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Abstract. Neural networks are vulnerable to small input perturbations,
which can cause misclassifications to instances that would be correctly
classified otherwise. Therefore, assessing the robustness of a neural net-
work is essential in safety-critical applications. Existing robustness mea-
sures, such as robust accuracy, fail to capture the robustness of individual
inputs to the network and are not easy to interpret, making them un-
suitable for comparing different networks. This work introduces a novel
robustness measure that addresses these issues by using a probabilis-
tic model of robustness and evaluating its quantiles. Furthermore, we
propose both a parametric and a non-parametric estimator to compute
confidence bounds for this measure. We evaluate both estimators based
on their accuracy and precision over the amount of data used. Both per-
form reliably given sufficient data; however, the parametric estimator
achieves comparable performance with about half as much data, render-
ing it computationally more efficient.

Keywords: robustness measure · neural network verification · distribu-
tions · adversarial robustness

1 Introduction

Knowing whether a neural network is robust and under what conditions is cru-
cial for many use cases, especially as it is known that neural networks can be
deceived by slightly altered data during inference. These deviations can occur
naturally, as a result of noisy input data, or be induced maliciously when attack-
ers intentionally attempt to cause errors in the network [14,27]. Measuring the
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robustness is especially important for safety-critical systems [16], where misclas-
sifications could lead to harmful outcomes. In these situations, a network that
is less sensitive to deviations might be preferred over a slightly more accurate
one [20].

For image classification, the robustness of a neural network is commonly
measured on a per-instance level. Multiple input images are selected, and the
robustness of the network against small perturbations on these images is verified.
For each image, all deviations within a chosen perturbation size ϵ are considered.
If it is not possible to alter the image classification within this ϵ range, the neu-
ral network is deemed ϵ-robust on the respective image [5,10,28,4,2], this is also
called the local robustness. The largest perturbation size ϵ for which the net-
work maintains ϵ-robustness on the image is called the critical epsilon [2]. Once
the ϵ-robustness or critical epsilon is measured across multiple images, various
robustness measures can be employed to gauge the overall global robustness of
a given network [29,12,14,15,1,22,25,24,6,7,28,27,17]. A commonly used measure
is robust accuracy, calculated as the percentage of images on which the network
demonstrates ϵ-robustness [29,12,14,15,1,22,25,28,27,17]. While approaches that
involve altering the model or its training process do exist [9,21], in this work,
we consider only robustness measures that evaluate neural networks without
requiring any modifications to their architecture or training procedure.

Robust accuracy has several notable drawbacks [2]:

– It is highly dependent on the selected perturbation size ϵ, which requires
input from a domain expert to be set to an appropriate value.

– It does not properly capture the local robustness of a network for an indi-
vidual image, as it requires a predefined perturbation size ϵ and measures
the percentage of images that are ϵ-robust.

– These limitations make it difficult to compare the robustness of different
networks, as important nuances in their robustness behaviour are not always
captured.

Other robustness measures exist that partially address these drawbacks [13,24,6,7,27,28].
However, they still do not enable the effective comparison of robustness between
different networks, which is important for neural architecture search [20].

Bosman et al. [2] aim to address these drawbacks by introducing robustness
distributions. These distributions show how the critical epsilon values are dis-
tributed across images for various neural networks. By using the distribution of
critical epsilon values, this approach offers a better indication of the robustness
of individual images and removes the dependence on a fixed parameter. However,
computing these distributions incurs significant computational costs. While they
provide valuable statistical insights that can be analysed using standard statis-
tical tools (e.g., the Kolmogorov–Smirnov test [18,26,2]), it is often preferable
to summarise robustness with a single representative value to simplify direct
network comparisons and interpretation.

In this work, we introduce a robustness measure called the robustness margin,
which also uses robustness distributions to address several of the limitations of
robust accuracy. The robustness margin calculates a predetermined σ-quantile of
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the robustness distribution, allowing for a small probability σ that an arbitrary
reference image will not be ϵ-robust. It determines the largest perturbation size
ϵ consistent with this probability. The parameter σ is task-specific and reflects
the desired level of permissible error.

A key advantage of our approach is that it reduces the reliance on a domain
expert. Selecting an appropriate ϵ-value typically requires both domain-specific
knowledge and expertise in robustness verification. In contrast, the σ-parameter
in our method directly corresponds to the acceptable quality threshold, a concept
already familiar to experts and routinely used in practice. Since the determina-
tion of such thresholds is a well-established task, extensive guidance from exist-
ing literature is available, making it straightforward for practitioners to select
meaningful σ-values for a wide range of applications.

Additionally, our statistical approach inherently supports the construction of
confidence intervals. Rather than relying solely on singular queries to a verifica-
tion engine, these confidence intervals provide an explicit indication of whether
the available data (in terms of samples for which a critical epsilon value has been
determined) is sufficient to draw meaningful conclusions about the robustness
of the network or if additional verification queries are necessary, saving com-
putational resources. When more samples are being processed, the estimators
become more reliable in determining the robustness margin, and the confidence
bounds become smaller.

Here, the robustness margin is measured on neural networks trained for image
classification tasks. However, the measure and our contributions are not task-
specific and are broadly applicable to any task where evaluating the adherence
of a given network to an acceptable quality threshold is relevant. Specifically, we
make the following contributions:

– Robustness margin: We introduce the robustness margin, a novel robust-
ness measure, and provide its formal mathematical definition.

– Estimation methods: We propose two distinct estimators for calculating
the confidence interval of the robustness margin, providing statistical accu-
racy in the measure:
• The non-parametric estimator serves as a ground truth of the robustness

margin.
• The parametric estimator leverages the findings of Bosman et al. [2],

which highlight similarities between robustness distributions and log-
normal distributions, to increase the computational efficiency.

– Evaluation of estimators: We assess both estimators in terms of compu-
tational efficiency by examining their accuracy, precision, and effectiveness
in selecting the network with the highest robustness margin as the number
of samples used for the estimation increases. The samples used for the esti-
mators are the calculated critical epsilon values for different images, which
provide insight into the underlying robustness distribution.

We find that the non-parametric estimator exhibits significantly higher vari-
ance than the parametric estimator, particularly when fewer than 20 samples
are used, at which point the variance becomes too large for it to be an effective
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estimator. Beyond this, the parametric estimator is more precise on average,
and with around 100 samples, it consistently outperforms the non-parametric
estimator in terms of precision.

Additionally, both estimators are accurate across any number of samples, as
their confidence intervals tend to overlap with the ground truth. For comparing
the robustness margin of two networks, we observe that both estimators are
conservative, typically indicating overlap of the confidence intervals rather than
incorrectly suggesting that the wrong network is strictly more robust.

In our experiments, the non-parametric estimator requires at least 200 sam-
ples to reliably indicate the more robust network, while the parametric estimator
achieves this with only 100 samples. Furthermore, when two networks are equally
robust, the non-parametric estimator tends to incorrectly suggest a more robust
network when fewer than 20 samples are used, highlighting its ineffectiveness
at these lower sample numbers. In contrast, the parametric estimator does not
suffer from this issue and consistently indicates an overlap, even at lower sample
numbers.

2 Background

In this section, we present the formal definitions relevant to the robustness of
neural networks. With these definitions, we formalised different robustness mea-
sures.

2.1 Local Robustness

One of the most prominent robustness properties is local robustness, which
means that a neural network is robust against small input perturbations in a
given input. To maintain generality, the norm is not specified in the definitions,
as it varies across the literature. Commonly used norms include the l1, l2 and
l∞ norms. For the results presented in this paper, the l∞-norm is used, as most
verifiers are compatible with this norm [19]. Table 1 provides a summary of the
mathematical notation used in the definitions.

The local robustness property of a neural network for an input can formally
be expressed as follows:

Definition 1 (ϵ-robustness). Consider a neural network f : Rn → N that
classifies inputs, a correctly classified reference input x0 ∈ Rn, and a perturbation
size ϵ. The network is ϵ-robust, or locally robust, on x0 if ∀x ∈ Rn : ||x− x0|| <
ϵ ⇒ f(x) = f(x0).

The idea of ϵ-robustness is to analyse all potential perturbations within a
distance ϵ from the reference input to determine whether any of them cause the
neural network to misclassify. A visual example can be seen in Figure 1. We note
that robustness is only considered for originally correctly classified inputs, whilst
the robustness of misclassified inputs is not considered in this paper. However,
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Table 1. Overview of the most important notation used in this paper

Notation Meaning

x ∈ Rn Input. For example, if this were an image, it would consists of n pixels,
each taking a value in the set of real numbers. Correctly classified inputs
and perturbations are denoted x0 and x, respectively.

f : Rn → N Neural Network. Various types of neural networks exist, but our no-
tation describes neural networks as functions whose output is a natural
number indicating the class of the input.

ϵ Perturbation size. Given a correctly classified reference input x0, the
perturbation size ϵ defines the neighbourhood of perturbations x around
the reference input that is considered. The set of perturbations is expressed
as {x : ∥x− x0∥ < ϵ}, where ∥ · ∥ is a specific norm.

ε
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Fig. 1. A 2-dimensional example of verifying whether a correctly classified reference
input x0 is ϵ-robust using the l∞ norm. For example, if the input were an image, each
axis would represent the value of a different pixel, meaning we are examining the space
of images composed of only two pixels. The ϵ-square around x0 is displayed in grey,
and x0 is considered ϵ-robust if each x within the square is assigned the same class as
x0.

we retain the general notation for generality. In our case, f(x0) is the ground
truth label of x0.

We adopt the critical robustness framework used by Bosman et al.[2], accord-
ing to which the critical robustness property of a neural network for a correctly
classified reference input can formally be defined as follows:

Definition 2 (Critical epsilon ϵ∗). Consider a neural network f : Rn → N
that classifies inputs and a correctly classified reference input x0 ∈ Rn. The criti-
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cal epsilon, or critical robustness, of the network on that input is the perturbation
size ϵ∗ such that the network is ϵ-robust on x0 for all ϵ ≤ ϵ∗, but not ϵ-robust for
any ϵ > ϵ∗.

The critical epsilon represents the maximum perturbation size ϵ for which
the network retains ϵ-robustness; it is denoted ϵ∗, or ϵ∗x0

when the reference
input x0 is not explicitly clear from the context. Note that the critical epsilon
ϵ∗ is hard to determine exactly; for that reason, we often resort to finding a
lower bound on the critical epsilon. Additionally, Bosman et al. [2] introduced
robustness distributions, which can formally be defined as follows:

Definition 3 (Robustness distribution). Consider a neural network f :
Rn → N that classifies inputs. A robustness distribution represents the proba-
bility that the network achieves a critical epsilon ϵ∗ for an arbitrary correctly
classified reference input x0. It is typically represented by its cumulative distri-
bution function (CDF):

P (ϵ∗ < ϵ) := P({x0 : ϵ∗x0
< ϵ}) (1)

where ϵ∗x0
is the critical epsilon of the reference input x0. Note that the set of

correctly classified reference inputs x0 is not specified. This is intentional, as it is
task-dependent and usually unknown. When necessary, this set will be denoted
X0 ⊂ Rn.

2.2 Robust Accuracy

These definitions offer a framework to formally define the commonly used robust-
ness measure: robust accuracy.4 Reviewing the literature [29,12,14,15,1,22,25,28,27,17],
this measure can formally be expressed as follows:

Definition 4 (Robust accuracy). Consider a neural network f : Rn → N and
a perturbation size ϵ. Robust accuracy indicates the probability that the network
is ϵ-robust for an arbitrary classified reference input x0. This will be denoted by:

P (ϵ) := P({x0 : ||x− x0|| < ϵ ⇒ f(x) = yx0
}) (2)

where yx0
is the ground truth label of a reference input x0. In practice, the follow-

ing estimator is used to calculate the robust accuracy [29,12,15,1,22,25,28,27,17]:

Estimator 1 (Robust accuracy). Given a set of test data D, which was not used
to train the neural network f : Rn → N, an estimator for its robust accuracy is
obtained by taking the mean over the classified test data D, as follows:

P̂ (ϵ) :=
|{x0 ∈ D : ∀x ∈ Rn it holds that ||x− x0|| < ϵ ⇒ f(x) = yx0}|

|D|
(3)

4 It is also referred to as the astuteness [29], adversarial error rate [12], adversarial ac-
curacy [28] and certified accuracy [22]. It is also equivalent to 1 minus the adversarial
frequency [1].



A statistical measure for comparing the robustness of neural networks 7

2.3 Average minimum distortion

A less common robustness measure is the average minimum distortion.5 Re-
viewing the literature [24,6,7,27,28,13], this measure can formally be expressed
as follows:

Definition 5 (Average minimum distortion). Consider a neural network
f : Rn → N. The average minimum distortion represents the expected criti-
cal epsilon for an arbitrary correctly classified reference input x0, denoted as
E(ϵ∗) := E({ϵ∗x0

: x0 ∈ X0}), where X0 is the set of all possible correctly classi-
fied reference inputs in the given task.

To calculate the average minimum distortion, the following estimator is used
in practice [13,24,6,7,27,28]:

Estimator 2 (Average minimum distortion). Given a set of correctly classified
test data D, which was not used to train the neural network f : Rn → N, an
estimator for its average minimum distortion is obtained by taking the mean
over D, as follows:

Ê(ϵ∗) :=
1

|D|
·
∑
x0∈D

ϵ∗x0
(4)

The average minimum distortion addresses the first limitation of robust accu-
racy by not being dependent on a parameter. This eliminates the need for expert
domain knowledge. However, the second limitation persists, as it does not provide
a reliable indication of the robustness of an individual input. Especially when
dealing with robustness distributions with high variance or outliers, the mean can
fail to reflect the robustness of individual inputs. Bastani et al. [1] address this is-
sue by introducing the concept of adversarial severity. This measure is similar to
the average minimum distortion but only takes into account critical epsilons that
are below a specific perturbation size ϵ, so E(ϵ∗ < ϵ) := E({ϵ∗x0

< ϵ : x0 ∈ X0}).
However, this reintroduces the need for expert domain knowledge for selecting
an appropriate perturbation size ϵ. Just like robust accuracy, these limitations
make it challenging to compare the robustness of two networks using the average
minimum distortion.

3 Robustness Margin and Estimators

To address the limitations of robust accuracy, we introduce a new robustness
measure that is based on robust accuracy and incorporates elements inspired by
statistical hypothesis testing. We call this measure the robustness margin. After,
we introduce two estimators that determine the robustness margin for a given
network.
5 It is also referred to as the average verified bound [13] and the mean minimum

adversarial distortion [28].
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3.1 Robustness Margin

The robustness margin allows for a small probability σ that an arbitrary cor-
rectly classified reference input will not be ϵ-robust and determines the largest
ϵ consistent with this probability. The value of σ should be chosen to be very
small. A common choice, often used in statistical hypothesis testing, is σ = 0.05,
which can also be adopted in this context. However, the selection of σ is task-
dependent, as some tasks may require a significantly lower permissible error.

Definition 6 (Robustness margin). Consider a neural network f : Rn → N
and a permitted error of σ ∈ (0, 1). The robustness margin indicates the maxi-
mum perturbation size ϵ such that the network is ϵ-robust on an arbitrary cor-
rectly classified reference input, provided that we allow an error of σ:

ϵσ : P (ϵσ) = 1− σ (5)

Where P (ϵ) = P({x0 : ||x− x0|| < ϵ ⇒ f(x) = f(x0)}) is the robust accuracy.

The robustness margin returns a value of ϵ for a given permitted error σ,
thus removing the dependence on ϵ. With the critical robustness framework
from Definitions 2 and 3, this can be reformulated. The following observation
can be made about P (ϵ) from Definition 4:

P (ϵ) = P({x0 : ϵ∗x0
≥ ϵ}) = 1− P({x0 : ϵ∗x0

< ϵ}) = 1− P (ϵ∗ < ϵ) (6)

This is because a correctly classified reference input that is ϵ-robust is also ϵ-
robust for all perturbation sizes smaller than ϵ. Therefore, its critical epsilon is
guaranteed to be at least ϵ.

Therefore, the robustness margin can be reformulated as follows:

ϵσ : P (ϵ∗ < ϵσ) = σ (7)

Therefore, determining the robustness margin corresponds to a quantile esti-
mation problem for the underlying robustness distribution. Figure 2 provides a
visual example of how the robustness margin and robust accuracy can be deter-
mined from a given robustness distribution.

The robustness margin addresses the disadvantages of robust accuracy as
follows:

a. The parameter σ is more intuitive for someone without expertise in safety
margins and neural network verification; it is rooted in statistics and di-
rectly reflects the tolerance for mistakes. Also known as the acceptable qual-
ity threshold, a concept routinely used in practice. This parameter is task-
specific and is chosen to reflect the desired level of permissible error. Because
it is a widely used concept, extensive task-specific literature already provides
guidance on appropriate values of σ.

b. The robustness margin provides a perturbation size ϵ for which an arbitrary
input has a probability of 1−σ to remain robust, offering a reliable indication
of the robustness of individual inputs.
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(0.44, 0.05), Robustness margin = 0.44

(2, 0.92), Robust accuracy = 0.08

Critical robustness distribution (CDF)
Robustness margin for = 0.05
Robust accuracy for = 2

Fig. 2. Illustration of how the robustness margin and robust accuracy can be read of
a robustness distribution, whose (hypothetical) CDF is shown in blue. The dashed red
lines indicate how the robustness margin for σ = 0.05 can be read off the plot. The
dashed green lines indicate how the robust accuracy for ϵ = 2 can be read from the
plot, where the robust accuracy is given by 1− P (ϵ∗ < ϵ), as shown in Equation 6.

c. By addressing the first two issues, the robustness margin provides a more
reliable indicator of a network’s robustness behaviour, making it better suited
than robust accuracy for comparing the robustness of two networks.

Determining the robustness margin of a neural network for a given σ is equiv-
alent to identifying the σ-quantile of its robustness distribution, as visually rep-
resented in Figure 2. In the following, we will present two different methods
for empirically determining this value. The first method is a non-parametric ap-
proach, which does not make any assumptions about the robustness distribution.
The second method is parametric, relying on an assumption about the family
of the robustness distribution. The non-parametric approach makes no assump-
tions about the distribution; however, it requires a significant amount of data
to converge to a precise estimate. For the parametric approach to be accurate,
a good understanding of the underlying functional family of the distribution is
required. For this approach, the robustness distribution is assumed to belong to
a functional family, and its parameters are fitted to the data.

This approach requires significantly less data to converge to a precise estimate
when compared to the non-parametric approach, provided the distributional
assumption holds.

In Section 4, the non-parametric method is used as a baseline to evaluate the
reliability of the parametric method. Furthermore, both methods are compared
in terms of data efficiency.



10 L. Kielhöfer et al.

3.2 Order Statistics

Order statistics are essential to the non-parametric method and are formally
defined as follows:

Definition 7 (Order statistics). Given a dataset {x1, · · · , xn}, the values are
arranged in ascending order to form the ordered set {x(1), · · · , x(n)}, where x(i)

denotes the i-th order statistic.

The following three properties of order statistics, as derived by Meeker et
al. [23], are relevant:

a. Given a continuous random variable X with CDF P , it follows that P (X) ∼
U(0, 1), meaning P (X) is uniformly distributed on the interval [0, 1].

b. Given that X(i) is the i-th order statistic sampled from U(0, 1) with a sample
size of n, it follows that X(i) ∼ Beta(i, n − i + 1). That is, X(i) has a Beta
distribution with parameters i and n− i+ 1.

c. Given the CDF of the Beta distribution with parameters α and n−α+1 at a
point x, denoted as Beta(x;α, n−α+1), it holds that Beta(x;α, n−α+1) =
1− Binom(α − 1;n, x), where Binom(α − 1;n, x) denotes the CDF of a Bi-
nomial distribution with parameters n (number of trials) and x (probability
of success in each trial), evaluated at α− 1.

Using the first two, the i-th order statistic X(i) sampled from a distribution
with CDF P and a sample size of n satisfies

P (X(i)) ∼ Beta(i, n− i+ 1). (8)

3.3 Non-parametric Estimator

For the non-parametric estimator, our method follows Meeker et al. [23]. Given
a dataset of critical epsilons {ϵ∗1, ϵ∗2, . . . , ϵ∗n}, the order statistics are given by the
ordered set {ϵ∗(1), ϵ

∗
(2), . . . , ϵ

∗
(n)} and the σ-quantile by P−1(σ). A non-parametric

confidence interval (CI) for this quantile, with a confidence level of 1 − α, is
constructed by selecting appropriate l and u, such that the interval [ϵ∗(l), ϵ

∗
(u)] has

a probability of 1 − α to contain the σ-quantile. Mathematically, this requires
solving the following:

P(ϵ∗(l) ≤ P−1(σ) ≤ ϵ∗(u)) = 1− α,

P(ϵ∗(l) ≤ P−1(σ))− P(ϵ∗(u) ≤ P−1(σ)) = 1− α,

P(P (ϵ∗(l)) ≤ σ)− P(P (ϵ∗(u)) ≤ σ) = 1− α,

Beta(σ; l, n− l + 1)− Beta(σ;u, n− u+ 1) = 1− α,

Binom(u− 1;n, σ)− Binom(l − 1;n, σ) = 1− α,

where the relevant properties related to order statistics have been used. To sim-
plify this even further, only two-sided intervals are considered, meaning that
P(ϵ∗(l) ≥ P−1(σ)) = P(ϵ∗(u) ≤ P−1(σ)) = α/2. Consequently, the non-parametric
estimator is given as follows:
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Estimator 3 (Non-parametric confidence interval for the robustness margin).
Given a set of test data not used in training the neural network f : Rn → N,
with corresponding critical epsilons {ϵ∗1, ϵ∗2, . . . , ϵ∗n}, we define the non-parametric
confidence interval, of at least 1 − α level, for the robustness margin at σ as
[ϵ∗(l), ϵ

∗
(u)], where:

l = Binom−1(α/2;n, σ) + 1 (9)

u = Binom−1(1− α/2;n, σ) + 1 (10)

To find a confidence interval for the robustness margin non-parametrically,
we order all critical epsilon values from lowest to highest and determine which
two indices in this ordered set form a 1−α level confidence interval. These indices
are given by l and u.

3.4 Parametric Estimator

A key observation by Bosman et al. [2] is the similarity between robustness
distributions and log-normal distributions. If {ϵ∗1, ϵ∗2, . . . , ϵ∗n} follow a log-normal
distribution, then {ln(ϵ∗1), ln(ϵ∗2), . . . , ln(ϵ∗n)} follow a normal distribution. The
following two distributions are introduced for the parametric estimator:

a. The standard normal distribution at a point x is denoted Z(x); Z has a
mean of 0 and a variance of 1.

b. The noncentral t distribution at a point x is denoted t(x;n− 1, δ), with n-1
degrees of freedom and noncentrality parameter δ.

To estimate the confidence interval for the σ-quantile, with a confidence level of
1 − α, under the assumption of a log-normal distribution, we use the method
described by Meeker et al. [23]:

Estimator 4 (Parametric confidence interval for the robustness margin). Given
a set of test data not used in training the neural network f : Rn → N, with corre-
sponding critical epsilons {ϵ∗1, ϵ∗2, . . . , ϵ∗n} assumed to be log-normally distributed,
we define the 1 − α level confidence interval for its robustness margin at σ as
[ϵ∗a, ϵ

∗
b ], where:

ln ϵ∗a = µ− t−1(1− α/2;n− 1, δ) · s√
n

(11)

ln ϵ∗b = µ− t−1(α/2;n− 1, δ) · s√
n

(12)

with µ = 1
n

∑
i ϵ

∗
i , s =

√
1
n

∑
i (ϵ

∗
i − µ)

2 and δ = −
√
nZ−1(σ).

Assuming a log-normal distribution of the critical epsilon values, we trans-
form the data into a normal distribution by taking their logarithm. The 1 − α
level confidence interval of the robustness margin can then be computed using
the mean µ, standard deviation s, and non-centrality parameter δ of the resulting
normal distribution.
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4 Results

The parametric and non-parametric estimators are evaluated in the following
three ways, with each evaluation conducted over an increasing number of samples
used for the estimator:6

– Amount of uncertainty.
– The ability to identify the network with better robustness between the two

options.
– The accuracy of the parametric estimator.

4.1 Experimental setup

For the results, we pre-computed7 critical epsilon values for 1000 instances of 3
networks trained on MNIST [11]. The MNIST dataset consists of handwritten
digits along with their corresponding labels, containing 60 000 training instances
and 10 000 testing instances. All train instances are used for training the network,
and we selected the first 100 test and 100 train instances for each class, leading
to 1000 test and 1000 train instances in total, to measure critical epsilons across
the selected networks as in [3].

Bosman et al. [3] utilise a recent version of the Branch-and-Bound-based
neural network verification framework (BaB) [10,5] for verification. For each of
the selected instances, for each network, they iteratively make use of k-binary
search [2,8] for finding the critical epsilon value. Note that they discretise the
search space and investigate a range of ϵ values from 0.001 to 0.4 in intervals of
0.002. Only correctly classified instances for each network were considered for
evaluation, potentially resulting in different images selected for each network.

We selected three networks based on the critical epsilon distributions reported
by Bosman et al. [2]: mnist relu 4 1024, mnist-net 256x4 and mnist-net. mnist
relu 4 1024 has the largest average critical epsilon, mnist-net 256x4 has a more
typical distribution, and mnist-net has the largest minimal critical epsilon in
their study. This way, the three networks form a representative set.

The estimators are evaluated over varying sample sizes, ranging from 10 to
850. For each sample size n, the pre-computed critical epsilon values are used to
draw n critical epsilons with replacement. This process is repeated 1000 times,
resulting in 1000 different orderings of n instances, and consequently n · 1000
critical epsilons. This provides insight into the distribution and performance of
the estimators for each sample size, where the sample size represents the number
of critical epsilon values available to the estimator.

4.2 Amount of uncertainty

For both estimators, we calculated the mean and quantile information of the
estimator to show the uncertainty in the estimation of the robustness margin.
6 All code is available on: https://github.com/ADA-research/Robustness-Metric
7 For exact computation see: https://github.com/ADA-research/VERONA

https://github.com/ADA-research/Robustness-Metric
https://github.com/ADA-research/VERONA
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Naturally, the uncertainty decreases as the critical epsilon of more reference im-
ages is determined. Note that these uncertainty calculations are purely intended
to display the variability of the estimators over multiple repeated measurements
of the robustness margin, while the predictive consequences of these results are
discussed in later sections.

In the following, we determine the number of critical epsilon values needed
to obtain a certain amount of uncertainty.

Figure 3 illustrates the mean confidence interval size of the robustness mar-
gin over the number of samples, along with the 0.025 and 0.975 quantiles. The
samples used for the estimators are the calculated critical epsilon values of differ-
ent reference images. For each sample size n, 1000 different subsets of size n are
drawn from the set of critical epsilons, and their intervals are computed. The
difference between the upper and lower bounds of each interval is calculated,
and the mean, as well as the 0.025 and 0.975 quantiles of these differences, are
determined across the 1000 subsets.

For all three networks, the parametric estimator quickly becomes more pre-
cise than the non-parametric estimator as the number of samples increases. With
fewer than 20 samples, the non-parametric estimator has a smaller uncertainty on
average. However, at these low sample sizes, the quantiles of the non-parametric
estimator range from near 0 to 0.04, indicating that the estimator is uncertain
at this point. In contrast, the quantiles of the parametric estimator remain much
closer together, indicating that it is more certain as it produces a smaller range
of values. As the number of samples increases, this trend persists, and by around
100 samples, there is very little overlap between the quantiles of the two estima-
tors. Beyond this point, the parametric estimator can be considered statistically
more precise as the amount of uncertainty remains smaller.

Some artefacts can be seen in the plots for the non-parametric estimator;
this is due to the discrete nature of the binomial distribution. This discreteness
can be seen in Equations 9 and 10, which are used to calculate the indices
of the non-parametric interval. To improve smoothness in the curve, a normal
approximation of the binomial distribution can be used.

4.3 Identifying the more robust of two given networks

We evaluate the number of samples required for the estimators to reliably deter-
mine which of two given networks has a higher robustness margin at σ = 0.05.
Specifically, we assess the chance that each estimator correctly identifies the net-
work with the greater robustness margin as the number of samples increases. As
we saw in Figure 3, as the number of samples increases, the estimators become
more confident about the robustness margin of the networks. Using a low num-
ber of samples, the confidence intervals of the robustness margin for different
neural networks will typically still overlap. Note that this is not revealed by this
figure, as it merely shows the amount of uncertainty (averaged over all repeti-
tions), and not the predicted mean of the estimators. However, at some point,
the uncertainty will be so small that the confidence intervals no longer overlap,
and the estimators can determine one of the networks to be most robust. This
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(b) mnist-net 256x4
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(c) mnist relu 4 1024

Fig. 3. Size of the confidence interval as a function of the number of samples for both
estimators. For each sample size, 1000 sets were drawn from the dataset of critical
epsilons. The darker line indicates the mean confidence interval size of these sets, while
the shaded region represents the range between the 0.025 and 0.975 quantiles for the
confidence interval size.

experiment can be repeated various times with various subsets of the data. In
the following, we will report for any number of samples the ratio of experiments
in which a given estimator selects the most robust network or whether it is not
able to select one yet because there is still overlap in the confidence intervals.
We expect that, as the number of samples increases, both estimators will be
more likely to correctly identify the network with the greater robustness margin.
Furthermore, if the parametric estimator is based on an appropriate parametric
model, logically, it should reach this conclusion faster than the non-parametric
estimator, as it leverages additional information about the distribution.

Figure 4 illustrates the evolution of uncertainty in a single binary comparison,
showing both the non-parametric and parametric estimators separately, while
Figure 5 summarises the results across all comparisons combining the outcomes
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of both estimators in each plot. In this case, minst-net is more robust than
mnist-net 256×4, and mnist relu 4 1024 is also more robust than mnist-net
256×4. Additionally, minst-net and mnist relu 4 1024 are equally robust. Note
that these results are specific to the chosen σ value. For different values of σ, the
relative robustness between networks may change. The optimal outcome, given
enough samples, would show no overlap between the confidence intervals and all
experiments correctly identifying the more robust network.

The same artefacts mentioned in the previous section can also be seen in
these plots. For each sample size n, 1000 different subsets of size n are drawn
from the set of critical epsilons, and their intervals are computed. The ratios are
calculated based on these intervals.

Both estimators are conservative in their predictions, as they are more likely
to indicate overlap rather than incorrectly identifying the more robust network.
Figures 5a and 5c illustrate that the parametric estimator correctly identifies
the more robust network with fewer samples compared to the non-parametric
estimator. The parametric estimator requires approximately 100 samples to, on
average, reliably indicate the more robust network, whereas the non-parametric
estimator needs at least 200 samples. Additionally, Figure 5b shows that with
fewer than 20 samples, the non-parametric estimator struggles to consistently
indicate overlap when that is the ground truth. In contrast, the parametric
estimator performs consistently in such cases.

From this, a recommended approach for comparing networks is to progres-
sively gather critical epsilon values and recompute the robustness margin until
a conclusion can be drawn about which network is more robust, avoiding any
unnecessary additional computations. The robustness margin is very unlikely to
indicate the wrong, more robust network and will show overlap when more crit-
ical epsilon values are needed. Thus, when no overlap is present, the identified
network is very likely the more robust one.

4.4 Accuracy of parametric estimator

For both estimators, we calculate the mean and quantile information of the
robustness margin to assess their accuracy. An estimator is considered accurate
if the calculated quantiles overlap with the ground truth. The ground truth is
defined as the robustness margin measured by the non-parametric estimator after
850 samples. We expect the non-parametric estimator to be accurate regardless
of the number of samples, as it makes no assumptions about the underlying
distribution. Additionally, if the parametric estimator is based on an appropriate
parametric model, it should also maintain accuracy for any number of samples.

Figure 6 shows the 0.025 quantile of the lower bound and the 0.975 quantile
of the upper bound for the estimated interval of the robustness margin over the
number of samples. For each sample size n, 1000 different subsets of size n are
drawn from the set of critical epsilons, and their intervals are computed. The
0.025 quantile of the lower bound and the 0.975 quantile of the upper bound
for each interval are taken across those 1000 intervals. The result of the non-



16 L. Kielhöfer et al.

0 200 400 600 800
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0
R

at
io

Non-parametric estimator

0 200 400 600 800
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Parametric estimator

mnist-net predicted more robust
mnist-net_256x4 predicted more robust
Overlap

Fig. 4. Evolution of uncertainty for the binary comparison between mnist-net and
mnist-net 256x4. The plots show how the proportion of predicted more robust network
and overlaps changes as the number of samples increases for the non-parametric esti-
mator (left) and parametric estimator (right).

parametric estimator at 850 samples is used as a ground truth to assess the
accuracy of both estimators.

The distribution of intervals for the parametric estimator consistently over-
laps with the ground truth, indicating that the parametric estimator provides
an accurate estimation of the robustness margin.

5 Conclusion

In this paper, we have introduced a new robustness measure, the robustness mar-
gin. Our new measure addresses the limitations of robust accuracy by providing
a more intuitive control parameter σ and by offering an interpretable indication
of robustness for individual images. It thus provides a solid basis for comparing
the robustness of networks. To estimate its confidence bounds in practice, we
derived both a parametric and a non-parametric estimator. We evaluated these
estimators based on their efficiency in terms of the required number of instances
for (i) the ability to identify the more robust of two given networks, (ii) estimator
precision, and (iii) estimator accuracy.

We find that both estimators tend to be accurate for 10 instances. The
parametric estimator surpasses the precision of the non-parametric estimator
at around 20 instances. However, before reaching this point, the variance of
the non-parametric estimator becomes too high for the estimator to be reliable,
suggesting that the parametric estimator should be preferred even before 20
instances.

When comparing the robustness of two networks, both estimators are quite
conservative, being more likely to indicate a possible tie rather than incorrectly
favouring the wrong network. In the scenarios we studied, when one network



A statistical measure for comparing the robustness of neural networks 17

0 200 400 600 800
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0
R

at
io mnist-net predicted more robust

mnist-net_256x4 predicted more robust
Overlap

(a) mnist-net vs mnist-net 256x4
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(b) mnist-net vs mnist relu 4 1024
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(c) mnist-net 256x4 vs mnist relu 4 1024

Fig. 5. The ratio of network 1 predicted more robust, network 2 predicted more robust,
and number of times there is still overlap for each comparison between two networks
over a range of sample sizes. We repeated the experiment 1000 times with a different
order of instances to account for random effects. Based on these repetitions, we can
calculate the ratios. Solid lines represent the non-parametric estimator, and transparent
lines represent the parametric estimator.

is more robust, the non-parametric estimator requires at least 200 instances to
reliably identify the correct winner, whereas the parametric estimator achieves
this with only 100 instances.

In cases where the networks have a similar robustness margin, the non-
parametric estimator has a high chance of incorrectly favouring one network
when fewer than 20 instances are used, reinforcing that it is not reliable in this
range. The parametric estimator seems to not suffer from this problem with at
least 10 instances.

To further validate the reliability and efficiency of the parametric estimator,
the same experiments should be conducted on a larger set of networks. Due to
computational constraints, evaluations have only been performed on three net-
works. Expanding the analysis would provide a more comprehensive assessment
of its performance across different architectures.
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(b) mnist-net 256x4
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(c) mnist relu 4 1024

Fig. 6. Distribution of intervals generated by both estimators over several samples.
For each sample size, 1000 sets were drawn from the dataset of critical epsilons. The
bottom of the shaded region indicates the 0.025 quantile of the lower bounds, while
the top indicates the 0.975 quantile of the upper bounds over the 1000 sets.

While in this study, we have only employed complete verification methods,
it would be interesting to evaluate our estimators with incomplete verification
methods. Using these for estimating critical epsilon values, it may be possible to
achieve significant gains in terms of computational efficiency.
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