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Abstract

The increasing use of deep learning across various
domains highlights the importance of understanding the
decision-making processes of these black-box models. Re-
cent research focusing on the decision boundaries of deep
classifiers, relies on generated synthetic instances in ar-
eas of low confidence, uncovering samples that challenge
both models and humans. We propose a novel approach
to enhance the interpretability of deep binary classifiers by
selecting representative samples from the decision bound-
ary — prototypes — and applying post-model explana-
tion algorithms. We evaluate the effectiveness of our ap-
proach through 2D visualizations and GradientSHAP anal-
ysis. Our experiments demonstrate the potential of the pro-
posed method, revealing distinct and compact clusters and
diverse prototypes that capture essential features that lead
to low-confidence decisions. By offering a more aggregated
view of deep classifiers’ decision boundaries, our work con-
tributes to the responsible development and deployment of
reliable machine learning systems.1

1. Introduction

Nowadays, Deep Learning (DL) models are broadly used
in various domains, but their lack of interpretability due to
their black-box nature poses a significant challenge [1]. Re-
cent efforts explore DL models’ decision-making processes,
particularly around decision boundaries, where models of-
ten struggle to make correct predictions. Research ini-
tiatives such as DeepDIG [12], GASTeN [2] and Am-
biGuess [26] study the decision boundary in a data-driven
way by generating borderline instances, i.e. synthetic low-
confidence examples, using techniques like Generative Ad-
versarial Networks (GANs) or Variational Auto-encoders
(VAEs). While many borderline instances consist of noisy
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Figure 1. Schematic overview of the proposed method for improv-
ing the decision boundary interpretability of the Model Under Test
by combining synthetic image generation and deep clustering.

data with patterns undetectable to the human eye, similar
to adversarial examples [25], prior work has shown that a
well-selected subset of such samples resembles genuinely
hard-to-classify images, even for humans [2, 26]. Building
on this, we propose a novel approach to enhance the inter-
pretability of deep binary classifiers by selecting represen-
tative samples from the decision boundary — prototypes —
and applying post-model explanation algorithms.

Our method, illustrated in Fig. 1, comprises four steps:
1. generate synthetic data near the decision boundary
with GASTeN; 2. detect patterns in these examples us-
ing UMAP [17] and Gaussian Mixture Models (GMM); 3.
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choose a representative prototype from each cluster; and
4. visualize the prototypes and the decision boundary us-
ing 2D space visualization and GradientSHAP [15]. We
empirically evaluated the method using three Convolutional
Neural Networks (CNN) of different complexity on binary
subsets of MNIST and Fashion-MNIST. Results show the
potential of the method, revealing distinct, compact clusters
and diverse prototypes that embody the features contribut-
ing to low-confidence decisions.

Ultimately, our method aims for a more responsible use
of AI models by supporting development and auditing. Dur-
ing development, it can spot potential model limitations by
identifying and explaining key examples the model strug-
gles with. Labelling and using these examples for further
training can improve the model through active learning or
data augmentation. These examples are also valuable for
developing models with a reject option [8] — good models
should refrain from predicting on these prototypes. More-
over, prototypes can support deployment by providing in-
formation about the data types for which a model is ex-
pected to make low-confidence predictions, serving as a
semi-automatic tool to generate model cards [19].

2. Related Work

2.1. Stress Testing Machine Learning Models

Stress testing is an evaluation process to assess system ro-
bustness, limitations, and overall performance under chal-
lenging conditions. When applied to ML models, it in-
volves testing models on adverse conditions, including out-
of-distribution [9], adversarial [6, 21] or ambiguous in-
puts solely for the model [2, 14] or both the model and
humans [26]. Recent work has explored model decision
boundaries to understand the limits of ML models. Weiss
et al. [26] generate ambiguous data points to train and test
DNN supervisors; Heo et al. [10] use samples near the
boundary for knowledge distillation; Liu et al. [14] and
Demir et al. [4] study the decision boundary to comprehend
models on safety-critical fields.

When considering only data-driven approaches, tech-
niques such as DeepDIG [12] and DeepBoundary [14] gen-
erate adversarial examples combined with binary search
to find the closest points to the decision boundary; Am-
biGuess [26] leverages autoencoders to target specific latent
space distributions; GASTeN [2] introduces a GAN-based
methodology that incorporates the output of a classifier as
part of the generator’s loss function; and Demir et al. [4]
combine state-of-the-art methods, including image transfor-
mations, GANs and adversarial attacks, followed by ML
models that select those with highest uncertainty.

Few studies explore how to use samples that fall within
a model’s low-confidence region for responsible AI. Demir
et al. [4] suggest using post-model explanations on error-

prone class samples, while Cunha et al. [2] incorporates
such samples into model cards.

2.2. Slice Discovery Methods

Slice discovery consists of methods that identify semanti-
cally meaningful subgroups within unstructured data, par-
ticularly where models perform poorly [7]. Our approach,
while similar, diverges by focusing on low-confidence in-
stances. These methods leverage deep clustering, a tech-
nique that uses neural networks to capture relevant input
features, followed by traditional clustering algorithms [18].

The slice discovery methods state-of-the-art show
numerous techniques for representing image data.
GEORGE [24] and PlaneSpot [20] extract the embed-
dings from the penultimate layer of their model, whereas
DOMINO [7] uses pre-trained embeddings, more specifi-
cally CLIP [22] and ConVIRT [28]. These methods then
fine-tune GMMs for clustering.

These methods employ dimensionality reduction when
facing challenges with high-dimensional data, such as inef-
ficient similarity measures [18] and the curse of dimension-
ality. DOMINO uses PCA with 128 components, PlaneSpot
opts for scvis [5] with 2 dimensions, and GEORGE selects
UMAP with 1 or 2 components based on the dataset. Given
that UMAP helps preserve the essential structure of the
data, combining UMAP with GMM, as seen in studies like
N2D [16], demonstrates that manifold learning techniques
can significantly improve clustering quality by considering
the local data structure.

3. Borderline Prototype Generation
Figure 1 summarizes the proposed method. The model that
is being subjected to the stress-test must be a deep binary
image classification, and it is referred to as the Model Un-
der Testing (MUT). First, we populate the decision bound-
ary by generating synthetic images close to the MUT deci-
sion boundary, i.e. our borderline instances. To that end, we
employ GASTeN, a GAN-based technique trained with the
MUT predictions, to approximate its decision boundary [2].
We chose GASTeN as it generates realistic challenging bor-
derline examples for a specific classifier. Then, we filter
the synthetic images using the Average Confusion Distance
(ACD) Cunha et al. [2], that measures the closeness of a
sample to the decision boundary. We filter the images by
ACD < 0.1 to ensure only low-confidence predictions. We
assess the quality of the borderline images by calculating
the Fréchet Inception Distance (FID) scores [11].

In our second step, we apply deep clustering to find pat-
terns in the borderline instances generated in the previous
step. To that end, we extract the high-level feature em-
beddings from the MUT’s penultimate layer. Then, we
apply UMAP for dimension reduction, followed by GMM
clustering to group visually similar images. We selected



this combination given the favourable findings in the lit-
erature review [7, 20, 24]. Particular hyperparameters are
tuned, considering the specific characteristics of the low-
confidence region, as we explain in Sec. 4.2. Finally, the
quality of the resulting clusters is assessed through the sil-
houette score [23] and the Davies-Bouldin index [3]. We
use these measures of cluster definition and separation to
ensure the formation of distinct and coherent groups.

In the third step, we select the medoid from each clus-
ter to represent the cluster. The medoid is calculated by
minimizing the sum of distances to all other objects in that
cluster. As a centrally located sample, it ensures a robust
representation of each identified pattern.

In the fourth step, we evaluate the representativeness of
the selected prototypes through visual inspection. Our goal
is to generate prototypes that demonstrate greater feature
diversity, more dispersed distribution across the 2D space,
and enhanced interpretability through GradientSHAP maps.
With this in mind, we train UMAP on the test set to capture
the structure of the original data. Then, we analyze the po-
sitioning of the prototypes within the 2D space created. For
an in-depth analysis of why these images are close to the
decision boundary, we use GradientSHAP — a technique
that explains the contribution of each pixel to the model’s
output by integrating gradients with SHAP values [15].

4. Experimental Setup
4.1. Dataset

We use MNIST [13] and Fashion-MNIST [27] datasets to
evaluate our method. We chose these datasets for their in-
terpretability without needing expert knowledge, simplicity
in size, and lack of color. We created binary subsets from
these datasets for binary classification, focusing on similar
concepts: 7 vs 1, 8 vs 0 and 5 vs 3 for MNIST and dress vs
top and sneaker vs sandal for Fashion-MNIST.

4.2. Model Architecture

To obtain more general conclusions, we evaluated MUTs
architectures of varying complexities. Following the GAS-
TeN study, we utilized a CNN architecture with two convo-
lutional blocks, where the complexity is adjusted by varying
the number of filters [2]. For the MNIST dataset, we tested
CNN models with 1, 2, and 4 filters, while for Fashion-
MNIST, we used 4, 8, and 16 filters.

To train GASTeN, we adapted its setup based on previ-
ous findings by Cunha et al. [2], tailoring its hyperparame-
ters towards our stress-testing objectives. Training GAS-
TeN required choosing two specific hyperparameters be-
yond the standard DCGAN parameters: the confusion dis-
tance weighting (α) and the pre-training epochs. The α
value critically influences GASTeN’s loss function, while
the pre-training duration affects image realism. Based

on the original authors’ suggestions, we opted for 5 pre-
training epochs for MNIST and 10 for Fashion-MNIST,
each with an α weight of 25. We determined GASTeN’s
optimal training duration by optimizing the FID-ACD min-
imization [2], leading to selecting 10 epochs for MNIST
and 15 for Fashion-MNIST. We generated 15,000 synthetic
images for each task.

For deep clustering, we optimized the silhouette score
using the Bayesian hyperparameter optimization method
with 25 iterations. With UMAP, we investigated the optimal
number of neighbours to balance local versus global data
structures. Given our focus on classifying similar concepts
and analyzing regions of low confidence, where features are
less distinct, our analysis prioritized local structures. There-
fore we explore a range of 5 to 25 neighbours. We also var-
ied the minimum distance between 0.01 and 0.25 to control
embedding compactness and set the components between
10 and 60 to ensure detailed clustering without losing crit-
ical information. For GMM, we varied the cluster count
from 3 to 15 to maintain a practical number of prototypes
for analysis. We also selected the covariance as full, as it
allows for each cluster to have its covariance matrix.

5. Results and Discussion
5.1. Synthetic Data Generation

We tested three MUTs on the five binary subsets, The
MNIST 5 vs 3 subset using a CNN with one filter attained
the lowest accuracy of 92.53%, while the 8 vs 0 subset with
a four-filter CNN reached the highest accuracy of 98.92%.

After training GASTeN for each classifier-dataset sub-
set combination, we generated 15,000 synthetic images and
subsequently filtered those with ACD < 0 .1 . This process
resulted in an average FID score increase of 250 points for
images near the decision boundary and an average 86% re-
duction in image count post-filtering. The significant FID
score rise and the substantial image count decrease after fil-
tering suggest GASTeN’s limited efficiency in generating
decision boundary-near samples.

During this process, we observed some correlation be-
tween the model complexity and GASTeN FID scores
(ρnf ,FID = 0 .52 ). We expected this outcome, as lower
classifier capacities lead to more challenging classifications,
resulting in less confident images. However, a contrary ex-
ample is our least accurate classifier, which produced real-
istic (low FID scores) synthetic images that were unrealistic
(high FID scores) near the decision boundary.

5.2. Finding Patterns in Ambiguity

With the resulting synthetic images from the previous
step, we optimized UMAP and GMM hyperparameters to
achieve the highest silhouette score. UMAP frequently se-
lect hyperparameters that highlight the local structure and



(a) Baseline (b) Prototypes

Figure 2. UMAP 2D space for MNIST 7 vs 1 and four-filter CNN.
The test set is marked by stars with 1 in red, and 7 in green. Black
pins indicate the prototypes or baseline positions.

preserve image ambiguity. GMM clustering resulted in ei-
ther a small (e.g. 3) or large (e.g. 15) number of clusters
without a discernible pattern.

Evaluation metrics indicated modest clustering quality,
including the silhouette score (0.26 — 0.52) and the Davies-
Bouldin Index (0.7 — 1.35) on the 15 classifier-dataset sub-
set pairs. These metrics suggest that while clusters are rea-
sonably distinct and compact. There is room for improve-
ment, possibly due to some overlap or sparseness in clus-
ters. The best performance occurred on the MNIST 7 vs 1
subset with a four-filter CNN and the poorest on the 5 vs 3
subset with a four-filter CNN.

We noticed a negative correlation between the quan-
tity of low-confidence images and the silhouette score
(ρ#images,SIL = −0 .62 ), indicating that fewer images gen-
erally lead to more effective clustering. We suspect this
could be due to noise in the generated images, suggest-
ing that exploring alternative dimensionality reduction and
clustering techniques could enhance our clustering results.

5.3. Selecting and Visualizing Prototypes

After clustering, we select the medoid of each cluster as our
prototype and assess its representativeness through a 2D vi-
sualization and with GradientSHAP. To illustrate the useful-
ness of the proposed method, we chose the best-performing
subset based on the silhouette score for this section analysis:
MNIST subset 7 vs 1 with four-filter CNN.

Figure 2 shows the distribution of prototypes versus the
baseline in the UMAP 2D space. In this example, we con-
clude that prototypes are more dispersed than the baseline
which even includes overlapping images.

Observing the baseline in Fig. 3a, two images appear re-
markably similar, likely those clustered together in the 2D
space, with a fourth image resembling noise. In contrast, in
Fig. 3b, the prototypes display distinct features, particularly
regarding rotation. We also note that all images lack part of
the seven’s upper section. We hypothesize that this feature
is an intrinsic attribute of the low-confidence region in this
MUT, and that the prototypes effectively capture it.

(a) Baseline (b) Prototypes

Figure 3. Selected images and the corresponding GradientSHAP
maps for MNIST 7 vs 1 and four-filter CNN. Features contributing
to the classification of 1 are red, and 7 are green.

GradientSHAP maps indicate that features leading to
classification as the positive class (7) include the top el-
bow and the middle line of the seven. On the other hand,
attributes favoring the negative class (1) typically relate to
pixels in the center of the image. Remarkably, these maps
also express uncertainty regarding the missing portion of
the seven’s upper section, validating our hypothesis that the
model has difficulty learning this feature.

6. Conclusions
In this work, we investigate borderline instances that con-
tain visual properties that make predictions complex, even
for humans. We study the impact of combining synthetic
image generation and deep clustering on the interpretability
of deep binary classifiers’ decision boundary.

Further research includes improving the generation of
ambiguous images, exploring other clustering and embed-
ding techniques for improved performance, and develop-
ing quantitative metrics to validate our prototypes statisti-
cally. Additionally, as we tested our approach on simplified
datasets, where it is possible to assess ambiguity visually,
the performance in complex scenarios needs to be assessed.

Nevertheless, we obtained promising results that show
that it is possible to uncover patterns in borderline images.
By visual inspection, we can study the representativeness
of our prototypes and the features associated with the low-
confidence region. Such insights are invaluable for auditing
machine learning models, identifying and mitigating poten-
tial weaknesses during development, or documenting the
limitations of classifiers in model cards upon deployment.
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