find the groups. The dimen-
sions of hidden states are set to 256.

– NRI[7] is a classification-based method extended by applying the Louvain
community detection algorithm to transform the predicted pairwise interac-
tions to the clusters denoting groups. The kernel size of the 1D convolutional
layer is set to 5. The node updating and edge updating processes are MLPs
with a hidden dimension of 256.

5.4 Experiment Settings

In our experiments, we set the kernel size of the GD-RCC block to five in
Equation 4. The hidden dimension size of the node and edge functions in Equa-
tion 3 were set to 256. The stochastic gradient descent with a momentum equal
to 0.9 was applied for optimization. The code to generate the group-interaction
simulation datasets and to implement WavenetNRI is available in the Github
repository6.

5.5 Results

In this section, the results of our experiments are discussed. In each dataset,
60% of the samples were randomly chosen for training; 20% were randomly
chosen as validation, and the remaining 20% were testing set. The results of
both group-interaction simulation datasets and pedestrian datasets are listed in
Table 3.

6 https://github.com/fatcatZF/WavenetNRI
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According to Table 3, NRI andWavenetNRI outperformed all other baselines,
and NRI performed slightly better than WavenetNRI on simulation datasets in
both recall and precision of group mitre ∆GW . While on pedestrian datasets,
GD-GAN [5] outperformed all other methods in both measures. The proposed
WavenetNRI could outperform the original NRI [7] and ATTR [16] as the two
classification-based baselines.

Concerning the impact of the population size (comparing Simulation I and
Simulation II ), we observed that by increasing the number of particles in simula-
tion datasets, both precision and recall were decreased for all methods, except for
NRI [7]. The same behavior was observed regarding the probability of non-group
interactions (comparing Simulation I and Simulation III ).

Furthermore, we calculated the average pairwise Euclidean distance between
the group and non-group members of the two datasets. Our investigation of
the differences between these two types of datasets showed that in the pedes-
trian datasets, the pairwise average Euclidean distances between group members
(0.950 meters) were much lower than those from different groups (4.698 meters),
i.e., the pedestrians were closer to their group members than other groups. While
in the group-interaction simulation datasets, the differences between the Eu-
clidean distances of the same groups (1.039 meters) and that of different groups
(1.725 meters) were not significant.

Thus, distinguishing between group members and non-group members is
more challenging in the simulation datasets compared with pedestrian datasets.
Moreover, the fact that baselines do not generalize to simulation datasets sug-
gests that available research might not be applicable to real-world scenarios
where there is a chance for cross-group interactions.

Table 3. Experimental results of recall (R) and precision (P) based on Group Mitre
∆GW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel
R P R P R P R P R P R P

ATTR[16] 0.579 0.481 0.512 0.388 0.511 0.386 0.889 0.879 0.745 0.746 0.833 0.841
±0.017 ±0.020 ±0.009 ±0.015 ±0.006 ±0.005 ±0.076 ±0.077 ±0.067 ±0.087 ±0.072 ±0.068

S-SVM[13] 0.664 0.600 0.529 0.413 0.459 0.382 0.893 0.906 0.887 0.911 0.925 0.927
±0.075 ±0.067 ±0.039 ±0.017 ±0.037 ±0.030 ±0.026 ±0.033 ±0.027 ±0.021 ±0.024 ±0.030

GD-GAN[5] 0.531 0.430 0.514 0.383 0.512 0.383 0.949 0.934 0.931 0.950 0.925 0.944
±0.003 ±0.004 ±0.003 ±0.004 ±0.003 ±0.004 ±0.046 ±0.051 ±0.037 ±0.028 ±0.084 ±0.058

NRI[7] 0.995 0.994 0.997 0.994 0.998 0.996 0.801 0.737 0.663 0.669 0.577 0.565
±0.002 ±0.003 ±0.002 ±0.002 ±0.001 ±0.001 ±0.096 ±0.108 ±0.083 ±0.080 ±0.122 ±0.122

Wavenet- 0.990 0.988 0.985 0.970 0.986 0.972 0.893 0.900 0.793 0.815 0.748 0.790
NRI ±0.010 ±0.013 ±0.005 ±0.010 ±0.004 ±0.007 ±0.090 ±0.107 ±0.078 ±0.079 ±0.106 ±0.086

5.6 Ablation Study

Our proposed approach applied two changes to the original NRI (i.e., adding
symmetric edge features and symmetric edge updating process and the GD-RCC
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block). In this section, we explored the effects of these changes by performing an
ablation study. To test the impact of the symmetric edge features and symmet-
ric edge updating process, the same 1D convolutional as the original NRI with
the symmetric edge features and the symmetric edge updating process was ap-
plied. This model is called “NRI-Symmetric“. To test the effects of the GD-RCC
block, “Wavenet-GD-RCC” was designed, which used the GD-RCC block with
the same edge features and edge updating process as the original NRI. We com-
pared the performance of these two methods with the proposed WavenetNRI and
the original NRI on the simulation and pedestrian datasets. The results of both
experiments are listed in Table 4. According to the results listed in Table 4, the

Table 4. Ablation study results of recall (R) and precision (P) based on Group Mitre
∆GW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel
R P R P R P R P R P R P

NRI[7] 0.995 0.994 0.997 0.994 0.998 0.996 0.801 0.737 0.663 0.669 0.577 0.565
±0.002 ±0.003 ±0.002 ±0.002 ±0.001 ±0.001 ±0.096 ±0.108 ±0.083 ±0.080 ±0.122 ±0.122

NRI- 0.990 0.987 0.981 0.964 0.981 0.961 0.851 0.813 0.679 0.686 0.708 0.739
Symmetric ±0.004 ±0.006 ±0.007 ±0.013 ±0.007 ±0.009 ±0.093 ±0.091 ±0.094 ±0.096 ±0.121 ±0.115

Wavenet- 0.998 0.997 0.999 0.997 0.998 0.997 0.719 0.625 0.542 0.530 0.566 0.554
GD-RCC ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.138 ±0.165 ±0.146 ±0.147 ±0.169 ±0.163

Wavenet 0.990 0.988 0.985 0.970 0.986 0.972 0.893 0.900 0.793 0.815 0.748 0.790
NRI ±0.010 ±0.013 ±0.005 ±0.010 ±0.004 ±0.007 ±0.090 ±0.107 ±0.078 ±0.079 ±0.106 ±0.086

Wavenet-GD-RCC performed slightly better than NRI, while the performance
of NRI-Symmetric was lower than NRI. Therefore, the GD-RCC block could
slightly improve the performance of NRI on the group-interaction datasets, and
the symmetric edges and symmetric edge updating process negatively affected
the original NRI. Additionally, the NRI-Symmetric performed better than the
NRI, and Wavenet-GD-RCC performed similarly to NRI on the pedestrian data
sets. Therefore, the symmetric edge features with the symmetric edge updating
process could improve the performance of NRI on the pedestrian data sets, and
the GD-RCC block did not significantly affect NRI’s performance. Thus, the re-
sults were consistent per dataset type but not overall. We also noticed that either
change could add value to one dataset category. As discussed earlier, the com-
plexity of the simulation datasets in the behavior and interactions of the group
members and non-group members might explain the inconsistent performance
in these two types of datasets.

6 Discussion and Conclusions

The present study explored the application of GNN by extending the NRI
model [7] for group detection in two directions: (1) by applying symmetric edge
features with symmetric edge updating processes and (2) by replacing the 1D
convolution layer with a GD-RCC block, as proposed by Wavenet [11]. We
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compared the performance of WavenetNRI with other baselines on the three
group-interaction simulation datasets and three pedestrian datasets. NRI and
WavenetNRI outperformed all other baselines on the group-interaction simula-
tion datasets. Although the pedestrian datasets were captured in real-world se-
tups, the simulation datasets were better reflecting complex group interactions
with larger groups, which stresses the importance of the obtained results. On the
pedestrian datasets, although our proposed method did not compete against the
clustering-based baselines, i.e., GD-GAN [5] and S-SVM [13], it outperformed
classification-based methods, i.e., ATTR [16] and the original NRI [7]. Yet, base-
line methods did not generalize very well to the simulation datasets. We further
evaluated the effects of our changes to the original NRI in the ablation study.
We found that on the group-interaction data sets, the GD-RCC block slightly
improved the performance of NRI. Simultaneously, the symmetric edge features
with symmetric edge updating processes negatively affected the performance of
NRI. On the pedestrian data sets, the symmetric edge features with symmetric
edge updating processes improved the performance of NRI, while the GD-RCC
block had no significant effect on NRI.

Our analysis demonstrates that WavenetNRI is highly effective at predicting
pairwise interactions, which ultimately reflect the group memberships of agents
in an interacting environment. One drawback of the proposed method is its
dependency on ground truth data. Unsupervised methods such as GD-GAN are
preferable if ground truth is not available for a particular study. Many real-
world communities, such as sports clubs and schoolyards, can be understood as
a dynamic interacting system, where applying a trained WavenetNRI model can
be helpful in predicting group memberships within the system.

The current study can be improved by investigating how to adapt the pro-
posed neural network design more efficiently to different datasets using meta-
learning. Additionally, it is worth studying how to extend the proposed classification-
based method to a supervised clustering task. And finally, designing a fully su-
pervised model by adding a final layer to classify nodes into the group they
belong to could be investigated in the future.
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