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ABSTRACT

Generating instances of different properties is key to algorithm

selection methods that differentiate between the performance of

different solvers for a given combinatorial optimization problem. A

wide range of methods using evolutionary computation techniques

has been introduced in recent years. With this paper, we contribute

to this area of research by providing a new approach based on

quality diversity (QD) that is able to explore the whole feature space.

QD algorithms allow to create solutions of high quality within a

given feature space by splitting it up into boxes and improving

solution quality within each box. We use our QD approach for the

generation of TSP instances to visualize and analyze the variety

of instances differentiating various TSP solvers and compare it to

instances generated by established approaches from the literature.
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1 INTRODUCTION

Evolutionary algorithms have been used for a wide range of dif-

ferent tasks. This includes solving classical NP-hard optimization

problems, optimizing the design for complex engineering prob-

lems [11], algorithms for machine learning [36], and approaches in

the area of algorithm selection and configuration [17].

In this paper, we focus on a crucial problem in the context of

algorithm selection, namely the design of problem instances where

two algorithms show a significantly different behaviour. We con-

sider instances for the classical Euclidean traveling salesperson

problem (TSP) for which a wide range of algorithms has been intro-

duced over the last 50 years [3]. The problem is to find a round-trip
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tour of minimal costs through 𝑛 cities where the cities are given

by coordinates in the 2D Euclidean space and pairwise distances

correspond to the Euclidean distances of the points.

The complementary ability of algorithms for solving the TSP

has been subjected to a wide range of studies. Center of these in-

vestigations is the characterization of features of TSP instances

where a considered set of algorithms shows a significantly differ-

ent behaviour. Studies have considered simplified variants of local

search [35], approximation algorithms [23], and state-of-the-art

inexact TSP solvers such as EAX and LKH [6, 7, 16].

Evolutionary diversity optimization (EDO) has recently been

applied using various diversity measures to create diverse sets of

images and TSP instances [1, 24, 25]. For TSP instances, it has been

shown that such approaches are able to create TSP instances with

desired properties (such as good or bad performance behaviour)

with a much wider range in the feature space [13]. Furthermore,

recent investigations have used and analyzed EDO methods to

create diverse sets of high quality solutions for the TSP and other

permutation problems [9, 10, 26, 27].

Quality diversity (QD) [30] follows a similar goal as EDO. Algo-

rithms explore a feature space of possible solutions to a given prob-

lem. Simple approaches, e. g.,Map-Elites, partition the feature space

into boxes and store for each box the best solution that has been

found for its range of feature combinations. QD algorithms have

mainly been applied in the context of robotics and games [8, 37].

In the context of combinatorial optimization, a QD approach has

recently been used for the traveling thief problem and it has been

shown that significantly better solutions can be obtained [28].

In this paper, we use for the first time the quality diversity ap-

proach in the context of instance generation. We use a Map-Elites

approach which for a given set of features divides the feature space

into boxes and stores for each box TSP instances that show the

maximum performance difference for two given algorithms.

Using this approach, we explore the feature space and optimize

instances within each box with respect to solver performance. This

allows to get an overview on differences of instances in the feature

space in terms of their difficulties for a given set of TSP solvers. In

our experiments we evolve instances for the insertion heuristics

Farthest-Insertion and Nearest-Insertion as well as for state-of-the-

art exact TSP solvers EAX and LKH on different two-dimensional

feature spaces. We compare our QD approach against classical

(𝜇 + 1)-EAs and EDO-tailored (𝜇 + 1)-EAs modified to store their

"footprint" in a similar way. Our experimental investigations show

that with the proposed QD approach (a) in most cases a much wider

range of feature combinations is explored during the evolutionary

process and (b) the objective scores of the evolved instances are

either comparable or even better in all cases. Put together the QD
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Algorithm 1: Classical (𝜇 + 1) EA for instance generation.

input :Objective 𝑓 , population size 𝜇.

1 Initialize population 𝑃 of 𝜇 instances at random;

2 while Stopping condition not met do

3 Select random instance 𝐼 ∈ 𝑃 ;

4 Generate 𝐼 ′ by mutating 𝐼 ;

5 if 𝑓 (𝐼 ′) is not worse than 𝑓 (𝐼 ) then

6 Replace 𝐼 with 𝐼 ′ in 𝑃 ;

7 return Best instance from 𝑃 ;

RUE Mutation: Gaussian Mutation: Implosion

Figure 1: Random uniform Euclidean instance (left) with

Gaussian mutation (center) and implosion mutation (right)

applied to it. Blue points are affected by the mutation.

approach is capable of generating a huge amount of interesting

instances in a single run.

The paper is organized as follows. In Section 2 we describe the

task of instance generation in detail, discuss challenges and review

approaches from the literature. In Section 3we introduce our quality

diversity approach. Experimental studies on simple and state-of-

the-art TSP heuristics follow in Section 4 and Section 5 respectively.

We conclude the paper in Section 6.

2 PROBLEM FORMULATION AND HISTORY

Let A be a portfolio of algorithms which show complementary

performance on a set of problem instances I. Further, let 𝐹 : I →

F ⊆ R𝑝 , 𝑝 ≥ 1 be a feature-mapping which maps instances to

a 𝑝-dimensional real-valued numeric vector in the feature-space

F that ideally captures the characteristics of the instance which

makes it easy or hard for the algorithms in the portfolio. In the

context of the Euclidean TSP, features are for example the share

of points on the convex-hull of the point coordinates or structural

properties of transformations of the original instance, e. g., statistics

on the weak/strong connected components of a 𝑘-nearest neighbor

graph (𝑘-NNG). The idea of (per-instance) algorithm selection (AS) is

to learn an algorithm selector 𝑆 : F → A which ś for a previously

unseen instance ś predicts the algorithm which will likely perform

best on it based on its cheap-to-evaluate features only [17, 32].

In order to understand the strengths and weaknesses of algo-

rithms and to be able to learn reasonable selectors, the instance

set I should ideally be diverse on two different levels: (D1) di-

verse/complementary with respect to algorithm performance and

(D2) diverse with respect to the structure of the instances which is

captured by the coverage of the feature-space. Finding such a set

of instances is challenging [35]. Since the availability of real-world

instances for research is limited, a systematic generation process is

desirable. In this paper we focus on the problem of evolving a large

set of diverse instances that satisfy both diversity requirements. For

the TSP, early approaches focused on diversity in the performance

space (D1). To this end Mersmann et al. [20] introduced a (𝜇 +1) EA

to generate instances which are hard/easy for an algorithm 𝐴 by

minimizing/maximizing the gap to a known optimum; they evolved

small instances for classical approximation algorithms and local-

search algorithms. Subsequent works evolved instances which are

easy for one algorithm𝐴1 and hard(er) for another algorithm𝐴2 by

minimizing the ratio of performances measured by the penalized

average runtime (PAR [4]) for state-of-the-art inexact TSP solvers

EAX and LKH [6, 7]. The EAs used for these tasks ś leaving apart

details ś very much follow the pseudo-code given in Algorithm 1.

In a nutshell the algorithm initializes a population 𝑃 with 𝜇 ran-

dom uniform Euclidean (RUE) instances. I. e., each of the 𝑛 city

coordinates is placed uniformly at random within a bounding-box

usually set to [0, 1]2 (see left-most plot in Figure 1). Within the

evolutionary loop one instance is selected to produce an offspring.

The classical mutation operators either add some Gaussian noise to

a subset of the points of the parent as illustrated in Figure 1 (center)

or re-locate a subset of the points by sampling new coordinates,

again, uniformly at random. An elitist (𝜇 + 1)-strategy assures that

the best individuals with respect to the objective function survive.

On termination the best instance is usually returned. It turned out

that even though goal (D1) was successfully met, (D2) was not; in

fact no difference to RUE instances was visible to the naked eye

and as a consequence the feature space F was not well covered.

Later, this issue was approached by different groups of researchers.

Gao et al. [12] used a bi-level approach which aimed to evolve a

feature-diverse population of instances with minimal performance

quality requirements (see also the recent journal extension [13]). To

this end they developed a diversity measure based on a weighted

sum approach to calculate each individuals contribution to the fea-

ture diversity in the population. Though appealing, the bi-level

character delayed the search for low objective values. Later TSP

instance generation was approached in the context of evolutionary

diversity optimization (EDO). In EDO, given a (close-to-)optimal

solution OPT and a parameter 𝛼 > 1 the goal is to evolve a popula-

tion 𝑃 such that 𝑓 (𝐼 ) ≤ (1 + 𝛼) · OPT for all 𝐼 ∈ 𝑃 and a diversity

measure 𝐷 : 𝑃 → R is maximized. Promising contributions in this

field adopted the star-discrepancy [24] or well-known performance

indicators from multi-objective optimization [25] as feature-space

diversity measure 𝐷 . Bossek et al. [5] recently took a different path

and introduced a sophisticated set of "creative" mutation operators.

These operators addressed the short-comings of the aforementioned

operators (re-location and Gaussian noise) by strongly affecting

the parents’ point coordinates. An easy to illustrate example is the

implosionmutation where all points within a random radius around

a randomly sampled center of implosion are attracted towards the

center (see right-most plot in Figure 1). The authors showed in

their study, adopting a (5 + 1) EA where in each iteration one of

these creative mutation operators was applied to the parent, that

this approach ś applied many times to produce a set of instances

ś covered a much wider part of the feature space without explicit

feature-space diversity preservation at all.

All approaches discussed so far are verywasteful in the sense that

only the best individual of the final population is returned as output
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Algorithm 2: QD approach for instance generation.

input :Objective 𝑓 , feature-mapping 𝐹 .

1 Initialize empty map𝑀 ;

2 Initialize instance 𝐼 at random;

3 Calculate 𝐹 (𝐼 ) and store 𝐼 in𝑀 [𝐹 (𝐼 )];

4 while Stopping condition not met do

5 Select an instance 𝐼 from𝑀 uniformly at random;

6 Generate 𝐼 ′ by mutating 𝐼 ;

7 if Box𝑀 [𝐹 (𝐼 ′)] is not covered then

8 Store 𝐼 ′ in𝑀 [𝐹 (𝐼 ′)];

9 else

10 Let 𝐼 ′′ be the instance stored in box𝑀 [𝐹 (𝐼 ′)];

11 if 𝑓 (𝐼 ′) is not worse than 𝑓 (𝐼 ′′) then

12 Replace 𝐼 ′′ with 𝐼 ′ in𝑀 [𝐹 (𝐼 ′)];

13 return𝑀 ;

or the whole usually small1 final population for the approaches with

diversity preservation. Nevertheless, many potentially interesting

intermediate instances become extinct in the course of optimiza-

tion. This is undesirable since the entire process is obviously very

time consuming.2 Hence, there is a need for a systematic means to

memorize instances of interest.

3 A QUALITY DIVERSITY APPROACH

A straight-forward idea is to simply save all intermediate instances,

i. e., the footprint of the EA so to say. This approach is not target-

oriented however since instances with large performance gaps are

desirable; see diversity requirement (D1). We now present an idea

that borrows ideas from quality diversity (QD). QD is a recently

emerged branch of evolutionary computation. In the so-calledMap-

elites approach the target space is partitioned into boxes where each

box stores the best solution found for all target space realizations

closest to its box-center. This approach is highly successful, e. g., in

evolving different robot behavior [8] where the target space cor-

responds to the behavioral space of the robots. In our setting the

target space corresponds to the feature space F ⊆ R𝑝 we aim to

cover. Each box of our QD-algorithm corresponds to one possible

feature combination. The algorithm is designed for discrete features

where, given a fixed instance size 𝑛, the number of possible realiza-

tions of each feature is countable and bounded. This is indeed the

case for many TSP-features of interest, e. g., 𝑘-NNG based features

or depth-based MST features [29] which are frequently among the

top discriminating features in AS-models [18, 29, 34].3 We refer the

interested reader to recent work by Heins et al. [14] who derived

theoretical lower and upper bounds for a large collection of such

features for feature normalization. For each box our algorithm ś in

classical QD-fashion ś stores the TSP instance found over time with

1Due to the computational costs of the instance generation process the population is
usually small in order to allow for as many generations as possible.
2In recent studies on state-of-the-art inexact TSP solvers, for each generated instance
the exact optimum has to be calculated in order to calculate the PAR-score. E. g., in [5]

the generation of a single instance was given a time budget of 48h CPU time.
3E. g., given 𝑛 cities, the number of weak connected components in the 𝑘-NNG can
take values in {1, 2, . . . , 𝑛 − 𝑘 } only [14].

the best performance value. More precisely, the algorithm proceeds

as shown in Algorithm 2. First, an empty map is initialized. The

map takes the role of the "population" in Algorithm 1. Next, an

RUE instance 𝐼 is created at random and stored in the respective

box of the map indexed by 𝐼 ’s feature-vector 𝐹 (𝐼 ).4 From there on

the following steps are performed until a stopping condition is met:

an instance 𝐼 from the subset of covered boxes, i. e., those that are

already assigned an instance, is sampled uniformly at random. Mu-

tation is applied to 𝐼 which yields another instance 𝐼 ′. Next, if the

box at 𝐹 (𝐼 ′) is empty (we say the box is hit for the first time in the

following), 𝐼 ′ is saved in any case regardless of its objective value.

Otherwise, if the box is already covered, the objective function 𝑓

comes into play. Let 𝐼 ′′ be the instance assigned to the box, i. e.,

𝐹 (𝐼 ′) = 𝐹 (𝐼 ′′). If 𝑓 (𝐼 ′) is not worse than 𝑓 (𝐼 ′′) the box is updated

by replacing 𝐼 ′′ with 𝐼 ′. The algorithm returns all instances stored

in the map upon termination. Hence, the algorithm follows an elitist

strategy in each box and thus box-wise the objective function is

monotonically decreasing (w. l. o. g., we assume minimization). The

approach is simple but nevertheless very generic and powerful and

by no means restricted to the TSP domain that we adopt here for a

proof-of-concept study in this contribution.

4 EXPERIMENTS ON SIMPLE HEURISTICS

In this and the next section we continue with an extensive empirical

evaluation of the proposed approach. Our experimental setup is

two-fold: In the cheap setting we evolve small instances for simple

TSP heuristics whereas in the expensive setting we evolve larger in-

stances with the goal to maximize performance differences between

state-of-the-art heuristics. The cheap experiments ś due to fast eval-

uation of the objective function ś allow to explore the differences

obtained after a huge number of iterations as a proof-of-concept. In

the expensive setting we can afford only a fraction of the iterations

due to computational limitations, but tackle interesting algorithms.

4.1 Experimental setup

In a first series of experiments we evolve small instances with

𝑛 = 100 nodes. We consider two insertion heuristics: Farthest-

Insertion (FI) and Nearest-Insertion (NI) [33]. FI starts with a partial

tour consisting of one randomly selected node. In (𝑛 − 1) iterations

the remaining nodes are added until a TSP tour is constructed. In

the selection phase the algorithm selects the node furthest away

from the currently maintained sub-route. This node is injected into

the existing partial route such that the least extension of the previ-

ous partial route is created. (NI) works very much alike with a slight

difference in the selection phase: NI selects the nearest node. The

goal is to evolve instances which span a two-dimensional feature

space space nicely and minimize the tour length ratio 𝐹𝐼 (𝐼 )/𝑁𝐼 (𝐼 )

or 𝑁𝐼 (𝐼 )/𝐹𝐼 (𝐼 ) respectively. Ratios below 1 are desirable as this

indicates a performance advantage for the "numerator" algorithm.

The feature combinations consist of combinatorial features calcu-

lated on basis of a MST of the instance or its 𝑘-NNG as introduced

in [29]; for details we refer the reader to the original papers. More

precisely, we consider feature combinations (FCs) that were fre-

quently selected by AS-models in various studies (see, e. g., [5, 29]):

4The map can be implemented as a hash-map allowing for very fast look-up operations.
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Algorithm 3: (𝜇 + 1) EA (see Alg. 1) with archive.

input :Objective 𝑓 , population size 𝜇, feature-mapping 𝐹 .

1 Initialize empty map𝑀 ;

2 Initialize population 𝑃 of 𝜇 instances at random;

3 Store 𝐼 ∈ 𝑃 at𝑀 [𝐹 (𝐼 )] for all 𝐼 ∈ 𝑃 ;

4 while Stopping condition not met do

5 Select random instance 𝐼 ∈ 𝑃 ;

6 Generate 𝐼 ′ by mutating 𝐼 ;

7 if Box𝑀 [𝐹 (𝐼 ′)] is not covered then

8 Store 𝐼 ′ in𝑀 [𝐹 (𝐼 ′)];

9 else

10 Let 𝐼 ′′ be the instance stored in box𝑀 [𝐹 (𝐼 ′)];

11 if 𝑓 (𝐼 ′) is not worse than 𝑓 (𝐼 ′′) then

12 Replace 𝐼 ′′ with 𝐼 ′ in𝑀 [𝐹 (𝐼 ′)];

13 if 𝑓 (𝐼 ′) is not worse than 𝑓 (𝐼 ) then

14 Replace 𝐼 with 𝐼 ′ in 𝑃 ;

15 return𝑀 ;

FC1) Maximum size of a strong connected component in the 3-

NNG (nng_3_strong_components_max) and the number of

weak connected components in the 3-NNG (nng_3_n_weak).

FC2) The number of strong connected components in the 5-NNG

(nng_5_n_strong) and the median depth of nodes in a MST

of the input graph (mst_depth_median).

In the following we will make heavy use of the abbreviations FC1

and FC2 for ease of writing. For each algorithm pair (FI vs. NI)

and (NI vs. FI) and each of the two FCs we evolve instances by

ten algorithms in total: QD implements Algorithm 2. We compare

QD against classic evolutionary algorithms (1 + 1) EA and (50 +

1) EA as well as EDO-focused EAs (50 + 1) ED-IGD and (50 +

1) EA-HV from [25] which use inverted generational distance (IGD)

and the dimension-doubling hyper-volume indicator for (feature-

)diversity maximization. These algorithms were among the best-

performing EAs in [25] (see the reference for details). EDO-based

algorithms require a good initial population. Hence, we initialize

each runwith clones of a solution obtained by running (1+1)-EA for

additional 10 000 iterations. All algorithms are run with either only

simple mutation operators (re-location, Gaussian mutation) from

Mersmann et al. [20] (suffix [simple]) or the full set of disruptive

mutation operators introduced in Bossek et al. [5] (suffix [all]; see

also Section 2).5 Note that the baseline algorithms return at most

50 instances and thus it is unfair to compare directly against these;

the winner would be determined in advance ś QD ś since it stores

all novel instances with not yet seen feature-combinations. Hence,

for a fair comparison we modify the EAs to store instances the

same way the proposed QD approach does (see Algorithm 3). We

stress that this way of saving the footprint of the EAs has also not

been done before in the literature.Each experiment was repeated 30

times with different random numbers generators seeds and a budget

of 1 000 000 function evaluations. Within each objective function

evaluation the tour length of each TSP heuristic is calculated as the

5In each mutation step one of the mutation operators is selected uniformly at random.
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Algorithm
(1+1) EA [all]

(1+1) EA [simple]

(50+1) EA [all]

(50+1) EA [simple]

(50+1) EA−HV [all]

(50+1) EA−HV [simple]

QD [all]

QD [simple]

Figure 2: Mean number (± standard deviation) of boxes cov-

ered (i. e., instances detected) in the map over the course of

the search for FC1 (top row) and FC2 (bottom row).

mean over 5 independent runs to account for stochasticity in the

choice of the initial node for tour construction. All algorithms were

implemented in the R programming language [31]. Code and data

will be publicly available in a GitHub repository upon acceptance.6

4.2 Results

We first study the number of boxes covered, i. e., the number of

instances / feature combinations hit by the algorithms over time.

To this end we logged the load of the map𝑀 over time.

Figure 2 shows the progress of the mean number of boxes cov-

ered (with one standard-deviation error bars). Note that we show

(50+ 1) EA-IGD in all subsequent plots as a representative EDO-EA

since it performs very much like the EA-HV version. We observe

that both QD approaches are highly superior to the classic EA-

baselines with respect to feature space coverage. After termination

the mean number of boxes covered by QD [all] surpasses the best

classic EAs’ value by a factor of > 2 for FC1 and up to a factor of

> 4 for FC2 and the algorithm pair (NI vs. FI). The EDO-EAs per-

form much better than their classic counterpart. However, expect

for (FI. vs. NI) on FC2 they produce less instances than QD [all]

and QD-algorithms show a high robustness / very low variation.

Table 1 shows the mean and standard deviation of boxes covered

among other statistics that will be discussed later. The observations

are confirmed. A Kruskal-Wallis test with Bonferroni-correction

rejects the zero hypothesis 𝐻0 : median(𝑋 ) > median(QD [all])

for every competitor evolver 𝑋 at significance level 𝛼 = 0.0001 for

all settings expect for the mentioned (FI. vs. NI) on setting FC2;

the results are highly significant.Another important observation

is that QD [all] dominates the whole field of competitors signifi-

cantly in the first few thousand iterations. This is important for

computationally more involved instance generation task (see Sec-

tion 5). As expected, all algorithms tend to perform much better

6GitHub repository: https://github.com/jakobbossek/GECCO2022-QD-TSP
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Table 1: Table of different aggregated values of interest for the experiments on the simple insertion heuristics. Best values (for

the statistics of covered or objective values) or maximal values (for box update statistics) are highlighted .

FI vs. NI NI vs. FI

Nr. of cells Cell statistics Objective Nr. of cells Cell statistics Objective

FC Algorithm mean std <med upd. hits best median mean std <med upd. hits best median

(1+1) EA [all] 371.93 52.20 180.00 165.00 186079.00 0.53 0.68 431.33 56.13 215.00 45.00 192185.00 0.77 0.97
(1+1) EA [simple] 392.53 41.07 193.00 70.00 487405.00 0.65 0.77 397.13 40.60 199.00 45.00 430152.00 0.87 1.00
(50+1) EA [all] 527.90 25.96 263.00 76.00 30129.00 0.55 0.70 522.90 20.88 260.00 27.00 30250.00 0.83 0.98
(50+1) EA [simple] 478.83 19.39 240.00 31.00 51435.00 0.69 0.77 485.90 19.60 243.00 26.00 51992.00 0.88 1.00
(50+1) EA-HV [all] 920.43 113.77 475.00 25.00 12855.00 0.57 0.71 889.77 73.86 444.00 19.00 11843.00 0.87 0.98
(50+1) EA-HV [simple] 870.03 47.61 434.00 21.00 10710.00 0.71 0.78 759.33 75.32 381.00 20.00 13330.00 0.90 0.99
(50+1) EA-IGD [all] 976.50 90.07 503.00 27.00 20658.00 0.63 0.73 882.87 74.75 447.50 19.00 19466.00 0.84 0.98
(50+1) EA-IGD [simple] 865.10 44.73 437.50 21.00 17756.00 0.71 0.78 739.80 69.00 369.50 22.00 18890.00 0.91 1.00
QD [all] 1042.73 17.50 518.00 72.00 4610.00 0.56 0.64 1029.80 22.67 516.00 32.00 4433.00 0.80 0.93

FC1

QD [simple] 894.90 23.87 445.50 38.00 3981.00 0.66 0.73 891.93 33.72 446.00 27.00 4531.00 0.87 0.96

(1+1) EA [all] 804.43 248.08 432.00 100.00 116604.00 0.53 0.64 267.77 32.19 133.00 39.00 310009.00 0.78 1.02
(1+1) EA [simple] 120.83 30.30 57.00 90.00 582995.00 0.62 0.76 91.07 19.40 44.00 95.00 700120.00 0.81 1.02
(50+1) EA [all] 824.33 84.32 402.50 44.00 34771.00 0.55 0.64 328.80 21.66 164.00 26.00 84605.00 0.83 0.99
(50+1) EA [simple] 156.03 13.86 78.00 38.00 246284.00 0.66 0.77 127.43 8.83 64.00 34.00 244907.00 0.88 1.02
(50+1) EA-HV [all] 2289.90 177.68 1148.50 24.00 8302.00 0.59 0.69 1140.17 265.98 565.00 21.00 26899.00 0.85 0.99
(50+1) EA-HV [simple] 892.73 130.89 462.00 22.00 31931.00 0.69 0.76 513.83 143.77 269.00 21.00 85790.00 0.89 1.00
(50+1) EA-IGD [all] 2335.60 162.63 1184.00 28.00 20174.00 0.58 0.70 1047.53 233.71 505.00 17.00 49680.00 0.87 1.00
(50+1) EA-IGD [simple] 768.37 121.46 387.50 23.00 153460.00 0.68 0.77 412.63 123.33 196.00 23.00 302422.00 0.90 1.01
QD [all] 1924.33 76.97 969.00 51.00 3315.00 0.55 0.61 1779.77 79.11 886.00 27.00 5240.00 0.81 0.97

FC2

QD [simple] 841.63 67.22 419.00 40.00 11698.00 0.64 0.71 804.87 90.07 397.50 27.00 15761.00 0.88 0.99
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Figure 3: Representative feature space coverage obtained by the different algorithms for feature combination FC1 (top row)

and FC2 (bottom row). White crosses mark the boxes hit by the initial population for (FI vs. NI; left) and (NI vs. FI; right). The

tiles share a common continuous color gradient with the same limits to make the differences in the objective values visible.

if all mutation operators are used due to the disruptive nature of

the creative mutation [5]. However, the benefit of disruptive over

simple mutation is surprisingly low for FC1 and very strong for

FC2. Figure 3 shows the feature space (normalized to [0, 1] [14])

coverage by means of exemplary but representative runs for FC1

and FC2. The covered boxes are colored by their objective value

(smaller is better) and white crosses represent the boxes hit by the

initial solutions. We see a slight benefit for the *[all] algorithms and

FC1. However, the feature space coverage is indeed very similar.

Explanation: consider the spread of initial solutions in Figure 3 for

the (50 + 1) EA variants on FC1. Recall that each initial solution is

generated by placing 𝑛 points uniformly at random within [0, 1]2

(RUE; see Section 2). These initial instances already show a nice

distribution of this particular feature space indicating that simple

mutation operators (which produce again RUE-like mutants) are

sufficient to further explore the FC1-space. The FC2 space coverage
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Figure 4: Distribution of the coverage frequency across all

30 independent runs for (NI vs. FI) on FC2.

in Figure 3 shows a different picture. Here, the initial population

is very close to the origin. I. e., for all initial solutions the feature

vectors in FC2-space are quite similar. This is plausible since an

RUE instance is likely to have a low number of strong connected

components in the 5-NNG and likewise a rather small median depth

of nodes in an MST. In the FC2-space, the strong mutation of the

*[all] variants allows all algorithms to explore the feature space

much more thoroughly.

Comparing the *[simple] and *[all] plots in Figure 3 for FC2 and

also the respective progress over time in Figure 2 gives rise to an-

other question: why do the classic and EDO-based (𝜇 + 1) EA [all]

variants cover much more of the FC2 feature space when the objec-

tive is to evolve instances which are easier to solve for FI than for

NI? And why is this not the case for their *[simple] counterparts?

One might think that this has to be a bug since an instance is always

saved if its feature vector was not seen so far; this first hit of a box is

independent of the objective value. However, the reason lies in the

way the survival selection of the EAs works: the mutant replaces

the parent if and only if its objective value is not worse than that

of the parent (see Algorithm 3) or ś for the EDO-EAs ś diversity

maximization takes place only if the instance satisfies the minimum

quality constraint. Since it is much more challenging to produce

instances which are harder for FI than for NI (see Figure 5 where

the objective values barely fall below 1) this is an unlikely event

to happen. Consequently, in particular (1 + 1) EA suffers from few

updates of its "population" and its only population member serves

as the template for the vast majority of the produced offspring.

A single mutation (regardless of the type: explosion, implosion

etc.) might be insufficient in producing a previously unseen feature

combination. This lack of variation leads to the poor performance

on (NI vs. FI). In the reverse case, (FI vs. NI), things are different

and the population members get updated more often which allows

for a more thorough exploration of the feature space since the

"source material" changes more frequently. This phenomenon is

not observed for FC1. As pointed out already the FC1-space can be

easily explored even by simple mutation. Recall that the identified

issue may be a major hindrance for the classical (𝜇 + 1) ś and in

particular the (1 + 1)-approaches ś from the literature to improve

the objective since it carries over directly to EAs without footprint

archive. We close the discussion of box-coverage by investigating

the robustness of the approach. Figure 4 colors boxes by the cover-

age frequency across all runs. QD explores the feature space much

more reliably with little variation. The observations are the same

for all other settings.
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Figure 5: Distribution of the objective values (ratio of tour

lengths) of all instances over all independent runs. Data is

split by the direction of the optimization process (columns)

and the feature space covered (rows).

So far we investigated the ability of the algorithms to cover

the feature space, one of the two goals of the evolving procedure.

We now turn the focus towards the second equally if not more

important goal: minimizing the tour length ratio. Figure 5 shows

the distribution of the objective values on all instances over all runs

produced by the algorithms. The panels split the data by feature

combination (rows) and objective "direction" ((FI vs. NI) and (NI

vs. FI); columns). Recall that the algorithms strive to minimize the

tour length ratio. Thus, values in the green shaded region below 1

are desirable. We observe that QD [all] dominates the field for all

combinations of features and target directions with respect to the

median objective value. In particular in the (NI vs. FI) setting, where

finding instances which are harder to solve for NI seems difficult,

the median objective values are clearly located in the greenish area

whereas the median objective scores of the competitor algorithms

are closer or even above 1. With the exception of (NI vs. FI) on FC2,

the upper quartile for QD [all] is even lower than the median of the

other algorithms. This observation highlights the need for stronger

exploration of the feature space and shows the superiority of the

QD-approach. Note also that the median objective values produced

by the EDO-EAs are worse than the respective QD-values. This

is particularly visible in (FI. vs. NI) setting and both FC1 and FC2.

Recall that QD [all] covered less boxes in the FC2 scenario than

the EDO-EAs. However, it shines when it comes to the median

objective values. This is also confirmed by the precise numbers in

Table 1. Keep in mind that the data used for Figure 5 is the union of

all instances of all 30 algorithm runs. Considering the advantage of

QD [all] with respect to feature space coverage the QD approaches

in consequence produced significantly more easy/hard instances;

a clear benefit. Regarding the overall "best" objective values, in

most cases the (1 + 1) EAs dominates. This is in line with our

expectation. Recall that (1) the (1 + 1) EAs explores a significantly
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Figure 6: Scatter-plot of the number of box-hits on log-scale

and the objective value of the instance stored in the box. The

plot shows the first run by example.

smaller share of the feature space and (2) has the same budget

of function evaluations. Hence, the search process is much more

focused and boxes are thus hit much more often. This increases the

chances to update respective boxes with better instances. Figure 6

shows the relation between the (log-scaled) number of hits on

the abscissa and the objective value of the instance stored in the

respective boxes after termination on the ordinate. The plots shows

the result of one particular run of the algorithms. However, the

patterns are the same for all other runs. We see obvious negative

linear relationships. In addition, we see that for a subset of the

feature combinations in the (𝜇+1) EAs the number of hits surpasses

the maximum number of hits for the respective QD algorithm by

orders of magnitude (recall that the abscissa is on logarithmic scale).

An interesting observation is that the number of box-hits of the

EDO-EAs is also much higher. Nevertheless, QD remains the winner

with respect to the objective. The reason is the survival selection

of the EDO-EAs which may lead to frequent box-hits which do

not improve upon the objective however. Figure 7 in the top row

shows this narrowed search by means of example in the FC2-space

explored by (1 + 1) EA [all], (50 + 1) EA-HV [all] and QD [all]

where boxes are colored by the number of actual updates. While

for QD [all] the updates are distributed across the whole explored

feature space (leave apart the border regions) only a few boxes

are updated more that 30 times in the (1 + 1) EA [all] run. The

(50+1) EA-HV [all] updates cells less often which explains its rather

poor performance with respect to the objective values discussed

before. The box statistics in Table 1 support these observations.

They show the maximum number of updates and hits of boxes over

all runs. (1 + 1) EA shows a huge maximum of hits up to ≈ 52% of

the total number of iterations on (NI vs. FI) and FC2. The values

for QD in comparison are minuscule. The decreased number of

updates at the borders can be explained by the hardness to produce

instances with such "extreme" feature vectors. The bottom row in

Figure 7 shows the same data colored by the iteration number of

the boxes’ first hit. Some of the boxes were only discovered after

more than 800 000 iterations. This observation together with the

increasing trend in Figure 2 indicates that even longer runs would

hit even more boxes.
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Figure 7: FC2 with boxes colored by the number of updates,

i. e., the number of times the instance stored in the box was

replaced with an instance not worse with respect to the ob-

jective score (top row). In the bottom row boxes are colored

by the first hitting time / (first discovery time).
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Figure 8: Representative feature space coverage obtained by

the different algorithms for feature combination FC2 and

state-of-the-art heuristics LKH and EAX.

5 EXPERIMENTS ON STATE-OF-THE-ART
INEXACT TSP SOLVERS

We now consider EAX and LKH and the feature combination FC2

only since the results in Section 4 indicate that this space is harder

to cover. Both algorithms are state-of-the-art in inexact TSP solv-

ing. EAX [21, 22] is a sophisticated genetic algorithm based on

the edge-assembly-crossover operator and entropy population di-

versity preservation. LKH [15] is a local-search algorithm whose

main driver is the Lin-Kernighan heuristics for 𝑘-opt moves. Both

algorithms are capable of solving even large instances to optimality

in reasonable time. Complementary behavior on a wide range of

instances motivated algorithm selection studies [5, 14, 16, 19].

5.1 Experimental setup

Preliminary experiments show that EDO-based algorithms perform

worse than QD in this computationally demanding domain with

respect to both box-coverage and objective value since the number

of iterations is severely reduced to ≈ 2 000. This is in-line with
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Table 2: Table of aggregated values of interest for the experiments on state-of-the-art TSP solvers EAX and LKH. Best values

(for the statistics of covered or objective values) or maximal values (for box update statistics) are highlighted .

EAX vs. LKH LKH vs. EAX

Nr. of boxes Box statistics Objective Nr. of boxes Box statistics Objective

FC Algorithm mean std <med upd. hits best median mean std <med upd. hits best median

(1+1) EA [all] 390.83 100.32 199.50 7.00 141.00 0.00 0.82 574.38 153.52 292.00 8.00 368.00 0.02 0.33
(50+1) EA-HV [all] 442.83 240.29 247.50 7.00 277.00 0.00 0.99 712.00 242.13 321.00 8.00 387.00 0.03 0.34FC1
QD [all] 877.50 54.98 430.50 6.00 24.00 0.00 0.85 882.57 130.68 441.00 7.00 25.00 0.03 0.36

(1+1) EA [all] 128.57 23.75 65.00 8.00 237.00 0.00 0.38 135.38 12.81 67.50 11.00 942.00 0.03 0.29
(50+1) EA-HV [all] 116.60 22.94 59.00 8.00 371.00 0.00 0.30 137.88 24.19 73.00 11.00 797.00 0.03 0.31FC2
QD [all] 281.00 62.02 141.00 8.00 44.00 0.00 0.42 353.67 60.70 174.00 9.00 72.00 0.04 0.38
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Figure 9: Scatter-plots of PAR10 scores of the two compet-

ing algorithms EAX and LKH. Points are colored by the

evolving algorithm. The left plot shows the results for the

experiments with the goal to produce instances which are

easy for EAX and hard for LKH; the right plot shows the

vice versa. Points on the diagonal line indicate equal perfor-

mance of both algorithms on the respective instance. Points

above/below the diagonal indicate a runtime-advantages for

one of the algorithms. The gray dashed lines indicate the

maximum possible PAR10-score of 10 · 180 [s].

observations extracted from Figure 2 and Figure 5. Hence, in the

following we use (1 + 1) EA, (50 + 1) EA and QD. In line with [5]

we evolve instances with 𝑛 = 500 nodes and minimize the ratio

of the penalized average runtime (PAR10 [4]) scores, the mean of

the runtimes of 𝑅 runs of 𝐴 on 𝐼 where failure runs are penalized

with 10 ·𝑇 , 𝑇 being the cutoff-time; a run is termed a failure if the

algorithm does not find the optimum within time 𝑇 . The objective

function evaluation requires a single run of the exact TSP solver

concorde [2] to calculate an optimal tour. We set 𝑅 = 3 and 𝑇 =

180 [𝑠] and run each evolving algorithm with 48h wall-time.

5.2 Results

The observations on feature-space coverage in Figure 8 are in par

with Figure 3 (bottom row) in the cheap setting. However, due to

the costly objective function evaluation the algorithms performs

significantly less iterations which explains the lower total cover-

age. QD [all] dominates the other algorithms with respect to the

covered area in all scenarios due to only up to ≈ 2000 performed

generations. Table 2 shows summary statistics for the number of

covered boxes, the objective values and box update/hit statistics.

The numbers confirm the good performance of all approaches with

respect to the objective values and the advantage of the QD ap-

proaches with respect to feature space coverage. One observation

worth to mention is that the mean number of boxes covered is

higher for all algorithms for (LKH vs. EAX) in comparison to (EAX

vs. LKH). The reason is that LKH hits the cutoff-time of 180 seconds

frequently while this is rarely the case for EAX. Put differently, it

is easier for the algorithms to evolve an instance where LKH hits

the time limit than the vice verse. Figure 9 shows this nicely by

plotting the PAR10-scores of EAX and LKH against each other for

the evolving algorithms (1 + 1) EA [all], (50 + 1) EA-HV [all] and

QD [all]. The three clusters in the top left corner of the left plot

indicate that on many evolved instances LKH has either one, two

or even three failure runs. In contrast, EAX times our rarely if the

goal is to produce EAX-hard instances.

6 CONCLUSION

The generation of TSP problem instances which are diverse with

respect to solver performance and instance features is of utmost

importance, e. g., in the field of algorithm selection. We introduced

a flexible quality diversity (QD) approach to evolve instances. In-

stances are mapped to their feature vectors. In an iterative evolu-

tionary process not yet seen instances / feature combinations are

stored in any case; instances are overwritten if newly generated

instances share the same feature combination, but show a stronger

performance difference for two competing TSP algorithms. We com-

pared our approach to classical (𝜇 + 1) EAs and versions adapted to

feature-diversity optimization from the literature modified to store

their footprints in a similar way. The results show impressively the

capability of the QD approach in covering a wide range of feature

combinations ś and thus producing much more instances in a sin-

gle, less wasteful run ś while competing or even outperforming the

classical approaches with respect to objective scores. These results

motivate a broad avenue of future work. Here, we only name a

few of our most promising ideas: application to > 2 features and

other domains, introducing selection bias towards border regions,

or storing multiple instances per box.
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