
Dynamic Algorithm Termination for Branch-and-Bound-based
Neural Network Verification

Konstantin Kaulen1, Matthias König2, Holger H. Hoos1,2

1 Chair for AI Methodology, RWTH Aachen University, Germany
2 LIACS, Leiden University, The Netherlands

kaulen@aim.rwth-aachen.de, h.m.t.konig@liacs.leidenuniv.nl, hh@aim.rwth-aachen.de

Abstract

With the rising use of neural networks across various appli-
cation domains, it becomes increasingly important to ensure
that they do not exhibit dangerous or undesired behaviour. In
light of this, several neural network robustness verification al-
gorithms have been developed, among which methods based
on Branch and Bound (BaB) constitute the current state of the
art. However, these algorithms still require immense compu-
tational resources. In this work, we seek to reduce this cost
by leveraging running time prediction techniques, thereby al-
lowing for more efficient resource allocation and use.
Towards this end, we present a novel method that dynami-
cally predicts whether a verification instance can be solved
in the remaining time budget available to the verification al-
gorithm. We introduce features describing BaB-based veri-
fication instances and use these to construct running time,
and more specifically, timeout prediction models. We lever-
age these models to terminate runs on instances early in the
verification process that would otherwise result in a timeout.
Overall, using our method, we were able to reduce the to-
tal running time by 64% on average compared to the standard
verification procedure, while certifying a comparable number
of instances.

Code — github.com/ADA-research/BaB_DynTerm
Extended version — ada.liacs.nl/papers/KauEtAl25.pdf

Introduction
In recent years, there has been a surge in the application
of deep neural networks across various safety-critical do-
mains and usage scenarios, ranging from facial recognition
systems embedded in mobile phones to unmanned aircraft
manoeuvre advisory systems (see, e.g., Julian, Kochender-
fer, and Owen 2019). Concurrently, it became evident that
neural networks sometimes show unintended and potentially
dangerous behaviour; e.g., it has been shown that neural net-
works are vulnerable to adversarial attacks, where slight in-
put modifications can lead to seriously misleading outputs
(Szegedy et al. 2014). Generally, this lack of robustness of
neural networks necessitates the development of methods to
formally analyse their behaviour, using formal verification

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

techniques. These techniques assess whether a given net-
work adheres to specific input-output properties; otherwise,
they produce a counter-example that violates the property.
In the context of a classifier, a prominently studied property
asserts that inputs within the l∞ norm ball of a specified in-
put x with radius ϵ should be classified into the same class
as x (Goodfellow, Shlens, and Szegedy 2015).

Despite substantial advances in recent years, neural net-
work verification remains computationally challenging, with
even basic properties known to be NP-complete (Katz et al.
2017). State-of-the-art verification algorithms rely on so-
phisticated solvers using the branch and bound method
(Bunel et al. 2020), requiring significant computational re-
sources and time, even for simple networks (see, e.g., König
et al. 2024). Moreover, in order to reason about the robust-
ness of a network over the distribution of possible inputs
(e.g., using its verified accuracy), a sizeable number of ver-
ification queries have to be carried for a given network; this
circumstance further contributes to the substantial computa-
tional burden.

We propose a novel approach enabling the efficient allo-
cation of compute resources during the verification proce-
dure. Specifically, we introduce a method to classify ver-
ification instances as solvable or unsolvable within a pre-
defined time budget based on cheaply computable features.
Furthermore, we operationalise these predictions to termi-
nate the verification procedure early for instances where a
solution can not be obtained within the given time bud-
get. Thereby, we avoid spending compute resources on at-
tempting to verify instances that ultimately do not inform
us about the robustness of the network. We evaluated our
approach on a broad set of state-of-the-art verification algo-
rithms and benchmarks, including benchmarks from recent
editions of the International Verification of Neural Networks
(VNN) competition (Brix et al. 2023; Müller et al. 2022a;
Bak, Liu, and Johnson 2021), and show that we can reli-
ably terminate verification runs for instances that are unsolv-
able within a given cutoff time without solving considerably
fewer instances overall. In summary, our contributions are
as follows:

• We present, for the first time, features of branch-and-
bound-based neural network verification instances that
enable predictions about their solvability within a given
time budget;

• we introduce a novel method based on those features that
reliably identifies instances that cannot be solved within
a given time budget;

• we evaluate our method on a broad set of benchmarks
and across multiple verification tools;

• we show how this approach can be leveraged to termi-
nate unsolvable instances early in the verification pro-
cess, leading to savings of 64% in terms of running time
on average with a comparable number of solved instances
relative to the current state-of-the-art approach.

Background
Neural network verification refers to the task of proving that
a given input-output property holds or is violated for a given
neural network. The most commonly studied properties in
the literature are local l∞ robustness properties in the con-
text of image classification tasks (see, e.g., König et al. 2024;
Bak, Liu, and Johnson 2021).

Verifying even simple properties is known to be an NP-
complete task (Katz et al. 2017). Therefore, the problem
is often solved by optimising lower and upper bounds for
each neuron in the classification layer (Wang et al. 2021;
De Palma et al. 2021c). The extremes of these bounds are
referred to as the global bounds and are used to decide a
given instance of the robustness verification problem. Veri-
fication algorithms are either complete or incomplete. While
incomplete methods are not guaranteed to find a solution to
a given input query, they are typically sound. Additionally,
complete methods are not only sound but always return a
definitive result given sufficient computational resources. In
the following, we will provide further details of the algorith-
mic approaches to neural network robustness verification,
both incomplete and complete, as those form the basis for
our choice of features that aim to describe the hardness of
verification instances.

Incomplete Neural Network Verification
The most efficient and scalable incomplete verification ap-
proaches approximate the concrete output bounds of a given
network by applying convex relaxations to its non-linear
activation functions (Zhang et al. 2018; Wong and Kolter
2018b). Therefore, in the case of ReLU activation functions,
each ReLU neuron whose inputs span over both the positive
and negative domain must be relaxed. These neurons are re-
ferred to as being unstable.

To find a linear bounding function of a network with re-
spect to its input, symbolic bounding equations of the last
layer can be back-propagated, recursively replacing each in-
put variable with a bounded formulation depending on the
previous layer, until the input is reached (see, e.g., Xu et al.
2021; Zhang et al. 2018). These techniques are referred to as
bound propagation methods.

Finally, adversarial attacks can also be considered an in-
complete verification approach, as the existence of an ad-
versarial example proves the violation of the given property
(Goodfellow, Shlens, and Szegedy 2015).

Complete Verification via Branch and Bound
In recent years, it has been proposed to use the well-known
branch and bound (BaB) method, which employs the previ-
ously introduced incomplete bounding techniques in a com-
plete verification framework (De Palma et al. 2021c; Wang
et al. 2021; Henriksen and Lomuscio 2020; Bunel et al.
2020). The BaB algorithm starts by applying an incomplete
verification technique to derive an initial lower and upper
bound. If these do not suffice to solve the instance, the origi-
nal problem is split into equivalent sub-problems. For ReLU
networks, this means choosing an unstable neuron and split-
ting it into its two linear sub-parts (Bunel et al. 2020). Al-
ternatively, splits can also be performed on the input domain
of the ReLU activation (Wang et al. 2018). The resulting
branches are then easier to bound by the incomplete meth-
ods, as fewer non-linearities need to be approximated. If a
counter-example is found in any of the branches, or if the
global lower bound is positive for both branches, the verifi-
cation problem is solved. Otherwise, the algorithm is applied
recursively to both sub-problems. Eventually, when all un-
stable ReLU neurons have been split, the verification task
boils down to a linear programming problem that can be
solved exactly; hence, the algorithm is complete for ReLU
networks. The branch and bound framework leaves open
many design choices, e.g., the bounding technique and the
branching heuristic that selects the next neuron to split. In
the following, we present the branch and bound variants rel-
evant to our work.

Branch-and-Bound-based Algorithms
Currently, BaB-based algorithms represent the state of the
art in neural network verification; see, e.g., Müller et al.
(2022a) and König et al. (2024) for extensive performance
evaluations of a broad range of verifiers. Specifically, these
BaB-based algorithms are αβ-CROWN (Zhang et al. 2018;
Xu et al. 2021; Wang et al. 2021), Oval (De Palma et al.
2021c,b,a), VeriNet (Henriksen and Lomuscio 2020) and
MN-BaB (Ferrari et al. 2022). The repository of MN-BaB
is not maintained and in an experimental state that includes
only a few usable configurations tailored to specific bench-
marks; therefore, we did not further consider MN-BaB.

αβ-CROWN is mainly built upon the incomplete bound
propagation method CROWN (Zhang et al. 2018). Its ex-
tensions, α- and β-CROWN, enable tighter bounds by opti-
mising the slope of lower bounds and by incorporating split
constraints into the bounding process, respectively (Wang
et al. 2021; Xu et al. 2021). Furthermore, it is possible to
use the α-CROWN intermediate layer bounds in combina-
tion with the Gurobi solver to solve the MIP formulation of
the verification problem (Tjeng, Xiao, and Tedrake 2019).

Oval works in a similar way as αβ-CROWN; specifi-
cally, it implements CROWN and its improvements, α- and
β-CROWN. In addition, Oval includes solvers that operate
on the dual of a tighter ReLU relaxation (Anderson et al.
2020), which may produce tighter bounds than αβ-CROWN
(De Palma et al. 2021a,b).

VeriNet employs an error-based bound propagation
method that only computes the network’s lower bound,

while representing upper bounds through a concrete error
value per relaxation (Henriksen and Lomuscio 2020). The
resulting symbolic bounds are used as inputs to the XPress
LP Solver in combination with the input constraints to check
whether the robustness property holds. However, if a satis-
fying variable assignment is returned, a gradient-based lo-
cal search around this assignment is initiated to distinguish
spurious from valid counter-examples. If this search remains
unsuccessful, the current problem is split, and resulting split
constraints are added to the LP sub-problem formulations.

Oval and αβ-CROWN rely on GPUs that execute the BaB
algorithm in batches, while VeriNet distributes its workload
among CPU workers; these can use GPUs to accelerate ten-
sor operations. Lastly, all verifiers we considered attempt to
generate adversarial examples to quickly calculate an upper
bound of the given verification problem.

Running Time Prediction
In the context of other NP-complete problems, such as SAT,
MIP or TSP, it has been shown that running time can vary
drastically depending on the instance and algorithm used
(see, e.g., Hutter et al. 2014). Recently, this phenomenon has
also been observed for neural network verification (König
et al. 2024). While overall, this behaviour is not well under-
stood, it is possible to predict running times of previously
unseen SAT, MIP and TSP problem instances reasonably ac-
curately, based on cheaply computable instance features by
fitting a statistical model on the running time of a given algo-
rithm (Hutter et al. 2014). Running time prediction has vari-
ous applications that seek to minimise costs and improve the
efficiency of machine learning systems; those range from al-
gorithm selection to scheduling (Kerschke et al. 2019). Fur-
thermore, running time prediction provides insights into the
relationship between instance characteristics and algorithm
running time and, thereby, informs us about instance com-
plexity. To the best of our knowledge, the present study is
the first to employ running time prediction techniques in the
context of neural network verification.

Method
As previously explained, solving the neural network verifi-
cation task is computationally challenging, especially when
attempting to verify several instances in order to reason
about the robustness of a network over the distribution of
possible inputs. In addition, it is not known what makes cer-
tain instances harder to solve than others. Therefore, it can-
not be decided a priori whether an instance could be solved
successfully within a given time budget, potentially leading
to ineffective resource allocation; i.e., allocating compute
time to unsolvable instances. In light of this, we leverage
running time prediction techniques to classify instances as
solvable or unsolvable within a given time budget. This al-
lows us to greatly accelerate the verification procedure, by
ensuring that resources are allocated towards solvable in-
stances.

Problem Formulation
As we are interested in the task of terminating instances that
cannot be solved within a given time budget, we consider a

binary classification problem. Our goal is to reduce the com-
putational burden demanded by the verification procedure,
ensuring the most effective use of resources by not spending
the full budget on unsolvable instances. In addition, we need
to avoid classifying solvable instances as unsolvable; oth-
erwise, the number of certified instances would be reduced,
which might lead to inaccurate conclusions about the robust-
ness of a given neural network.

Dynamic Algorithm Termination for BaB-based
Neural Network Verification
To predict the running time of BaB-based neural network
verification algorithms, we utilise cheaply computable fea-
tures that, in part, relate directly to the internal operations of
the given verifier.

We distinguish between static and dynamic features,
where the former are computed only once and do not change
during the solving process. Examples of static features in-
clude the lower bound obtained by an incomplete verifi-
cation method at the beginning of the verification process.
Conversely, dynamic features aim to capture the dynami-
cally changing state of the verification algorithm at any point
in time; examples include the current number of nodes in
the BaB tree and the current global bounds. Generally, static
features reflect the inherent complexity of the verification
instance, while dynamic features capture the progress made
thus far in solving the query. A detailed discussion of the
features we have developed is provided later in this section.

To best leverage the evolving nature of our dynamic fea-
tures, we propose a novel method that dynamically termi-
nates verification queries once a classification model deter-
mines that the given instance will not be solved in the re-
maining time budget. We give a schematic overview of our
method in Algorithm 1. The procedure is parameterised by
the frequency tfreq at which the current progress of the verifi-
cation process is assessed, and by the maximum allotted run-
ning time per instance, tcutoff. We refer to the points in time
at which the verification query is examined as a checkpoint.
For each checkpoint, we train a classifier Ct with t denoting
the time of the checkpoint. Ct is trained on the feature val-
ues of the verification instances in the training set at time t
along with their corresponding label indicating whether the
instances were solved within tcutoff seconds. Moreover, we
also trained the classifier on the verification instances from
our training set that were successfully solved before the cur-
rent checkpoint with their feature values when the verifica-
tion process was completed; thereby the classifier can learn
which feature values define a completed instance.

In addition, our proposed method is configurable via a
confidence parameter θ, which defines the threshold that the
prediction value for the positive class must exceed such that
an instance is labelled accordingly. The incorporation of this
parameter ensures that a user can choose whether the algo-
rithm should stop potentially unsolvable instances as soon
as possible (θ = 0.5) or whether, in case of doubt, more in-
formation should be collected. The verification algorithm is
then terminated only in case of a highly confident classifier
prediction (θ = 0.99). We note that θ can also be under-
stood as a tuning parameter between exploitation and explo-

Algorithm 1: Dynamic termination for BaB-based neural
network verification
Input: Verification instance (x0, ϵ); maximum per-instance
running time tcutoff; dynamic termination frequency tfreq; set
of classifiers C = {Ctfreq , C2tfreq , ..., Ctcutoff}; confidence pa-
rameter θ; verification algorithm VERIFY((x, ϵ), tfreq) that
pauses after tfreq seconds to return the features and result of
the instance.
Output: result or unknown

solved, features← VERIFY((x0, ϵ), tfreq)
telapsed ← tfreq
while ¬ solved ∧ telapsed < tcutoff do

if Ctelapsed (features) > θ then
return unknown

else
solved, features← VERIFY((x0, ϵ), tfreq)
telapsed ← telapsed + tfreq

end if
end while
return solved

ration. Therefore, θ should be chosen according to the user’s
needs, prioritising either a substantial reduction of the com-
putational burden or a higher number of certified instances.

In summary, our method operates as follows. Given tfreq,
tcutoff, θ, a verification algorithm, a neural network and a
training set of verification instances, we initially collect fea-
ture values for each training instance at every checkpoint t
by executing the verification algorithm on each query for
tcutoff seconds. In addition, we record whether the instance
was solved or not. Subsequently, we train a classification
model Ct for every checkpoint t on the collected data. Dur-
ing classification, given a verification query, we start by ex-
ecuting the verification algorithm for tfreq seconds to collect
an initial set of features for the given instance. Thereafter,
we employ the classifier for the first checkpoint to predict
whether the instance will be solved in the remaining time
budget. If the confidence of this prediction exceeds θ, we ter-
minate the verification run for the given instance and record
its result as unknown; otherwise, we continue the verifica-
tion process for tfreq seconds and update the dynamic in-
stance features accordingly. Next, we query the classifica-
tion model for the following checkpoint and decide whether
to terminate the run. We repeat this process until the verifi-
cation algorithm solves the instance under consideration or
reaches the given cutoff time.

Static Instance Features
To perform running time prediction, we need to define in-
stance features that allow us to make performance predic-
tions for a given algorithm. We begin by introducing our
proposed static features.

Prediction margin (∆). This feature is defined as the
difference between the two highest class scores. i.e., given
a neural network f with input x0 ∈ X and correspond-
ing correct label y0 ∈ Y , we have ∆ := fy0

(x0) −
maxy∈Y\y0

fy(x0), where fy refers to the output for class y.

The prediction margin can be seen as a proxy for the close-
ness of the input image to the decision boundary. This fea-
ture has recently been used in the context of adversarially
robust model selection (König, Hoos, and van Rijn 2024).

Initial Incomplete Bound. Each verifier we consider first
attempts to solve the verification instance using an incom-
plete method. We utilised the resulting global upper and
lower bounds as features.

Improved Incomplete Bound. If the initial problem
bounds do not suffice to solve the problem, Oval and αβ-
CROWN follow up with a tighter bounding method to fur-
ther optimise last layer bounds. The initial and improved
bounds give an estimate of how much improvement on the
lower bound is realisable through (incomplete) bound opti-
misation methods. Furthermore, these bounds are the start-
ing point for BaB and, thus, indicate the improvements re-
quired during BaB for solving the problem.

Initial Percentage of Safe Constraints. While VeriNet
does not employ bound optimisation, the first call to the LP
solver with the initial SIP bounds can already determine that
some (or all) linear equations are unsatisfiable; these out-
put constraints do then not have to be examined further dur-
ing BaB. Thus, the percentage of initial safe constraints also
provides an indication of the additional computation VeriNet
will require subsequently.

Adversarial Attack Margin. Each of the considered ver-
ifiers initially carries out an adversarial attack that seeks
to minimise the margin between the correct and incorrect
classes. If the attack remains unsuccessful, its output can
still be utilised to estimate the upper bound of the verifica-
tion problem. Therefore, we included the adversarial attack
margin, i.e., the difference between the two highest scoring
classes on the adversarial candidate, as an estimation of the
upper bound of the given verification instance.

Number of Unstable Neurons. Lastly, we also included
the absolute number of unstable neurons in our feature
set. This number does not only indicate how many non-
linearities have to be approximated but also bounds the max-
imum depth of the BaB tree.

Dynamic Instance Features
The dynamic features of BaB-based verification instances
are subject to change during the BaB process, as they capture
the progress made while solving the given problem instance.

Branch Characteristics. We included the number of vis-
ited branches that are already bounded as well as the total
number of branches, also including those that have been cre-
ated through branch splits but still need to be bounded. We
further included the fraction of verified branches; these cor-
respond to the leaves of the BaB tree and do not need to
be split further. Once this number reaches a value of 1, the
verification system has proven that the property holds.

Current Global Bounds. Furthermore, we included the
current global bounds of the BaB tree. When the MIP for-
mulation of the problem was solved by αβ-CROWN, we
also recorded the resulting global bounds. This constitutes
another way of capturing the progress of the given query,
as once any global bound changes its sign, the verification
process has been completed.

αβ-CROWN VeriNet Oval

Benchmark # Inst. # Solved Time
[GPU h] # Solved Time

[GPU h] # Solved Time
[GPU h]

5 100 960 868 31.44 580 66.65 430 90.77
8 100 947 767 41.32 501 76.64 387 94.69
Conv Big 929 918 1.50 868 11.29 842 15.34
Conv Small 980 979 1.26 931 11.96 958 6.06
ResNet 2B 703 619 15.16 576 22.72 - -

Marabou 500 193 51.73 176 54.28 187 53.32
Oval21 500 210 50.47 158 58.45 201 52.50
ViT 500 251 41.86 - - -
SRI ResNet A 500 198 51.74 133 62.01 - -
CIFAR-100 500 361 24.73 279 40.25 - -
Tiny ImageNet 500 421 14.63 356 29.47 - -

Table 1: Overview of benchmarks used in our evaluation, along with the number of certified instances and used running time
for each included verification tool. The number of instances refers to the correctly classified instances from the first 1000 test
set images for the first 5 benchmarks and otherwise to the number of instances generated following the VNN Competition
(Brix et al. 2023; Müller et al. 2022a; Bak, Liu, and Johnson 2021) instance selection procedure. All experiments ran with a
per-instance timeout of 600 seconds in wall-clock time and GPU acceleration.

Depth of the BaB Tree. One important characteristic of
the BaB tree that indicates instance complexity is its current
depth, as it indicates how many neuron splits are present in
the leaf nodes.

Number of GPU Batches. For Oval and αβ-CROWN,
which perform the BaB algorithm in batches on a GPU, we
included the number of batches that have been already com-
puted. This feature enables a running time predictor to relate
the BaB features to the internal operations of the verifiers.

Batch Computation Time. In addition, we computed the
time used for the computation of the last completed batch;
this number indicates the computational hardness of the
problem instance at hand, also in relation to the execution
environment used for running the verifier. If feature collec-
tion occurs while a batch is still being processed, we addi-
tionally considered the computation time already spent on
that batch.

Classification Model
For each checkpoint, we trained a random forest classifier
using the scikit-learn (Pedregosa et al. 2011) implementa-
tion with 200 decision trees and otherwise default hyperpa-
rameter settings. It has been shown in the past that random
forests perform very well in the context of running time pre-
diction tasks (Hutter et al. 2014). We also experimented with
automatic hyperparameter configuration using auto-sklearn
(Feurer et al. 2015), but did not observe substantial improve-
ments. Before training and classification, all features were
standardised, i.e., we removed the mean of each feature and
scaled it to have unit variance, using the mean and standard
deviation of each feature over the training set.

Experiments
We evaluated our approach on several benchmarks, which
we will introduce in the following, along with details on the

performance data collection and feature computation pro-
cess. We provide the source code used to conduct all exper-
iments publicly on GitHub.

Each benchmark was run on a compute cluster node
equipped with two Intel Xeon Platinum 8480+ processors
with 56 cores and a cache size of 105MB, 2TB of RAM
and four NVIDIA H100 GPUs with 80GB of video memory,
running Rocky Linux 9.4. Each run utilised 28 CPU cores,
one GPU and 448GB of RAM.

Benchmarks
We considered a wide and diverse set of benchmarks taken
from the ERAN repository (Müller et al. 2022b; Singh et al.
2019a) and the VNN Competition (Brix et al. 2023; Müller
et al. 2022a; Bak, Liu, and Johnson 2021), which have been
commonly used by the neural network verification commu-
nity (see, e.g., König et al. 2024; Singh et al. 2019b).

For our evaluation, we included two usage scenarios.
First, we considered an approach aligned with an end-user’s
needs in assessing the robustness of a neural network. Here,
we verified the correctly classified images from the first
1000 test set instances. We also included a competition sce-
nario, where we generated problem instances according to
the VNN Competition instance generation protocols.

In the first scenario, we included two convolutional (Conv
Big and Conv Small) and two fully connected networks (5
100 and 8 100) trained on the MNIST dataset that were taken
from the ERAN repository. For the CIFAR-10 dataset, we
considered a small ResNet proposed by Wang et al. (2021)
(ResNet 2B). We verified the first 1000 test images against
l∞ perturbations with ϵ-values chosen in line with those
used in previous studies (König et al. 2024; Wang et al.
2021; Singh et al. 2019b).

For the second scenario, we included benchmarks di-
rectly taken from different editions of the VNN competi-
tion (Brix et al. 2023; Müller et al. 2022a; Bak, Liu, and

αβ-CROWN VeriNet Oval

Benchmark Acc. TPR FPR Acc. TPR FPR Acc. TPR FPR

5 100 0.99 0.95 0.00 0.89 0.87 0.04 0.97 0.96 0.00
8 100 0.99 0.99 0.00 0.92 0.91 0.02 0.99 0.99 0.07
Conv Big 0.47 0.43 0.00 0.88 0.74 0.00 0.78 0.75 0.05
Conv Small 0.82 1.00 0.20 0.81 0.39 0.00 0.79 0.09 0.00
ResNet 2B 0.98 0.98 0.00 0.77 0.71 0.00 - - -

Marabou 0.99 0.99 0.10 0.93 0.95 0.53 0.96 0.96 0.13
Oval21 0.97 0.98 0.05 0.89 0.88 0.07 0.96 0.95 0.03
ViT 0.99 0.98 0.00 - - - - - -
SRI ResNet A 0.99 1.00 0.02 0.91 0.90 0.00 - - -
CIFAR-100 0.99 0.99 0.02 0.86 0.78 0.00 - - -
Tiny ImageNet 0.99 0.99 0.00 0.90 0.69 0.01 - - -

Table 2: Results for timeout prediction with continuous feature collection in terms of accuracy, true positive and false positive
rate as averages over five folds. We display results for θ = 0.99, i.e., the confidence threshold that must be reached before an
instance is terminated.

Johnson 2021). We employed the instance generation scripts
provided in the competitions to generate 500 instances per
benchmark that follow specific selection criteria such as cor-
rect classification or robustness against adversarial attacks.
Concretely, we included the Marabou, Oval21, SRI ResNet
and ViT benchmarks that consist of networks trained on the
CIFAR-10 dataset. If the benchmarks included multiple net-
works or ϵ value specifications, we chose the configurations
that yielded the most timeouts in the VNN competition, i.e.,
the presumably most challenging problem instances.

Lastly, we included two benchmarks from the VNN Com-
petition that consider the more complex CIFAR-100 and
Tiny ImageNet datasets. For both datasets, we chose the
medium-size models for our evaluation. With this collec-
tion of networks and benchmarks, we ensured to include in-
stances that have been studied extensively in the literature
and that are challenging to solve by state-of-the-art verifi-
cation tools. We give an additional overview of the selected
networks along with their source, training method and spe-
cific verification property in the supplementary material.

Evaluation Setup
First, we collected all performance data and feature values
by running the verification tools and saving the result of
the verification query, the consumed running time and the
values of the considered instance features during the ver-
ification procedure. In Table 1, we report the number of
solved instances and the running time for each verification
tool and benchmark. Missing values indicate that the bench-
marks could not be used with the respective verification tools
due to unsupported network architectures.

We then evaluated our method by simulating it on the col-
lected data. Generally, we conducted our method indepen-
dently for each benchmark and verification system, follow-
ing a 5-fold cross validation protocol. To ensure that our
training and testing sets were representative, we included
in each fold the same proportion of verification instances
solved before the first checkpoint, after the first checkpoint
and unsolved instances; however, we only report metrics on

instances that ran beyond the first checkpoint, as otherwise,
we would predict timeouts after the instance has already
been solved.

We evaluated the performance of our method in terms of
accuracy, true positive rate (TPR) and false positive rate
(FPR). The TPR reflects the fraction of correctly classified
timeouts out of all unsolved instances while the FPR indi-
cates the fraction of solved instances wrongly classified as
timeouts out of all solved instances. On the convolutional
networks for αβ-CROWN, some folds did not include true
negatives or true positives. If these folds were used as the
holdout set, we excluded them when computing the average
TPR and FPR. In addition, we also compared our method
to the standard verification procedure in terms of the over-
all number of solved instances (including those completed
before the first checkpoint) and the required running time.

We conducted additional experiments, in which we ex-
amined and validated the relevance of our proposed instance
features through a Shapley value analysis and a feature abla-
tion study. Moreover, we conducted experiments for differ-
ent choices of θ and assessed whether our features could also
be used to predict running times in a regression scenario. We
present the results of these experiments in the supplementary
material.

Hyperparameter Configuration. To run the verification
algorithms, we used the configurations provided by the re-
spective authors for their entries in the VNN Competi-
tions. We chose a maximum running time of 600 seconds in
wall-clock time per instance (tcutoff = 600s) and predicted
whether the instance will be solved within the remaining
time budget every 10 seconds (tfreq = 10s). Lastly, we set
the decision threshold θ to 0.99 to ensure that our method
solves as many instances as possible.

Results and Discussion
In the following, we present results from our experimental
evaluation of our dynamic algorithm termination method for
the various verification algorithms we considered, and we

αβ-CROWN VeriNet Oval

Benchmark Running Time
[GPU hours] # Solved Running Time

[GPU hours] # Solved Running Time
[GPU hours] # Solved

5 100 21.97 (70%) 868 (±0) 18.81 (28%) 576 (-4) 7.88 (9%) 430 (±0)
8 100 17.86 (43%) 766 (-1) 16.75 (22%) 500 (-1) 3.57 (4%) 386 (-1)
Conv Big 1.01 (68%) 918 (±0) 5.48 (49%) 868 (±0) 6.36 (41%) 841 (-1)
Conv Small 1.00 (80%) 969 (-10) 11.30 (94%) 931 (±0) 6.08 (100%) 958 (±0)
ResNet 2B 4.30 (28%) 619 (±0) 10.45 (46%) 576 (±0) - -

Marabou 2.47 (5%) 192 (-1) 6.36 (12%) 168 (-8) 4.97 (9%) 185 (-2)
Oval21 7.57 (15%) 207 (-3) 15.04 (26%) 155 (-3) 10.02 (19%) 199 (-2)
ViT 1.94 (5%) 251 (±0) - - - -
SRI ResNet A 3.86 (7%) 197 (-1) 8.71 (14%) 133 (±0) - -
CIFAR-100 4.91 (20%) 360 (-1) 19.52 (49%) 279 (±0) - -
Tiny ImageNet 4.54 (31%) 421 (±0) 19.4 (66%) 354 (-2) - -

Table 3: Results for dynamic termination of verification queries with θ = 0.99. We display the running time and the number of
solved instances accumulated over five folds. In parentheses, we provide the fraction of running time used and the difference in
the number of solved instances compared to the standard verification procedure.

show how our approach can be leveraged to allocate avail-
able resources more efficiently by terminating instances that
will result in timeouts earlier in the verification process.

Classification Metrics. We report the classification met-
rics of our proposed method in Table 2 as averages over all
five folds. We obtained very high TPR scores while main-
taining a FPR close to 0 for most verifiers and benchmarks.
Concretely, on average, our classifier correctly identified
84% of timeouts while incorrectly classifying 5% of solv-
able instances. Noticeably, across all verifiers, there were
several benchmarks with TPRs above 90% and FPRs of al-
most zero. Lower TPR scores on the Conv Big and Conv
Small benchmarks were due to the relatively small num-
ber of timeouts occurring in these benchmarks, leading to
a lack of training examples for this class. Similarly, we ob-
served higher FPR scores for the Marabou benchmark. This
is likely due to the small number of queries solved after the
first checkpoint, again resulting in less diverse training data.

Dynamic Algorithm Termination. We display the results
of our method in terms of total cumulative running time
and number of solved instances aggregated over all folds for
each benchmark and verifier in Table 3.

Most importantly, we obtained substantial speed-ups,
while only a small amount of solvable instances was termi-
nated prematurely. On average, our approach solved compa-
rably many instances in 36% of the original running time.
Notably, the largest acceleration occurred on the Marabou
benchmark, where up to 95% of the standard running time
could be saved. However, we also observed moderate penal-
ties in terms of the absolute difference of solved instances
for the Marabou benchmark on VeriNet and the Conv Small
benchmark on αβ-CROWN, due to the reasons stated ear-
lier. Moreover, on several benchmarks, all solvable instances
were certified using substantially reduced running time; e.g.,
the 5 100 benchmark for Oval and αβ-CROWN or the
ResNet A benchmark for VeriNet.

Overall, we found that our approach substantially accel-

erates neural network verification across several verification
algorithms and a broad range of benchmarks.

Conclusions and Future Work
In this study, we have, for the first time, shown that the
computational resources demanded by neural network ro-
bustness verification can be greatly reduced by identifying
and terminating runs on verification instances that will not
be solved within their remaining time budget. Concretely,
we showed that our method accelerates the verification pro-
cedure by 64% on average compared to the current state-of-
the-art approach across a diverse set of benchmarks from the
verification literature, while certifying a comparable number
of instances. To predict whether an instance will be solved,
we leveraged running time prediction techniques that em-
ploy novel static and dynamic features capturing both char-
acteristics of the verification instance as well as features re-
lated to the internal operations of the given verifier.

The success of the proposed method was enabled by sev-
eral design decisions. First, we leveraged the evolving na-
ture of our dynamic features by regularly predicting time-
outs throughout the verification procedure. Moreover, we in-
cluded a confidence parameter θ that controls the threshold
the prediction value of the timeout class must exceed before
an instance is terminated. Using this parameter, a user can
adjust the method to either prioritise savings in compute re-
sources or a higher number of solved instances. We show
that for a high value of θ our method substantially accel-
erates the verification procedure while solving comparably
many instances as the standard verification.

In future work, we seek to extend our approach to further
BaB-based verification approaches (e.g., MN-BaB). Further-
more, we plan to investigate if our proposed features could
be applied in other contexts, such as algorithm selection or
satisfiability prediction. Lastly, we are interested in further
studying the running time prediction capabilities of our fea-
tures, possibly enabling empirical scaling models of BaB-
based verification.

Acknowledgments
This research was partially supported by TAILOR, a project
funded by EU Horizon 2020 research and innovation pro-
gram under GA No. 952215. HH gratefully acknowledges
support through an Alexander-von-Humboldt Professorship
in Artificial Intelligence. Simulations were performed with
computing resources granted by RWTH Aachen University
under project thes1552. The authors would like to thank
Anja Jankovic, Annelot Bosman, Hadar Shavit and Jan van
Rijn for insightful discussions and helpful feedback. Fur-
thermore, the authors thank the reviewers for their valuable
comments.

References
Anderson, R.; Huchette, J.; Ma, W.; Tjandraatmadja, C.; and
Vielma, J. P. 2020. Strong mixed-integer programming for-
mulations for trained neural networks. Mathematical Pro-
gramming, 183(1-2): 3–39.
Bak, S.; Liu, C.; and Johnson, T. 2021. The Second In-
ternational Verification of Neural Networks Competition
(VNN-COMP 2021): Summary and Results. arXiv preprint
arXiv:2109.00498.
Brix, C.; Bak, S.; Liu, C.; and Johnson, T. T. 2023. The
Fourth International Verification of Neural Networks Com-
petition (VNN-COMP 2023): Summary and Results. arXiv
preprint arXiv:2312.16760.
Bunel, R.; Lu, J.; Turkaslan, I.; Torr, P. H.; Kohli, P.; and
Kumar, M. P. 2020. Branch and Bound for Piecewise Linear
Neural Network Verification. Journal of Machine Learning
Research, 21(42): 1–39.
De Palma, A.; Behl, H. S.; Bunel, R.; Torr, P.; and Kumar,
M. P. 2021a. Scaling the Convex Barrier with Active Sets. In
Proceedings of the 9th International Conference on Learn-
ing Representations (ICLR 2021), 1–27.
De Palma, A.; Behl, H. S.; Bunel, R.; Torr, P. H.; and Kumar,
M. P. 2021b. Scaling the convex barrier with sparse dual
algorithms. arXiv preprint arXiv:2101.05844.
De Palma, A.; Bunel, R.; Desmaison, A.; Dvijotham, K.;
Kohli, P.; Torr, P. H.; and Kumar, M. P. 2021c. Improved
Branch and Bound for Neural Network Verification via La-
grangian Decomposition. arXiv preprint arXiv:2104.06718.
Ferrari, C.; Mueller, M. N.; Jovanović, N.; and Vechev, M.
2022. Complete Verification via Multi-Neuron Relaxation
Guided Branch-and-Bound. In Proceedings of the 10th In-
ternational Conference on Learning Representations (ICLR
2022), 1–15.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.;
Blum, M.; and Hutter, F. 2015. Efficient and Robust Auto-
mated Machine Learning. In Advances in Neural Informa-
tion Processing Systems 28 (NeurIPS 2015), 2962–2970.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Ex-
plaining and Harnessing Adversarial Examples. In 3rd In-
ternational Conference on Learning Representations, (ICLR
2015), 1–11.
Henriksen, P.; and Lomuscio, A. 2020. Efficient Neural Net-
work Verification via Adaptive Refinement and Adversarial

Search. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI 2020), 2513–2520.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm Runtime Prediction: Methods & Evaluation. Ar-
tificial Intelligence, 206: 79–111.
Julian, K. D.; Kochenderfer, M. J.; and Owen, M. P. 2019.
Deep Neural Network Compression for Aircraft Collision
Avoidance Systems. Journal of Guidance, Control, and Dy-
namics, 42(3): 598–608.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Proceedings of the
29th International Conference on Computer Aided Verifica-
tion (CAV 2017), 97–117.
Kerschke, P.; Hoos, H. H.; Neumann, F.; and Trautmann, H.
2019. Automated Algorithm Selection: Survey and Perspec-
tives. Evolutionary Computation, 27(1): 3–45.
König, M.; Bosman, A. W.; Hoos, H. H.; and van Rijn, J. N.
2024. Critically Assessing the State of the Art in Neural Net-
work Verification. Journal of Machine Learning Research,
25(12): 1–53.
König, M.; Hoos, H. H.; and van Rijn, J. N. 2024. Accelerat-
ing Adversarially Robust Model Selection for Deep Neural
Networks via Racing. In Proceedings of the 38th AAAI Con-
ference on Artificial Intelligence (AAAI-24), 1–9.
Lundberg, S. M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin,
J. M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; and
Lee, S.-I. 2020. From local explanations to global under-
standing with explainable AI for trees. Nature Machine In-
telligence, 2(1): 2522–5839.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In Proceedings of 6th Inter-
national Conference on Learning Representations (ICLR
2018). OpenReview.net.
Mirman, M.; Gehr, T.; and Vechev, M. T. 2018. Differen-
tiable Abstract Interpretation for Provably Robust Neural
Networks. In Proceedings of the 35th International Con-
ference on Machine Learning (ICML 2018), 3575–3583.
PMLR.
Müller, M. N.; Brix, C.; Bak, S.; Liu, C.; and Johnson, T. T.
2022a. The Third International Verification of Neural Net-
works Competition (VNN-COMP 2022): Summary and Re-
sults. arXiv preprint arXiv:2212.10376.
Müller, M. N.; Makarchuk, G.; Singh, G.; Püschel, M.; and
Vechev, M. 2022b. PRIMA: General and Precise Neural
Network Certification via Scalable Convex Hull Approxi-
mations. In Proceedings of the 6th ACM on Programming
Languages (POPL), 1–33.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.

Singh, G.; Ganvir, R.; Püschel, M.; and Vechev, M. 2019a.
Beyond the Single Neuron Convex Barrier for Neural Net-
work Certification. In Advances in Neural Information Pro-
cessing Systems 32 (NeurIPS 2019), 15098—-15109.
Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. 2019b.
An Abstract Domain for Certifying Neural Networks. In
Proceedings of the 3rd ACM on Programming Languages
(POPL 2019), 1–30.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing prop-
erties of neural networks. In Proceedings of the 2nd In-
ternational Conference on Learning Representations (ICLR
2014), 1–10.
Tjeng, V.; Xiao, K. Y.; and Tedrake, R. 2019. Evaluating Ro-
bustness of Neural Networks with Mixed Integer Program-
ming. In Proceedings of the 7th International Conference
on Learning Representations (ICLR 2019), 1–21.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018. Formal Security Analysis of Neural Networks using
Symbolic Intervals. In Proceedings of the 27th USENIX Se-
curity Symposium (USENIX Security 18), 1599–1614.
Wang, S.; Zhang, H.; Xu, K.; Lin, X.; Jana, S.; Hsieh, C.-
J.; and Kolter, J. Z. 2021. Beta-CROWN: Efficient Bound
Propagation with Per-neuron Split Constraints for Neural
Network Robustness Verification. In Advances in Neural
Information Processing Systems 34 (NeurIPS 2021), 29909–
29921.
Wong, E.; and Kolter, J. Z. 2018a. Provable Defenses
against Adversarial Examples via the Convex Outer Adver-
sarial Polytope. In Proceedings of the 35th International
Conference on Machine Learning (ICML 2018), 5283–5292.
PMLR.
Wong, E.; and Kolter, Z. 2018b. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. In International conference on machine learning,
5286–5295. PMLR.
Xu, K.; Zhang, H.; Wang, S.; Wang, Y.; Jana, S.; Lin, X.;
and Hsieh, C.-J. 2021. Fast and Complete: Enabling Com-
plete Neural Network Verification with Rapid and Massively
Parallel Incomplete Verifiers. In Proceedings of the 9th In-
ternational Conference on Learning Representations (ICLR
2021), 1–15.
Zhang, H.; Chen, H.; Xiao, C.; Gowal, S.; Stanforth, R.; Li,
B.; Boning, D. S.; and Hsieh, C. 2020. Towards Stable and
Efficient Training of Verifiably Robust Neural Networks. In
Proceedings of the 8th International Conference on Learn-
ing Representations (ICLR 2020). OpenReview.net.
Zhang, H.; Weng, T.-W.; Chen, P.-Y.; Hsieh, C.-J.; and
Daniel, L. 2018. Efficient Neural Network Robustness Cer-
tification with General Activation Functions. In Advances in
Neural Information Processing Systems 31 (NeurIPS 2018),
4944—-4953.

Selected Benchmarks
In Table 4, we give an overview of the benchmarks used in
our study, including with their origin, their architecture, the
dataset they were trained on, their training method and the ϵ
value of the l∞ robustness property.

When the benchmark included multiple networks, we
only chose one network to run our experiments on and pro-
vide its name in the overview. We always selected the net-
work that yielded the highest number of unsolved instances
in the VNN Competition, i.e., the presumably most chal-
lenging network.

The adversarial training methods employed to train the se-
lected networks include training with PGD loss (Madry et al.
2018), DiffAI training (Mirman, Gehr, and Vechev 2018)
and the certified training method by Wong and Kolter (Wong
and Kolter 2018a). Finally, the large ResNets trained on
CIFAR-100 and Tiny ImageNet employ a mixture of PGD
and CROWN-IBP (Zhang et al. 2020) loss to make them
easier to verify despite their large scale (Müller et al. 2022a).

For the benchmarks taken from the VNN competitions
(Brix et al. 2023; Müller et al. 2022a; Bak, Liu, and John-
son 2021), we followed the selection procedure employed
by the organisers to craft the competition instances. We give
a brief explanation of the respective selection criteria in the
following.

Marabou. Instances are randomly sampled from the cor-
rectly classified images in the test set. The property to be
verified considers targeted robustness, i.e., it asserts that an
input x with correct class y is not misclassified as class y+1
mod 10 under l∞ perturbations with ϵ = 0.012.

Oval21. Again, the authors considered inputs sampled
randomly from the correctly classified test set images. The
verification property asserts that inputs are not misclassified
as any other class for l∞ perturbations, i.e., untargeted ro-
bustness properties. To choose ϵ values that are challenging
to verify, the instance selection procedure employs binary
search to find an ϵ for which both adversarial attacks and
incomplete verification methods fail to obtain a result.

ViT. For this benchmark, correctly classified images from
the test set are verified against untargeted l∞ robustness
properties with ϵ = 1

255 . However, the benchmark does
not consider instances that can be solved using incomplete
bounding methods or adversarial attacks.

SRI ResNet. This benchmark again considers correctly
classified images from the test set. To choose ϵ, a bisection
search is employed to find the smallest ϵ for which an adver-
sarial attack can find a counter-example (with a maximum
ϵ value of 0.005). The verification property then asserts that
inputs are correctly classified for input perturbations within
the l∞ norm ball with a radius of 0.7 times the previously
found ϵ.

Large ResNets. Finally, in the Large ResNets benchmark
correctly classified images from the respective test sets are
verified against untargeted l∞ robustness properties with
ϵ = 1

255 . However, only instances for which an adversarial

Training Time

0.14

0.16

0.18

0.20

0.22

0.24

W
al

l-C
lo

ck
 T

im
e

[s
]

Figure 1: Training time distribution for the random forest
classifier utilised in our method. We include all training runs
required for our evaluation, i.e., one training run per check-
point for each verification system and benchmark.

attack and an incomplete bound propagation method cannot
provide a result are selected.

Classifier Training Time
We trained the random forest classifiers used to predict
whether verification instances are solvable or unsolvable
within the remaining time budget on a compute node
equipped with an AMD EPYC 7543 32-Core Processor and
1TB of memory. Each training process utilised one core.
On average, training required 0.1637 seconds of wall-clock
time, with a maximum of 0.2368 seconds. We display the
distribution of training times aggregated over all verification
systems and benchmarks in Figure 1. These results demon-
strate the low computational demands of our method. More-
over, the training process is sufficiently fast to allow for the
retraining of classifiers between checkpoints. This opens up
the possibility of dynamically collecting additional data dur-
ing verification process and updating the classifiers, poten-
tially improving classification performance further.

Feature Importance Study
To analyse and assess the importance of each of our pro-
posed features that aim to capture the running time be-
haviour of BaB-based neural network verification, we con-
ducted a Shapley value analysis as well as a feature ablation
study.

Shapley values stem from game theory, where, given a
coalitional game, they quantify each player’s contribution to
the total reward generated by the whole coalition. Regarding
the interpretability of machine learning systems, and more
specifically tree-based models, Shapley values are used to
assess the impact of each feature on individual predictions
(Lundberg et al. 2020).

We calculated the Shapley value of each of our novel fea-
tures for every prediction made during the execution of our

method. More specifically, we give the Shapley values of
all predictions made by each classifier Ct at checkpoint t
and, thus, did not consider instances that were terminated or
solved prior to t seconds. We visualise the resulting Shap-
ley values in Figures 3, 4 and 5 for each verification system
included in our study.

In addition, we conducted a feature ablation study. This
involved re-running all experiments presented in the main
paper while excluding one feature at a time. By comparing
the performance of the method with and without the con-
sidered feature, we could assess its importance. When the
exclusion of the feature led to worse results, it is important
for our method; if no substantial change occurred, the fea-
ture is unimportant. Due to their extensiveness, we provide
the detailed results of this study in the code appendix.

Results
In the following, we give the results of our feature impor-
tance study for each of the considered verification systems.

Notice, that only Oval optimises the upper bound of the
verification problem during BaB and the incomplete bound-
ing step, while VeriNet only does so within the initial error-
based bounding. αβ-CROWN however does not optimise
the upper bound besides running an adversarial attack which
all considered verification systems carry out. Therefore,
slight differences exist in the feature sets of the verification
systems.

For αβ-CROWN, we found that, overall, the dynamic fea-
tures that aim to capture the characteristics of the BaB tree
were most important for our method. More specifically, the
current number of domains, the number of visited domains
and the current global lower bound of the BaB tree were
the most relevant features. In our feature ablation study, we
observed that the removal of those features led to substan-
tially higher running times required by our method. Other
features of the BaB tree such as the ratio of verified domains
and its current depth held less importance, both regarding
their Shapley values and the feature ablation study. While
the bounds obtained by the incomplete verification meth-
ods and adversarial attacks were not influential during the
later stages of the verification process, it showed that they
were used by our method for predictions at earlier check-
points. Furthermore, we found that those features were of
paramount importance for our method when αβ-CROWN
employed MIP refinement on the smaller 5 100 and 8 100
networks. The removal of those features, especially the ad-
versarial attack margin, led to increased running times and
a smaller number of solved instances in our feature ablation
study. Less important features included the prediction mar-
gin, which gives a simple upper bound of the verification
problem and, thus, captures the likelihood of an adversar-
ial attack succeeding. We suppose that these qualities of the
verification problem are better captured by the adversarial
attack margin which gives a tighter upper bound. Regarding
the number of unstable neurons, i.e., the maximum depth of
the BaB tree, we suppose that its minor importance stemmed
from the chosen maximum running time that did not suffice
to explore the complete BaB tree. Lastly, we found that the
inclusion of timing features was relevant to our method too,

especially the computation time taken for the last completed
batch.

For VeriNet, we also found that the dynamic branch char-
acteristics, most importantly the number of bounded do-
mains and the ratio of verified domains, were the most rel-
evant features for the predictions made by the classification
models. This observation was reinforced by our feature ab-
lation study where the removal of those features led to worse
results in terms of running times and the number of solved
instances. The features yielded by the incomplete methods
and the initial number of safe constraints were of lesser im-
portance overall but impacted the predictions in the early
stages of the verification procedure. Additionally, the pre-
diction margin was an important feature for VeriNet in com-
parison to the other verification systems considered, which,
we suppose, is due to the relatively weak adversarial attack
that VeriNet employs. Again, we suppose that the number of
unstable neurons had little importance since Verinet could
not build the complete BaB tree within the allotted compute
budget.

Lastly, we obtained similar results for the Oval verifica-
tion system, where the dynamically captured BaB tree char-
acteristics were most important overall. Especially, the total
number of domains, the number of bounded domains and
the depth of the BaB tree impacted the predictions strongly.
Regarding the conducted feature ablation study, our method
also required a substantially larger computational budget
when removing those features. Again, we found that the
bounds obtained from the incomplete methods were only
important during the early stages of the verification runs.
However, the number of GPU batches as well as the tim-
ing features impacted the predictions of the classification
models strongly. We suppose that this is due to drastically
varying compute times per batch, i.e., batches taking sub-
stantially longer later in the verification procedure. We only
observed this behaviour for Oval, and, thus, attribute the in-
creased importance of those features to the larger compute
required for later GPU batches.

Overall, our analysis revealed that all of our novel fea-
tures impacted the predictions of our classification models.
Primarily, BaB tree characteristics were the most impor-
tant features across all considered verification systems and
benchmarks. However, the importance of some features dif-
fered strongly between the considered verification systems
and benchmarks. For example, for Oval, the number of GPU
batches is an important feature while it was less important to
model the running time of αβ-CROWN. Similarly, the pre-
diction margin was substantially more important in predict-
ing unsolvable instances on VeriNet than on any of the other
verification systems. Additionally, the features that capture
the results of the incomplete verification methods were im-
portant only during the beginning of the verification proce-
dure for most verification systems and benchmarks but were
the most influential features when αβ-CROWN employed
MIP refinement.

Behaviour for different Choices of θ
To demonstrate that our method can substantially accel-
erate neural network verification while solving compara-
bly many verification instances in comparison to the cur-
rent state of the art, we set θ to 0.99. To further explore
the trade-off between verification speed and the number of
solved instances and to guide users in selecting an appropri-
ate value of θ, we provide a study of the behaviour of our
method across different choices of θ in the following sec-
tion. Therefore, we ran our experiments for every choice
of θ between 0.5 and 0.99 with a step size of 0.01 (i.e,
for θ ∈ {0.5, 0.51, 0.52, ..., 0.98, 0.99}). Based on these re-
sults, we display the needed running time and the number of
solved instances as averages over all benchmarks against the
different choices of θ in Figure 2.

Perhaps unsurprisingly, we found that both, the number of
solved instances and the needed running time, increase when
the threshold parameter θ is increased. However, the num-
ber of solved instances increased linearly while the running
time requirements showed an exponential increase. Given
these observations, we provide detailed results for two addi-
tional choices of θ. By choosing θ = 0.5, a user can roughly
assess the robustness of a given network as fast as possi-
ble at the cost of less solved instances. In addition, we pro-
vide results for θ = 0.9, since for this value our method
solves substantially more instances per benchmark while not
suffering too much from the exponential running time in-
crease. Thus, this hyperparameter choice represents a com-
promise between relatively low running time requirements
and a higher number of solved instances. We provide the re-
sults for these additional values of θ in Table 5.

Running Time Regression
In this section, we present our results from experiments on
the running time regression task; these are shown in Table 6.
Additionally, we visualise the performance of the regression
model for all benchmarks and supported verifiers in Fig-
ure 6.

In this experiment, we predicted the running times of the
verification instances only once at the first checkpoint, i.e.,
after ten seconds. Here, we did not employ a classification
model but a random forest regression model with 200 trees.
Again, we employed the sklearn (Pedregosa et al. 2011)
implementation with standard hyperparameter choices. For
training, we followed the same protocol used in our pro-
posed method but trained the regressor on the running times
of the training instances. We evaluated the capabilities of our
running time regressor in a five fold cross validation, ensur-
ing that each fold includes the same proportion of instances
solved during feature collection, solved after feature collec-
tion and unsolved instances.

We evaluated our results using the root mean squared er-
ror (RMSE), the R2 score (R2) and the Spearman rank cor-
relation (ρ). Recall that ρ describes the Pearson correlation
between the ranks of the observations of two variables. Thus,
this metric is particularly well suited to evaluate running
time prediction as it reaches a value of 1 if the predictions
have the same order as the true values and does not penalise

minor imprecision. Furthermore, we excluded instances that
were solved before the first checkpoint from the evaluation.
Notice that on the Conv Big benchmark for αβ-CROWN,
all test set instances contained in some of the folds that ran
beyond the feature collection phase were unsolvable. There-
fore, the true running times were constant and, thus, ρ was
undefined. While calculating the average of ρ, we excluded
these undefined values.

We observed that our running time prediction approach
yielded best results on the fully-connected 5 100 and 8 100
benchmarks. While the prediction quality decreased slightly
to moderately on most other benchmarks, the convolutional
networks trained on MNIST and the Marabou benchmark
remained the most challenging.

When comparing prediction performance between differ-
ent systems, we found predictions for αβ-CROWN the most
accurate. Furthermore, we found that the quality of the pre-
diction often correlated with the number of instances solved
after the feature collection phase. This is because the more
instances were solved after this phase, the more diversity in
running time could be observed. For example, the verifiers
only solved 11 to 15 instances after the first checkpoint on
the Marabou benchmark, while most instances were either
solved very quickly or not at all. Nevertheless, we found that
this correlation is not ultimately decisive; e.g., on the Conv
Big benchmark Oval and αβ-CROWN only solved 19 and
1 instances after the feature collection phase, respectively,
while VeriNet solved 70 instances in that time frame. How-
ever, we also observed poor predictions for VeriNet on this
benchmark.

We assume that the generally lower prediction quality
on VeriNet can be partly explained by its underlying error-
based bound propagation approach, which might be more
difficult to model using our features than other bound prop-
agation methods. Additionally, on both Oval and VeriNet,
substantially more timeouts occurred; hence, there were
fewer observations to train on.

Overall, we found that the best results across all exper-
iments and verifiers were achieved on the 5 100 and 8 100
benchmarks for αβ-CROWN. Notice that on these bench-
marks, αβ-CROWN employed MIP refinement during the
first 40% of its time budget, i.e., during the first 240 sec-
onds. Therefore, we assume that MIP refinement seems to
be modelled exceptionally well by our instance features.

While these results are promising, they did not generalise
well enough for meaningful application. However, we hope
these results motivate future work that further investigates
running time regression for neural network verification.

Benchmark Network Dataset Architecture ϵ
Training
Procedure Source

5 100 - MNIST fully connected 0.026 natural ERAN
8 100 - MNIST fully connected 0.026 natural ERAN
Conv Small - MNIST CNN 0.12 natural ERAN
Conv Big - MNIST CNN 0.3 DiffAI ERAN
ResNet 2B - CIFAR-10 ResNet 2

255
PGD, 2

255
αβ-CROWN

Marabou cifar10_small CIFAR-10 CNN 0.012 natural VNN Competition
Oval21 cifar_wide_kw CIFAR-10 CNN variable ϵ Wong&Kolter, ϵ = 2

255
VNN Competition

ViT PGD_2_3_16 CIFAR-10 ViT 1
255

PGD, ϵ = 2
255

VNN Competition
SRI ResNet ResNet A CIFAR-10 ResNet variable ϵ PGD VNN Competition

Large ResNets ResNet-medium CIFAR-100 ResNet 1
255

PGD + CROWN-IBP,
ϵ = 1

255

VNN Competition

Large ResNets ResNet-medium Tiny ImageNet ResNet 1
255

PGD + CROWN-IBP,
ϵ = 1

255

VNN Competition

Table 4: Overview of the selected benchmarks used in our study. For each benchmark, we give the dataset the network was
trained on, its architecture, the ϵ value that defines the maximum allowed change in the input, the procedure used to train the
network (i.e., natural training or the training protocol used to make the network more robust against adversarial attacks) and the
source that first proposed each benchmark. The sources of the benchmarks include the ERAN repository (Müller et al. 2022b;
Singh et al. 2019a), αβ-CROWN (Wang et al. 2021) and the VNN competitions (Brix et al. 2023; Müller et al. 2022a; Bak, Liu,
and Johnson 2021). When the benchmark includes multiple networks, we also give the name of the selected network. Regarding
the verification properties, we give the radius ϵ of the l∞ norm-ball that defines the allowed change in the input or state that ϵ
was chosen differently for each input according to the VNN Competition instance selection procedure.

0.5 0.6 0.7 0.8 0.9 1.0

512

514

516

518

520

522

524

#
 S

ol
ve

d
In

st
an

ce
s

Avg. Running Time
Avg. # Solved Instances

3.5

4.0

4.5

5.0

5.5

6.0

6.5

R
un

ni
ng

 T
im

e
[G

PU
 h

]

(a) αβ-CROWN

0.5 0.6 0.7 0.8 0.9 1.0

430

435

440

445

450

455

#
 S

ol
ve

d
In

st
an

ce
s

Avg. Running Time
Avg. # Solved Instances

2

4

6

8

10

12

R
un

ni
ng

 T
im

e
[G

PU
 h

]

(b) VeriNet

0.5 0.6 0.7 0.8 0.9 1.0

486

488

490

492

494

496

498

500

#
 S

ol
ve

d
In

st
an

ce
s

Avg. Running Time
Avg. # Solved Instances

2

3

4

5

6

R
un

ni
ng

 T
im

e
[G

PU
 h

]

(c) Oval

Figure 2: We display the results of our method to dynamically terminate presumably unsolvable verification instances in terms
of running time and the number of solved instances for all choices of the confidence threshold parameter θ between 0.5 and
0.99 with step size 0.01. θ represents the confidence that the prediction for the timeout class must exceed at any checkpoint
such that an instance is terminated prematurely. For each choice of θ, we consider the average results over all benchmarks.

θ = 0.5

αβ-CROWN VeriNet Oval

Benchmark Running Time
[GPU hours] # Solved Running Time

[GPU hours] # Solved Running Time
[GPU hours] # Solved

5 100 15.13 (48%) 840 (−28) 3.29 (5%) 550 (−30) 2.28 (3%) 416 (−14)
8 100 10.25 (25%) 734 (−33) 2.26 (3%) 473 (−28) 1.88 (2%) 383 (−4)
Conv Big 0.17 (12%) 917 (−1) 1.81 (16%) 846 (−22) 0.77 (5%) 828 (−14)
Conv Small 0.91 (72%) 967 (−12) 3.09 (26%) 901 (−30) 2.42 (40%) 943 (−15)
ResNet 2B 0.75 (5%) 604 (−15) 1.15 (5%) 566 (−10) - -

Marabou 1.07 (2%) 188 (−5) 0.97 (2%) 162 (−14) 1.03 (2%) 176 (−11)
Oval21 1.79 (4%) 195 (−15) 1.58 (3%) 138 (−20) 1.70 (3%) 169 (−32)
ViT 0.94 (2%) 244 (−7) - - - -
ResNet A 1.64 (3%) 189 (−9) 1.46 (2%) 124 (−9) - -
CIFAR-100 1.02 (4%) 343 (−18) 1.79 (4%) 233 (−46) - -
Tiny ImageNet 1.43 (10%) 404 (−17) 3.92 (13%) 309 (−47) - -

θ = 0.9

αβ-CROWN VeriNet Oval

Benchmark Running Time
[GPU hours] # Solved Running Time

[GPU hours] # Solved Running Time
[GPU hours] # Solved

5 100 18.88 (60%) 864 (−4) 8.96 (13%) 569 (−11) 4.99 (5%) 428 (−2)
8 100 14.15 (34%) 760 (−7) 6.90 (9%) 494 (−7) 2.21 (2%) 386 (−1)
Conv Big 0.31 (21%) 917 (−1) 2.66 (24%) 867 (−1) 2.16 (14%) 838 (−4)
Conv Small 1.00 (80%) 969 (−10) 8.44 (71%) 930 (−1) 5.23 (86%) 957 (−1)
ResNet 2B 1.92 (13%) 618 (−1) 4.01 (18%) 576 (±0) - -

Marabou 1.69 (3%) 192 (−1) 2.21 (4%) 165 (−11) 1.63 (3%) 183 (−4)
Oval21 3.06 (6%) 205 (−5) 4.13 (7%) 150 (−8) 5.18 (10%) 192 (−9)
ViT 1.35 (3%) 249 (−2) - - - -
ResNet A 2.37 (5%) 196 (−2) 3.35 (5%) 132 (−1) - -
CIFAR-100 2.07 (8%) 356 (−5) 6.09 (15%) 268 (−11) - -
Tiny ImageNet 2.14 (15%) 418 (−3) 8.22 (28%) 349 (−7) - -

Table 5: Results for dynamic termination of verification queries with θ ∈ {0.5, 0.9}. We display the running time and the
number of solved instances accumulated over five folds. Those hyperparameters were chosen because they yielded the smallest
running times (θ = 0.5) and ,respectively, a good compromise between a substantially reduced running time and a high number
of solved instances (θ = 0.9). In parentheses, we provide the fraction of running time used and the difference in the number of
solved instances compared to the standard verification procedure.

αβ-CROWN VeriNet Oval

Benchmarks RMSE R2 ρ RMSE R2 ρ RMSE R2 ρ

5 100 0.17 0.88 0.95 0.18 0.85 0.74 0.11 0.67 0.47
8 100 0.20 0.87 0.93 0.15 0.81 0.66 0.09 0.60 0.32
Conv Big 0.63 -8.10 -0.37 0.59 0.28 0.59 0.48 -0.37 0.13
Conv Small 0.32 0.00 0.65 0.47 0.42 0.66 0.45 0.43 0.65
ResNet 2B 0.37 0.54 0.71 0.26 0.56 0.65 - - -

Marabou 0.18 -0.13 0.59 0.26 -0.21 0.15 0.22 -0.39 0.40
Oval21 0.29 0.56 0.64 0.22 0.62 0.60 0.21 0.76 0.64
ViT 0.26 0.59 0.62 - - - - - -
SRI ResNet A 0.17 0.79 0.75 0.10 0.78 0.64 - - -
CIFAR-100 0.26 0.80 0.75 0.39 0.66 0.74 - - -
Tiny-ImageNet 0.46 0.51 0.76 0.31 0.78 0.89 - - -

Table 6: Results for the running time regression task as averages over five folds in terms of root mean squared error (RMSE), R2
score (R2) and Spearman Rank Correlation (ρ), which is defined as the Pearson correlation between the ranks of observations
of two variables.

Figure 3: Shapley Values of all features our method employs to predict whether problem instances verified by αβ-CROWN will
be solved within the remaining compute budget. Each data point for each feature is associated with a prediction made by one
of the classifiers Ct employed in our method. We give the time t at which the classification model Ct is used through the data
point’s colour. Its position on the x axis corresponds to the absolute Shapley value of the feature, i.e., its contribution to the
prediction of the classifier. Larger Shapley values indicate a higher feature importance. Additionally, we display boxplots that
show the distribution of each feature over all predictions made at any point in time.

Figure 4: Shapley Values of all features our method employs to predict whether problem instances verified by VeriNet will be
solved within the remaining compute budget. Each data point for each feature is associated with a prediction made by one of
the classifiers Ct employed in our method. We give the time t at which the classification model Ct is used through the data
point’s colour. Its position on the x axis corresponds to the absolute Shapley value of the feature, i.e., its contribution to the
prediction of the classifier. Larger Shapley values indicate a higher feature importance. Additionally, we display boxplots that
show the distribution of each feature over all predictions made at any point in time.

Figure 5: Shapley Values of all features our method employs to predict whether problem instances verified by Oval will be
solved within the remaining compute budget. Each data point for each feature is associated with a prediction made by one of
the classifiers Ct employed in our method. We give the time t at which the classification model Ct is used through the data
point’s colour. Its position on the x axis corresponds to the absolute Shapley value of the feature, i.e., its contribution to the
prediction of the classifier. Larger Shapley values indicate a higher feature importance. Additionally, we display boxplots that
show the distribution of each feature’s Shapley values.

αβ-CROWN VeriNet Oval

5
1
0
0

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

8
1
0
0

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Figure 6: Scatter plots of the predictions yielded by our running time regression approach (see Appendix) against true running
times. Each row corresponds to a benchmark and each column corresponds to a verifier. Missing plots are due to incompatibil-
ities between the verification systems and the respective network architectures. Each data point represents a problem instance
where its position on the x axis indicates its true running time and its position on the y axis indicates the running time predicted
by our regression model. Both axes are in log10 scale. We additionally display a diagonal line that constitutes the ideal case
where predicted and true running times are equal. The vertical line in each plot indicates the point in time until features were
collected. Therefore, meaningful running time prediction can only be performed for instances that lie to the right of that line.

αβ-CROWN VeriNet Oval
C
o
n
v

B
i
g

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

C
o
n
v

S
m
a
l
l

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

M
a
r
a
b
o
u

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

O
v
a
l
2
1

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Figure 6: (Continued)

αβ-CROWN VeriNet
R
e
s
N
e
t

2
B

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

S
R
I

R
e
s
N
e
t

A

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

C
I
F
A
R
-
1
0
0

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

T
i
n
y

I
m
a
g
e
N
e
t

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Figure 6: (Continued)

αβ-CROWN

V
i
T

10 3 10 2 10 1 100 101 102 103

True running time [GPU s]
10 3

10 2

10 1

100

101

102

103

Pr
ed

ic
te

d
ru

nn
in

g
tim

e
[G

PU
 s

]

Legend
Ideal
Feature Cutoff
UNSAT
SAT
Timeout

Figure 6: (Continued)

