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Abstract

Neural networks are vulnerable to slight alterations to otherwise correctly classified
inputs, leading to incorrect predictions. To rigorously assess the robustness of neural
networks against such perturbations, verification techniques can be employed. Robustness
is generally measured in terms of adversarial accuracy, based on an upper bound on the
magnitude of perturbations commonly denoted by ε. For each input in a given set, a verifier
determines whether a perturbation up to magnitude ε can deceive the network. In this
work, we contribute novel analysis techniques for the verified robustness of neural networks
for supervised classification problems and report on interesting findings we obtained using
these techniques.

We utilise the notion of robustness distributions, specifically those built using the con-
cept of critical ε values. Critical ε values are defined as the maximum amount of per-
turbation for which a given input is provably correctly classified, such that any larger
perturbations can cause misclassification. To effectively estimate the critical ε values for
each input in a given set, we utilise a variant of the binary search algorithm. We then
analyse the distributions of these critical ε values over a given set of inputs for 12 MNIST
classifiers widely used in the literature on neural network verification. Using a Kolmogorov-
Smirnov test, we obtain support for the hypothesis that the critical ε values of 11 of these
networks follow a log-normal distribution. Furthermore, we found no statistically signif-
icant differences between the critical ε distributions for training and testing data for 12
feed-forward neural networks on the MNIST dataset.

Generally, we find a strong positive correlation between the critical ε of an input image
across various networks. However, in some cases, an input that is easily perturbed to
deceive one network may require a considerably larger perturbation to deceive another.
Furthermore, for a given input, the adversarial examples that we find differ across networks,
with different predicted classes associated with them.

We investigate the effect adversarial training can have on the critical ε distribution
of various neural networks for MNIST, CIFAR and GTSRB datasets. We also find that
complete verification is expensive for some of the CIFAR and GTSRB networks, which
limits the precision of the robustness distributions we were able to obtain. Nonetheless, we
observe that most of the critical ε distributions of the networks obtained through adver-
sarial training do not follow a log-normal distribution. Furthermore, adversarial training
significantly improves the critical ε distributions for testing as well as training data in most
cases.
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Lastly, we provide a ready-to-use Python package available on GitHub that can be used
for creating robustness distributions and enables others to build upon our work.

1. Introduction

It is well known that neural networks are vulnerable to producing incorrect outputs resulting
from changes in inputs. One commonly researched type of vulnerability arises from adver-
sarial attacks, based on small input perturbations. Various studies (Goodfellow et al., 2014;
Szegedy et al., 2014) have shown how small, sometimes imperceptible changes to a given in-
put can mislead state-of-the-art neural networks. Therefore, robustness against small input
perturbations, also known as local robustness, is an important topic of investigation.

Various methods for assuring complete robustness against perturbations within a certain
radius ε have since been developed (Bastani et al., 2016; Botoeva et al., 2020; Bunel et al.,
2018; Dvijotham et al., 2018; Ehlers, 2017; Gehr et al., 2018; Henriksen & Lomuscio, 2020;
Katz et al., 2017; De Palma et al., 2021; Tjeng et al., 2019; Wang et al., 2018, 2021; Xiang
et al., 2018). Yearly neural network verification competitions have been held since 2020,
aiming to assess the performance of different tools available on a selected set of networks and
to incentivise their broad use using standardised formats (M. N. Müller et al., 2022; Brix,
Müller, et al., 2023). Verification approaches have improved in speed as well as scalability,
in part by using algorithms from the field of optimisation and GPU acceleration. Neural
network verification algorithms can be categorised as complete or incomplete. In contrast
to incomplete algorithms, which do not guarantee to report a solution, complete verification
methods, when run to completion, always provide formal proof for the robustness of a given
neural network for a specific input (Li et al., 2023). This typically comes at a considerable
computational cost.

In many studies, the maximum magnitude of allowable input perturbations, ε, is treated
as an experimental setting determined in advance (Li et al., 2023). Following this notion,
robust accuracy is defined as the percentage of inputs that will be classified correctly, re-
gardless of what perturbation within the predefined bound ε is applied to any given in-
put (Cullina, Bhagoji, & Mittal, 2018; Schmidt, Santurkar, Tsipras, Talwar, & Madry,
2018; Zhang et al., 2019). In some cases, this definition is adapted to ignore originally
misclassified inputs (Yang et al., 2020).

However, we argue that robust accuracy is not able to fully capture important aspects
of the robustness of a neural network, for the following reasons: (i) it requires the domain
expert to pre-specify an acceptable perturbation level, which is knowledge that might not
be available at that point; (ii) it does not indicate what level of perturbation is tolerated
for an individual input before it will be misclassified; and (iii) when comparing two net-
works with similar robust accuracies, important nuances might not be revealed concerning
the robustness of individual inputs against perturbations. For example, given two neural
networks trained to solve the same classification problem, for one network, many of the
inputs may tolerate only a perturbation slightly larger than the pre-defined ε value, while
for the other, this margin might be much larger; information of this nature should be useful
to anyone interested in solving the given classification problem robustly in practice.

To overcome these limitations, in this work, which is an extended version of a workshop
contribution (Bosman et al., 2023), we are interested in the distribution of robustness of
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a given neural network against adversarial perturbations. We focus specifically on neural
networks that are employed for classification tasks. To study this, we utilise the concept of
critical ε value, which is defined as the maximum amount of perturbation to a given input
for which the predicted class will provably remain correct, in the context of local robustness
verification. The critical ε value is sometimes also referred to as the adversarial result
(C. Liu et al., 2021) and the maximum perturbation bound (Cheng, Nührenberg, & Ruess,
2017). We use a complete verifier to provide the robustness guarantee. Furthermore, we
utilise a method from the literature, k-binary search (Cicalese et al., 2004), to empirically
estimate a lower bound on the critical ε value. By running multiple verification queries in
parallel, we can make use of the information obtained from the query that finishes first.
In particular, this helps us to determine whether we need to continue running the other
verification queries, and/or produce a number of new queries.

This leads to the critical ε distribution, an empirical distribution over the critical ε values
for a wide range of inputs to a given neural network. These critical ε distributions allow
us to compare and analyse the robustness of neural networks systematically and in detail.
Note that we refer to critical ε distributions as the empirical distribution over instances
measured specifically in terms of the critical ε, whereas we refer to robustness distributions
as the more general concept, i.e., the empirical distribution over inputs measured using
any robustness notion. In this article, we focus specifically on critical ε distributions. An
advantage of using distributions to define the robustness of a neural network is that they
enable assumptions about inputs for which we have not found the critical ε values. In
parallel to our earlier work (Bosman et al., 2023), J. Liu et al. (2023) also utilise critical ϵ
distributions, but rather than analysing them directly, they utilise them to develop a novel
methodological contribution for verifying neural networks.

The main contributions of our work presented in this article are as follows:

1. We elaborate on the concept of robustness distributions, which are empirical distri-
butions over a measure of the robustness of a given neural network against input
perturbations and propose to use them for robustness evaluation between networks.
We calculate these distributions specifically using the critical ε values, which provide
a provable lower bound to the amount of adversarial perturbation that a network can
withstand for a given input. This results in so-called critical ε distributions.

2. We utilise a variant of the binary search algorithm, k-binary search, to obtain the
critical ε distribution for a given neural network. When searching for the critical
ε for a given network and input, uncertain delays and possibly missing values are
encoutered (due to time-outs and out-of-memory errors). k-binary search handles
this by evaluating k verification queries with different ε values in parallel, potentially
terminating queries early when new information becomes available.

3. We analyse the critical ε distributions for 12 widely studied fully-connected MNIST
neural networks on both training data and testing data, for correctly classified in-
stances. We specifically note the importance of using widely used network architec-
tures that have also been used in other robustness studies, to minimise the bias of
selecting an architecture and training hyperparameters.
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4. Surprisingly, we observe that 11 of the robustness distributions of these neural net-
works correspond to log-normal distributions, which contradicts the claims by J. Liu
et al. (2023). Furthermore, the robustness distributions that we investigated do not
significantly differ between training and testing data, suggesting that these distribu-
tions generalise to previously unseen inputs.

5. We investigate the correlation between the critical ε for a certain input across multiple
networks, with the goal of understanding whether the size of the critical ε for an
instance is related to the input or specific to a given network. We find that generally
there is a strong positive correlation of critical ε values between images for training
data. However, for testing data, this correlation is less pronounced.

6. We analyse the effect of adversarial training on the robustness distributions of different
fully-connected neural networks for the MNIST, CIFAR-10 and GTSRB datasets. We
confirm that for all three datasets and all networks we considered, adversarial training
has a significant positive effect on the robustness distributions and generally increases
the computational resources required for verification.

7. We analyse the robustness distributions of multiple convolutional neural architectures
for MNIST, CIFAR-10 and GTSRB, which are all trained in three distinct ways, i.e.,
using a conventional training method and two different adversarial training methods.
We observe that adversarial training can result in networks with significantly improved
robustness distributions. We also see that complete verification is too expensive to
generate dependable robustness distributions for the CIFAR-10 and GTSRB datasets.
The robustness distributions of the networks used in this part of our study do not seem
to follow log-normal distributions generally, independent of the training method. Fur-
thermore, similar to the aforementioned fully-connected neural networks, we find that
robustness distributions do not significantly differ between training and testing data
for the adversarially trained networks as well as the conventionally trained networks
considered.

8. Finally, we provide a ready-to-use Python package for measuring robustness distri-
butions.1 The package is modular, such that any part can be changed, including the
instance set under consideration, the robustness property or the verifiers used. This
makes our results fully reprodicible and will help others build on our work. Further-
more, all our networks and data are available on GitHub.2

The remainder of this article is structured as follows. We discuss the main concepts
related to neural network verification in Section 2. In Section 3, we define the concept
of robustness distributions and describe the k-binary search algorithm. Following this,
Section 4 presents the aforementioned empirical results on the conventionally trained fully-
connected neural networks. In Section 5 we discuss the effect of adversarial training on the
robustness distributions of fully-connected neural networks for three different datasets and
similarly in Section 6 we analyse the effect on convolutional neural networks. Finally, in

1. See: https://github.com/ADA-research/VERONA
2. See: https://github.com/ADA-research/NNV JAIR robustness distributions
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Section 7, we summarise the main findings from this work and briefly discuss avenues for
future work.

2. Background

In the following, we review key aspects of local robustness verification and the critical ε that
form the basis for our work and briefly explain the verification method we are building on.
We also discuss incomplete verification as well as training methods for improving robustness
and closely related work.

2.1 Local Robustness Verification

Verification methods for neural networks aim to formally evaluate whether a given model
satisfies certain input-output properties. One such property is local robustness, which refers
to the ability of a neural network to maintain the correct prediction for a single input,
even when that input is slightly perturbed, possibly with malicious intent. To assess local
robustness, verification algorithms analyse a set of inputs and seek to determine whether
there exist small perturbations that could cause the model to produce incorrect outputs.

When such perturbations are applied to a previously correctly processed input, so-called
adversarial examples are obtained. The size of these perturbations is usually restricted by
a predefined maximum radius, typically denoted by ε, which limits the extent of changes
that can be made to the original input image or each input variable.

Similar to much of the literature on local robustness verification, our work focuses on
neural networks for supervised classification. Formally, a neural network classifier can be
described by a function fθ in Rn → Rm, where θ is the set of trained parameters for fθ, n
is the number of input variables, and m is the number of possible classes.

Considering an input x0 with correct label λ(x0) and a region around x0 defined by
Gp,ε(x0) = {x : ||x − x0||p ≤ ε}, using some p norm, local robustness verification aims
to formally determine whether there exists a perturbed input x ∈ Gp,ε(x0) such that the
predicted label of x is no longer equal to the predicted label of x0. In our work, the
perturbation is measured using the l∞ norm, consistent with much of the literature.

In many cases, local robustness verification is modelled using mixed-integer program
(MIP) formulations. In general, MIP solving is known to be NP-hard, but in practice,
many instances can be solved within a reasonable time using state-of-the-art commercial
MIP solvers, such as Gurobi or CPLEX (Tjeng et al., 2019). These solvers are complete
and therefore guaranteed to find any existing adversarial examples when run to completion.

Robustness verification systems have improved in speed as well as scalability, in part
by utilising algorithms from the field of optimisation (Botoeva et al., 2020; Henriksen &
Lomuscio, 2020; Katz et al., 2017) as well as GPU acceleration (De Palma et al., 2021; Singh
et al., 2019; Wang et al., 2021). However, as neural networks can have billions of trainable
parameters, current verifiers do not scale to state-of-the-art networks. In contrast to the
previously mentioned complete verifiers, there also exist incomplete verification approaches;
however, whilst these can be used to find adversarial examples for a given input and provide
lower bounds on the critical ε, they do not guarantee to provide a result for each property.
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2.2 Critical ε and Minimum Adversarial Example

The existing literature on complete neural network verification predominantly focuses on
the binary question of whether an adversarial example exists within a specific perturba-
tion radius ε. To create robustness distributions, we utilise ε∗, the critical ε value for a
trained neural network fθ and input x0 with correct class λ(x0), defined as the maximum
perturbation size such that any perturbed input x ∈ {x : ||x − x0||∞ ≤ ε∗} cannot lead to
misclassification and some perturbations larger than ε∗ will provably lead to misclassifica-
tion. Other terms for the concept of ε∗ include the adversarial radius (J. Liu et al., 2023),
the adversarial result (C. Liu et al., 2021) and the maximum perturbation bound (Weng et
al., 2018).

Tjeng et al. (2019) observed that ε∗ can be determined by applying a binary search
algorithm over a range of ε values using any verification method, a technique later adopted,
e.g., in work by J. Liu et al. (2023). Other work has investigated exploiting the structure
of the neural network verification problem to directly determine ε∗ (Cheng et al., 2017;
Tjeng et al., 2019; Strong et al., 2023). However, Tjeng et al. (2019) found that the gap
between the minimum adversarial distortion and the certified lower bound is significant for
each case they investigated with their proposed verifier, MIPVerify. Strong et al. (2023)
adapted the Marabou verifier (Katz et al., 2017) for direct optimisation for finding the
smallest adversarial distortion. This adaptation, called MarabouOpt, is complementary to
MIPVerify and can solve more instances on some benchmarks. In our study reported here,
we have used a k-binary search algorithm (See section 3.3); this choice allows flexibility in
the framework, enabling the use of any state-of-the-art verifier that can address the specific
verification problem at hand, such as different layers or different verification properties. By
not relying on a single verifier, our framework remains adaptable and broadly applicable.

A concept strongly related to ε∗ is the minimum adversarial distortion: the smallest
amount of perturbation necessary to create an adversarial example that can mislead a
neural network, such that any smaller perturbation could not lead to a misclassification for
a given instance. In theory, the ε∗ and minimum adversarial distortion only differ from each
other with an indistinguishable small amount. However, in practice, we discretise the search
space, which ensures that the gap between these two quantities is at least the bin-width, and
additionally, in some cases, there will be time-out errors and out-of-memory errors, which
increase the gap between ε∗ and minimum adversarial distortion even further. Finding
minimum adversarial distortions using different algorithms (that generally give no guarantee
for minimality) has been extensively studied, for example by Moosavi-Dezfooli, Fawzi, and
Frossard (2016), who proposed DeepFool, a method based on orthogonal projections. Weng
et al. (2018) aims to find the minimum adversarial distortion and consider the certifiably
safe radius for an instance to be the lower bound to that. To provide formal guarantees,
they use extreme value theory to find the Lipschitz constant and combine this in their
framework called CLEVER. Another line of work uses adversarial attack methods, such as
PGD, to find the minimum adversarial distortion without guarantees.

2.3 Neural Network Verifiers

In the first part of our experiments, we utilise a recent version of the branch-and-bound-
based neural network verification framework (BaB) (Bunel et al., 2018; De Palma et al.,
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2021). BaB tackles the verification problem by converting it into a MIP formulation and
subsequently solving it using the branch-and-bound algorithm. The branch-and-bound
algorithm partitions the feasible region of a given MIP instance into smaller regions, making
it easier to iteratively solve the instance.

In the second part of our experiments, we utilise a recent version of the GPU-accelerated
α, β-CROWN framework (Zhang et al., 2018). α, β-CROWN is based on a branch-and-
bound approach and leverages bound-propagation methods to iteratively tighten the feasible
region of the exact verification problem. This verifier was also the winner of the 2021, 2022
and 2023 Neural Network Verification Competitions (Bak et al., 2021; M. N. Müller et al.,
2022; Brix, Bak, et al., 2023).

2.4 Training to Enhance Robustness

Adversarial training methods are used to enhance the robustness of neural networks against
small input perturbations. While Goodfellow et al. (2014) suggested retraining neural
networks including adversarial examples to increase robustness, Madry et al. (2017) found
evidence that this tends to cause overfitting on the adversarial examples. Madry et al.
(2017) introduced project gradient descent (PGD) for improving the robustness of neural
networks against adversarial attacks.

PGD uses optimisation techniques for modelling various forms of adversarial attacks.
After specifying the attack type, PGD aims to satisfy a guarantee that a network is robust
against the specified attack, making use of a min-max formulation that controls the loss
function of the network during training, to minimise the maximum adversarial loss created
by an attack. Another adversarial training method, called DiffAI, leverages differentiable
abstract interpretation (Mirman et al., 2018) – an approach in which an approximation of
the feasible region of the attack is created and incorporated into the loss function while re-
training a given neural network. Even though these methods seem to work well in increasing
adversarial robustness, robust training also tends to result in a significant reduction in the
accuracy of the adversarially trained networks (Madry et al., 2017; Xie et al., 2019).

Another class of methods used to enhance robustness is certified training. Unlike adver-
sarial examples, which can overapproximate the robustness of a given network, certification
methods provide a guaranteed lower bound on robustness (Shi et al., 2021). However, cer-
tified training is computationally expensive and often exhibits unstable behaviour (Shi et
al., 2021), which typically results in a significant trade-off in accuracy (M. N. Müller et al.,
2023). Despite these challenges, certified training has the potential to facilitate verification
by making it easier to verify neural networks for specific properties (Zhang et al., 2020).

In this work, we focus exclusively on adversarial training, as it is a more computationally
efficient and accessible approach for improving the robustness of neural networks.

2.5 Other Related Work

Other work that mentions a concept similar to robustness distributions includes a study
by J. Liu et al. (2023), utilised an incomplete and a complete verifier for determining the
ε∗ for a fully-connected MNIST network. While both the work of J. Liu et al. (2023) and
ours adopt the notion of robustness distributions, we note that the main contribution of our
work is the analysis of these distributions, whereas the work of J. Liu et al. (2023) which
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utilises the robustness distribution to make a methodological contribution towards verifying
neural networks.

J. Liu et al. (2023) furthermore investigated a set of networks trained on both CIFAR-
10 and MNIST, using incomplete verification to find the approximate ε∗. They reported
that for some of the networks, the distributions of the approximate ε∗ seem to follow the
normal distribution, and they leveraged this to create a methodology for input validation.
In our work, reported in the following, we find that many robustness distributions are more
accurately characterised using log-normal distributions.

3. Robustness Distributions

In this section, we describe practical considerations for determining the critical ε (see Sec-
tion 2.2), as well as k-binary search (Cicalese & Vaccaro, 2003), the algorithm we utilise
to determine the critical ε value for a given input. These two concepts are necessary to
create the robustness distributions we are investigating in this work. We note that a crit-
ical ε distribution is a specific case of robustness distribution, and in principle, robustness
distributions can also be constructed using alternative robustness measures.

3.1 An Empirical Lower-Bound on the Critical ε Value

The ε∗ distribution or robustness distribution is the distribution of ε∗ values over a set of
instances I. In the context of this work, an instance corresponds to a neural network and
an input, e.g., an image. As we perform this investigation on image classification tasks, we
will use the terms input, image and input image interchangeably. The ε∗ distribution only
includes the ε∗ values for images that were originally correctly classified by the network.

The cost of determining the ε∗ values depend on the given dataset. Computing exact
values of the critical ε values is not always practically possible, due to time-outs, mem-
ory limits and other practical issues. However, in most cases, good lower bounds can be
established using state-of-the-art verification techniques.

In the following, we use ε̃∗ to denote an empirical lower bound for ε∗. Assume we
investigate a discretised set of ε values, E = (ε0, . . . , εh), for a given network fθ and input
x0, where ∀i = 0 . . . h − 1 : εi < εi+1. If there exists an adversarial example for εi,
where 0 < i ≤ h, and no adversarial example for εi−1, ε̃

∗ is determined at εi−1, the ε∗

(which represents the exact critical ε) will be in the interval [εi−1, εi). In the case where a
perturbation with maximum amount εi does not lead to misclassification and a perturbation
with maximum amount εi+j can lead to a misclassification – this amount is referred to as
the minimum adversarial distortion – where 0 ≤ i < h and 0 < j ≤ h−i and the verifiers are
not able to resolve the verification queries for ε values in between these two in the set (e.g.,
due to time-outs or out-of-memory errors), ε̃∗ will be determined at εi as a conservative
lower bound.

To find the empirical robustness distributions investigated later in this work, we compute
the conservative lower bound, ε̃∗, for a set of relevant instances. For example, if the exact
ε∗ equals 0.0035, we may not find this exact value due to discretisation. We will carry
out a verification query at ε = 0.003, which does not lead to misclassification, and a query
at ε = 0.005, for which an adversarial example is found, we determine ε̃∗ = 0.003 as the
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empirical lower bound for ε∗. When we do this over a set I of instances, the empirical
robustness distribution in itself provides a lower bound on the theoretical ε∗ distribution.

To utilise the advantages of (binary) search methods, we will discretise the problem and
investigate a predefined set of ε ranges. Verifying every possible value of ε is infeasible be-
cause verification can take considerable time as the underlying local robustness verification
problem is NP-complete for ReLU-based networks (Katz et al., 2017).

3.2 Empirical Upper-Bounds and Verification Gaps

If the verifiers we use work as expected, we would find an adversarial example at εi+1 and
the ε̃∗ at εi. In practice, it could be that the verifiers cannot resolve a verification query
leading to verification gaps between the ε̃∗ and smallest ε for which we find an adversarial
example, which we will refer to as the approximate minimum adversarial distortion denoted
by p̃. The verification gap for a single instance is then defined as p̃− ε̃∗.

In the case the verification system can verify all relevant queries, the verification gap
is as large as the difference between two adjacent ε values (due to the discretisation of
the search process for ε∗). In practice, however, the verification gap may get quite large
when time-out errors or out-of-memory errors occur frequently, due to the complexity of
the verification tasks.

Critical terminations. One consequence of using verification queries with a time-out
is that we might encounter ε̃∗ values affected by time-outs. This means that we obtained
one or more time-outs for ε in between two ε for which the smallest does not lead to an
adversarial example and the larger does; we refer to this as critical termination and this
contributes to the verification gap. Examining our dataset for k = 2, which consists of a
total of 2301 instances in total for 12 classifiers and the testing data and training data, we
encountered a total of 61 critical terminations (due to time-outs, out-of-memory errors or
other running time errors) over all the testing and training queries, which corresponds to
2.6% of the total number of queries. In all other cases, we were able to estimate a tight
lower bound on the ε∗, within the limits of the discretised ε values described previously.
When we derive the ε̃∗ distributions of complex networks (such as the ones considered in
Sections 5 and 6), more premature terminations are encountered, resulting in looser bounds.
In this work, we consider robustness distributions to be of high quality when their bounds
are tight and the vast majority of instances can be successfully solved.

3.3 k-binary Search

One proposed method for finding the ε∗ is by employing binary search, which can be used
as a wrapper method in combination with any existing verification method. However, for
each verification query, the verification of whether or not a specific of a ε value with a
specific network and input leads to an adversarial example takes an unknown amount of
time, and queries that exceed a given time-out are terminated to limit the potential waste
of computational resources. This means that a binary search approach experiences delays
and potentially contains missing results if the time-out is reached. If we use regular binary
search, as done by J. Liu et al. (2023), its benefits may be nullified by the delays and missing
values.
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Instead, we propose a novel search method based on k-binary search, a modified version
of binary search, based on the work of Cicalese et al. (2004). The key idea is to verify k
queries in parallel, rather than just one at a time. In their work, Cicalese et al. (2004)
analysed the optimal strategy for binary search when there are unknown delays and at
most one missing value. In k-binary search, we apply this strategy to concurrently verify
multiple queries of the same network and input with different ε values. Standard binary
search typically selects the midpoint of a sorted array, checks the answer and iteratively
continues until the correct element is found. When verifying k queries in parallel, we divide
the search space into k+1 parts. In this research, we choose to use equal-sized parts. Using
information from the queries that run in parallel but find a result faster, we can therefore
reduce the total time necessary to find the ε̃∗ value for a given input.

For example, suppose that we are simultaneously verifying queries A and B with ε values
of a and b, respectively, with a < b, for a given input and network. If one query terminates
before the other, in some cases, we can immediately use the result of the former to infer the
result of the latter. Specifically, if for ε = b, no adversarial example is found, we know that
there will be no adversarial example found for ε = a, and we can terminate that process
early. This allows us to save computing resources by avoiding unnecessary verification runs.
The opposite is also true, i.e., if for ε = a an adversarial example is found, we can terminate
the query for ε = b.

Using k-binary search on the discretised problem will not provide us with the exact ε∗;
instead, the procedure produces a range within which the exact ε∗ lies. For example, if
we find an adversarial example for ε = 0.005, but there does not exist one for 0.003, we
take 0.003 as our empirical lower bound ε̃∗, knowing that the actual value lies within the
interval (0.003, 0.005]. In case we find, for example, for ε = 0.003 there exists no adversarial
example, and then, for one or more consecutive ε, we encounter errors or time-outs, and for
the next ε, we find an adversarial example, we again choose ε̃∗ = 0.003 as the lower bound
for ε∗. We have thus discretised the problem of finding an estimation of the ε∗ for a given
input while speeding up the process of finding it using k-binary search.

3.4 The VERONA Tool for Neural Network Verification Experiments

Designing and executing neural network verification experiments can be challenging, in-
volving tasks such as installing the verifier and defining the properties. To simplify this
process, we have developed an open-source software package3 for robustness verification
experiments. The package, called VERONA, is object-oriented, to facilitate extensions and
adaptations for specific use cases.

On a high level, the goal of the software architecture we have developed was to separate
the file and dependency handling from the actual algorithm and verification execution.
Towards that end, we created an experiment repository class that takes care of all the IO
processes necessary to organise the experiment data on the file system and to store the
required files, such as properties, for the verification algorithm. For handling the results,
we created separate classes for the verification results and the algorithms to estimate the ε
values. With these classes, all the necessary resources to compute a given property can be
handed to an estimator in the form of a class that keeps track of these resources, which we

3. https://github.com/ADA-research/VERONA
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call the verification context. Then, the estimator takes care of computing the property e.g.,
using binary search for the critical ε value.

To enable the use of different verifiers within our package, auto-verify (Spek, 2023) has
been wrapped into a verification module. This allows the use of all verifiers supported
by auto-verify but also ensures that our package can be extended to accommodate other
verifiers, which can easily be included using new wrapper modules. This greatly facilitates
the integration of other verifiers and critical ε estimation techniques into VERONA. For
creating the verification properties, we use the VNN-LIB4 format, as this has become the
standard in the yearly neural network verification competitions (Brix, Müller, et al., 2023),
yet the property generator class could be extended to various other formats to enable a
variety of verifiers.

In this work, we have used VERONA mainly for creating and analysing robustness
distributions. In the package, we have included examples for reproducing our experiments.

4. Empirical Investigation on Conventionally Trained Neural Networks

In this section, we focus on fully-connected neural networks that have been conventionally
trained on MNIST data (Lecun, Bottou, Bengio, & Haffner, 1998). These constitute the
simplest class of problems in our range of experiments. First, we explored whether k-binary
search can determine reasonable lower bounds on the ε∗ values. Next, we investigated
whether the robustness distributions follow the same parametric distribution class for all
fully-connected neural networks for the MNIST dataset. Then, we assessed whether the
robustness of the training observations and the testing observations for a given neural
network comes from the same distribution. Furthermore, we investigated the correlation of
the ε̃∗ between networks trained on the same data.

4.1 Setup of Experiments

Choice of networks. We investigate the robustness distributions of 12 pre-trained MNIST
neural networks with ReLU activation functions. These networks were also part of the work
by König et al. (2024) and are widely used in the literature on neural network verification.
To study the robustness distributions of standard neural networks, in this first analysis, we
only considered neural networks that were not adversarially trained. While the previously
mentioned work investigated 15 neural networks, 3 of these led to various errors, caused
by input inconsistency and out-of-memory issues, and we therefore omitted these from this
part of our study. The test accuracy of these networks ranges from 0.757 to 0.996. Further
details on the number of input images investigated for each network and the training and
testing accuracy of these networks can be found in Appendix B, Table 5.

Choice of input images. Following the work of König et al. (2024), we used the first
100 instances from the MNIST training and testing sets, respectively. We only considered
an image for a specific network if the image was originally correctly classified, meaning that
the set of images in the distribution might vary over networks. The number of input images
considered for each network can be found in Appendix B, Table 5. We briefly compare

4. https://www.vnnlib.org/
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the robustness distributions obtained for 100 instances and 400 instances for 5 networks in
Appendix C.

In total, we endeavoured to determine ε̃∗ for 1 147 instances based on training images
and 1 154 instances based on testing images for the 12 networks. Note that each of these
instances required one or more verification queries to determine ε̃∗; The time-out for each
of these queries was set to one hour. We found a ε̃∗ for each of the images we investigated
for each of the networks.

Algorithm setup. We ran k-binary search with 200 ε values, ranging from 0.001 to 0.4,
in intervals of 0.002, i.e., (0.001, 0.003, . . . , 0.397, 0.399). Consistent with previous work,
we selected 0.001 as the smallest possible value (König et al., 2024; M. N. Müller et al.,
2022), and we opted for 0.4 as the highest possible value to ensure that all images could
be perturbed in a manner that would cause a misclassification. Cicalese et al. (2004) have
analysed the exact maximum length n of values in the range for k-binary search such that
there exists an optimal strategy of a maximum of t queries when at most k queries are
started simultaneously. Using their formula, we determined that using k = 2 simultaneous
queries will result in a theoretical maximum of 11 verification queries with different ε, which
is the lowest number of queries compared to all possible values for k, to find ε̃∗ within the
200 intervals.

However, we note that Cicalese et al. (2004) assume a maximum of one time-out in
the ε range. In our setting, we have an unknown number of time-outs, which renders the
problem more complex. Using two parallel queries, we split the remaining search space
into equal-sized parts every time. When one of the queries finishes while the other query
is still running and we have no new information about the unfinished query, we will find
a new ε that is at the midpoint of the new range of ε. The method used for verification
in this section was BaB (De Palma et al., 2021), which was chosen because it was easy to
use out of the box and did not require dedicated GPU resources. The latter restriction
was necessary since using k-binary search (for k > 1) with GPU acceleration led to several
problems, including unstable communication between the root node that coordinates the
binary search and the k different GPU nodes running the individual verification queries.

Execution environment. All experiments were carried out on a cluster of machines, each
equipped with 2 Intel Xeon E5-2683 CPUs with 32 cores, 40MB cache size and 94GB of
RAM. The amount of RAM available for each verification query for one image and network
depended on the choice of k; we always used one dedicated CPU core per verification query
and restricted each verification query to a time budget of one CPU hour. We used Python
3.10 with CentOS 7.0.

Kolmogorov-Smirnov test. In the following, we use the Kolmogorov-Smirnov test
(Kolmogorov, 1933; Kolmogoroff, 1941; Smirnov, 1944) as a goodness-of-fit and as a two-
sample test. In the first case, the null hypothesis states that a sample stems from a given
distribution, while in the second case, it states that two samples are drawn from the same
underlying distribution.

The test statistic captures the largest vertical distance between two cumulative distri-
bution functions. Specifically, if n is the sample size of the first sample, Fn(x) and F (x)
are two cumulative distribution functions, the first of which is derived from a given sample,
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while the second corresponds to a specific theoretical distribution or to another sample.
Formally, the Kolmogorov-Smirnov test statistic is then defined as follows:

Kn =
√
n · sup

−∞<x<∞
|Fn(x)− F (x)| (1)

Theoretically, the ε∗ values may stem from a real-valued probability distribution, yet in
this work, we are using a binary search algorithm and we only consider certain ε values from
a discretised set. The Kolmogorov-Smirnov test can still be applied, due to the test being
applicable even if the random variables x are not from a continuous distribution. Interested
readers can find a comprehensive overview of the history and development of the test in the
work of Darling (1957).

4.2 Performance of k-binary Search

To investigate the effectiveness of k-binary search, we performed an extensive experiment
using the 12 networks and the training images. We analysed several aspects of the behaviour
of k-binary search by comparing various values of k, specifically, k ∈ {1, 2, 4, 8, 16}, where
the algorithm runs each of the k queries in parallel on a dedicated CPU.

Number of queries. Cicalese et al. (2004) describe a theoretical maximum of queries
necessary to find an item based on the length of the search array for any odd k or k ∈ {2, 4}.
This theoretical maximum applies when there is at most one missing answer, whereas in our
study, we have an unknown number of missing values, e.g., due to out-of-memory errors or
time-outs. These theoretical maxima for the k values considered in this research are shown
in Table 1.

Our empirical analysis, see Table 1, shows that the average number of verification queries
exceeds the theoretical maximum in all cases for which a theoretical maximum exists. This
suggests that the assumption of having at most one missing answer is not a realistic assump-
tion for the setting of neural network verification with the selected time limit. Therefore,
there is room for more theoretical work that studies the more complicated cases, in which
there can be an arbitrary number of missing answers. In our experiments, considering
the training data for the twelve conventionally trained networks, we investigated a total of
107 495 verification queries, of which 3 432 resulted in time-outs and 6 205 in out-of-memory
errors. In finding the ε̃∗ for a given image and network, we encountered an average of 1.68
missing answers to queries, due to time-outs and out-of-memory errors, yet there might be
more, since we did not need to verify all possible ε values for each network and image, due
to the use of binary search. Table 4 in Appendix A provides further information about the
number of time-outs and out-of-memory errors encountered for every k investigated in our
experiments.

We can see that k = 2 resulted in the lowest average number of verification queries
needed as well as the lowest maximum. However, on average, using k = 2 did result in
a slightly higher number of time-outs per query. Using k = 1 resulted in the highest
maximum number of queries while resulting only in the second-highest average number of
queries. Only considering the number of queries, we can see that k = 8 performed worst in
our empirical analysis, as it required 28.51 queries on average and a minimum of 15 queries.
From these results, it appears that the theoretically best choice, k = 2, also works best
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k 1 2 4 8 16

number of queries
per instance

Theoretical maximum 8 11 17 n/a n/a

Minimum 7 4 7 15 4
Maximum 74 19 31 54 54
Average 12.68 11.78 18.33 28.51 22.46

Time (1h time-out)
Average CPU time
per instance [s]

10 162 12 750 19 582 27 234 15 657

Average wallclock
time per instance [s]

9 781 6 717 5 574 4 433 5 878

Average number of
time-outs per instance

0.10 0.17 1.07 1.46 0.19

Table 1: Comparison of the efficiency of finding ε̃∗ using k-binary search with different values
of k. The theoretical maximum number of queries per instance was calculated following
Cicalese et al.(2004); because in practice, there is a possibility of encountering many time-
outs, we observed different maximum values in our work. The table also shows the actual
minimum and average number of queries required to find ε̃∗ for a single instance. The
average number of time-outs is the average number of time-outs encountered when searching
for ε̃∗ for a single image for one network, averaged across networks. The values in this table
are based on all training images for all 12 conventionally trained MNIST networks considered
in our study, using a 1-hour CPU time limit per verification query.

in practice. It might seem counterintuitive that the wallclock time does not continue to
decrease as k increases; however, every time we increase the number of queries that can
be verified simultaneously, the amount of available memory per query decreases. We note
that, in our experiments, all choices of k eventually led to the same ε̃∗.

Running time analysis. Our empirical analysis showed that when considering the need
to minimise the number of queries to run, it is best to select k = 2. In practice, a resource
that often should be minimised is time spent on solving the problem, or in this case, on
creating the robustness distributions. In the following, we will analyse the efficiency of
different k values in terms of wall clock and CPU time.

Figure 1 shows CDF plots of (a) the average wallclock time and (b) the average CPU
time. We would expect that higher degrees of parallelism (expressed by the number of
parallel queries k) would result in lower wallclock times but higher CPU times (due to the
fact that there might be redundant queries). Based on the figures, we see that this pattern
mostly holds, i.e., we observed it for all values except for k = 16. Surprisingly, k = 16
has a relatively higher wallclock time than expected compared to the other values of k,
but a relatively lower CPU time. Note that a higher degree of parallelism also implies a
lower amount of RAM per query (see Section 4.1). For this reason, we conclude that while
a higher degree of parallelism potentially improves the wallclock time, as expected, there
is a limit to which this can be beneficial. In the case of our experiments, this limit was
encountered at k = 8.
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Figure 1: Cumulative distribution of the fraction of instances solved by k-binary search
with different values of k within a certain amount of wallclock time (left) and CPU time
(right) for the 12 networks considered in our study and the MNIST training images. For
each instance, we have taken the average running time over all 12 considered networks. The
lines in the background represent the standard deviation in running time or CPU time at
each point in the cumulative distribution function.

4.3 Robustness Distributions on Training Data

In this section, we report the results from our analysis of the robustness distributions of fully
connected ReLU neural networks on training data. Our goal in this investigation was to
characterise the shape of the distributions and determine how the robustness distributions
of different networks relate to each other.

Figure 2 shows a boxplot of the robustness distribution of the training set of the 12
MNIST classifiers. The networks are sorted by the minimal ε̃∗ from the empirical distribu-
tion. This data strongly indicates that, depending on the settings and the amount of input
perturbation that is tolerated (as specified by ε), different networks would be preferable
based on robust accuracy. For example, for an ε value of 0.012, which has been widely used
in other work, network relu 4 1024 has a robust accuracy of 93% and network net a better
robust accuracy of 100%. However, had we chosen an ε value of 0.04, network relu 4 1024
and net have a robust accuracy of 66% and 49% respectively. There seems to be no clear
relationship between the minimum and the median of a critical epsilon distribution. While
the minimum of the critical ε distribution of network relu 4 1024 is relatively low, it has
the highest median robustness and is indeed one of the most robust networks over the entire
training set.

Figure 3 shows cumulative distribution functions of the robustness distribution for the
classifiers with the highest, second-highest and lowest median ε̃∗. CDF plots are particularly
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Figure 2: Boxplots of the distributions of ε̃∗ for 12 MNIST classifiers over their set of
correctly classified inputs from the training set used in our experiments. The networks are
ordered from the largest to the smallest minimal ε̃∗ value over the images in the training
set. We note that the individual distributions do not include images that were originally
misclassified by the network. The plot contains two horizontal lines, at 0.012 and 0.04,
to indicate the substantial differences in robust accuracy for different networks at those ε
values.

useful, since the robust accuracy of a given network for arbitrary ε values can be easily de-
termined from them (note that we consider the definition of robust accuracy where we omit
originally misclassified images). We observed two qualitatively different scenarios: Figure 3a
shows a situation where one network (relu 4 1024 ) consistently exhibited higher robustness
for all ε values, while in Figure 3b, a case is seen where one network (relu 4 1024 ) achieved
higher robustness for ε values below 0.06, whereas the other displays higher robustness for
ε values of 0.08 and above.
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Figure 3: Empirical CDF plots for the empirical robustness distributions for three neural
networks on training data. The figure on the left shows the robustness distributions for the
two networks with the robustness distributions with the highest median ε̃∗, and the figure
on the right shows the robustness distributions of the networks with the highest and lowest
median ε̃∗, respectively.

4.4 Robustness Distributions on Testing Data

For robustness distributions to eventually be useful for practical purposes, they need to
generalise beyond the training data of a given neural network. To directly assess this, we
compared robustness distributions for the same networks between training and testing data.

Figure 4 shows boxplots of the distributions of ε̃∗ across training and testing sets, respec-
tively. Clearly, the boxplots for training and testing data show a high degree of similarity.
Further evidence for the similarity between robustness distributions on training and testing
data can be seen from the CDFs shown in Figures 5a and 5b, showing the network with the
highest and lowest median ε̃∗, respectively.

Using the Kolmogorov-Smirnov test with a standard significance level of 0.05, we found
no evidence that the minor differences in robustness distributions for the same network on
training and testing data are statistically significant. This suggests that finding the robust-
ness distribution for a given training set is sufficient for analysing the overall robustness of
a network in a supervised learning scenario.

Furthermore, we found evidence that the robustness distributions for the networks con-
sidered could be characterised well by log-normal distributions, except for net-256x4 ; using
the Kolmogorov-Smirnov test with a standard confidence level of 0.05, this distributional
hypothesis was not rejected for any of the other 11 networks. This finding is significant, as
it enables reasoning about the distribution of ε̃∗ values for unseen instances drawn from the
same distribution as the testing images. Therefore, it should be possible to determine the
robustness of a neural network without the need for costly evaluation of a large number of
inputs.
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Figure 4: Boxplots of the distributions of ε̃∗ for 12 MNIST classifiers over their sets of
correctly classified inputs on training and testing data. The networks are ordered from the
largest to the smallest minimal ε̃∗ value over the training sets. We note that the individual
distributions do not include images that were originally misclassified by the network.

A possible explanation of this phenomenon might be rooted in the fact that the gradi-
ents of conventionally trained neural networks tend to follow near log-normal distributions
(Chmiel et al., 2021). It is possible that the gradient loosely influences the size of ε∗,
although the precise nature of this effect remains unknown at this time.

4.5 Correlation Analysis

We now investigate the correlation between the size of ε̃∗ values of the same input for
different networks. In particular, we would like to understand whether the same inputs are
easily perturbed to be misclassified for different networks or whether relative robustness
varies depending on the network. This is relevant, as there might be inputs that are more
important and for which the networks must be robust to perturbations. An understanding
of this might have a substantial impact on preferences for one network over another in
real-world use cases.
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(a) network: relu 4 1024
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Figure 5: Empirical CDF plots for the empirical robustness distributions for the neural
networks with the highest (left) and lowest (right) median ε̃∗ on training and testing data.
The colours of the training distribution of a network correspond to those used in Figure 2.

Figure 6a shows the Spearman correlation coefficient rs of ε̃∗ for training images from
each of the 12 conventionally trained networks. Spearman correlation coefficients were
calculated only based on images that were correctly classified by both networks. When
rs = 0, there is no correlation between the size of perturbation necessary to make two neural
networks misclassify a formerly correctly classified image, and when rs = 1, there is a perfect
monotonic relationship between the size of perturbation necessary for two different networks.
We chose to use the Spearman correlation coefficient over the standard Pearson correlation
coefficient since it does not require the assumption of a linear dependence between the
two random variables describing the data to be analysed. In Figure 6a we can see that
the correlation of ε̃∗ between networks varies from slight correlation (rs = 0.18) to strong
correlation (rs = 0.82), and on average, we observed a correlation of rs = 0.55.

We note that some networks that have a similar architecture, such as relu 6 100,
relu 6 200, and relu 9 100, tend to have higher correlation amongst each other, while archi-
tectures that are very different from each other, such as nn compared to all other networks,
tend to show lower correlation. This could indicate that the robustness of a given input
against perturbation partially depends on the architecture of the given network. However,
as the different networks considered here are trained similarly, we cannot rule out that this
might not hold for similar architectures trained using varying regimens.

Figure 6b shows the correlation coefficient rs of ε̃∗ for MNIST testing images between
each of the 12 conventionally trained networks. We can see that for all pairs of networks
except net 256 4 and relu 9 200, the correlation coefficient is lower than in Figure 6a, with
many pairs that would have a high correlation for training data showing moderate to low
correlation for testing data; for example, the correlation coefficient between relu 9 200 and
relu 3 50 is 0.74 and 0.27 for training and testing data, respectively. This is also reflected
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Figure 6: Heatmap for the Spearman correlation between the ε̃∗ for training, depicted
on the top, and testing images, depicted on the bottom. The networks depicted are 12
conventionally trained MNIST networks considered in our study. Spearman correlation
coefficients were calculated only based on images that were correctly classified by both
networks.

in the average correlation of rs = 0.39 for testing data. This suggests that the training
processes typically ensure that networks exhibit similar robustness for the same images,
but less so for the robustness of test images; it does not imply that networks are less robust
on test images (as we discussed in Section 4.4).
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Figure 7 shows instance-level comparisons of ε̃∗ for the set of MNIST training and
testing images for the networks with the highest and lowest correlation for training and
testing data, respectively. We will first describe the figures based on training data, i.e.,
Figure 7a and Figure 7b. In Figure 7a, we can see that even though there is some variation,
the relationship between ε̃∗ of the two networks is quite strong. One possible explanation
in this case is the similarity in architecture between these two neural networks. In Figure
7b, we observe a very different situation: The correlation coefficient of ε̃∗ of training images
for net and relu 4 1024 is 0.18, indicating a weak relationship between the difficulty of
perturbing an image to be misclassified for the two networks.

Figure 7c and 7d show instance-level comparisons of ε̃∗ for the set of MNIST testing
images. In Figure 7c we see the considerable positive correlation between instance level ε̃∗

for net and net 256x2 ; various images have identical ε̃∗ for both networks. In Figure 7d the
lack of correlation between the instance level ε̃∗ for net and relu 4 1024 is recognisable by
the large variation; there are, however, still several instances with similar ε̃∗ values.

It is well-known that certain adversarial examples transfer between networks (see e.g.,
Papernot et al. (2016)), meaning that a given adversarial example can mislead multiple
networks. However, we note that when a given adversarial example misleads two networks,
this does not necessarily imply that the critical ε̃∗ is similar for both networks. For this
reason, our analysis is orthogonal to the findings of Papernot et al. (2016).

5. Empirical Investigation on Adversarially Trained Fully-Connected
Neural Networks

In a second set of experiments, we investigated the effect of adversarial training on the
robustness distributions of fully-connected neural networks. Adversarial training improves
the robustness of a neural network, which should be clearly reflected in the respective ro-
bustness distributions. In addition to experiments with MNIST networks, we have obtained
robustness distributions for networks trained on the CIFAR-10 (Krizhevsky, Nair, & Hin-
ton, n.d.) and GTSRB (Houben, Stallkamp, Salmen, Schlipsing, & Igel, 2013) datasets.
Our main results of these experiments are discussed in Section 5.3 after we discussed the
experimental set-up and the quality of the obtained robustness distributions.

5.1 Setup of Experiments

Choice of networks. In this section, we selected the mnist nn and mnist relu 4 1024
architectures, as these have the lowest and highest median ε̃∗ in the robustness distribu-
tions from the previous section, respectively. This gives a versatile view of how robustness
improves when networks are trained adversarially.

We additionally investigated networks trained on the CIFAR-10 and GTSRB datasets.
CIFAR-10 is included because it is a more complex dataset commonly studied in neural
network verification, while GTSRB was chosen for its practical application in traffic sign
classification.

For the CIFAR-10 dataset, we have selected CIFAR 7 1024, a regularly used architecture
in the neural network verification literature (König et al., 2024; M. N. Müller et al., 2022).
We included only this single fully-connected network due to the generally low accuracy of
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Figure 7: Scatterplot of ε̃∗ for different training and testing images, where each point
corresponds to one image. Figures 7a and 7b show the ε̃∗ of the networks with the highest
and lowest Spearman correlation, respectively, for the training images. Figures 7c and 7d
show the ε̃∗ of the networks with the highest and lowest Spearman correlation, respectively,
for the testing images. The images that were originally misclassified by at least one of the
networks are coloured green and are represented as a cross, and the rest are coloured blue
and represented as dots. Spearman correlation coefficients were calculated only based on
images that were correctly classified by both networks.

such models on CIFAR-10, but believe that this inclusion is necessary to provide a complete
picture of the robustness of different architectures.

For the GTSRB experiments, the first fully-connected network we selected is inspired by
the work of Mohapatra, Weng, Chen, Liu, and Daniel (2020), which introduced a verification
approach against semantic perturbations. This is a 6-layer ReLU network with 256 nodes
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in each hidden layer, and we refer to it as GTSRB 6 256. The second FFNN we consider
has the same architecture as CIFAR 7 1024.

Adversarial training. Following Wong, Rice, and Kolter (2020), we use FGSM, as in-
troduced in Section 2.4, training with non-zero initialisation. For MNIST, we used a per-
turbation of 0.2 and for CIFAR-10 and GTSRB 8/255. For PGD training, as introduced in
Section 2.4, we used the training protocol from Madry et al. (2017). For MNIST, we used a
perturbation of 0.3, and for CIFAR-10 and GTSRB, we used a perturbation of 8/255. For
GTSRB, we used the same training protocol as for CIFAR-10. For all training methods,
we performed hyperparameter optimisation using Optuna (Akiba, Sano, Yanase, Ohta, &
Koyama, 2019); the final hyperparameter values can be found in Appendix I, Tables 21 and
22.

Choice of input images. We used the same MNIST instances as in Section 4.1. For
both CIFAR-10 and GTSRB, we randomly selected 100 testing and training images each,
with random seed 42. Given that the GTSRB dataset contains 42 classes, we performed
stratified random selection.

The accuracy of the CIFAR-10 network is notably low, and the number of verified
instances is also quite limited, particularly for the adversarially trained networks (refer to
Appendix E, Table 9). However, we chose not to include additional instances solely based
on their verifiability, as doing so could introduce bias towards easily verifiable images and
result in robustness distributions that lack generalisability.

Algorithm setup. For MNIST, we used the same k-binary search setup as before (i.e.,
k = 2). The GTSRB and CIFAR-10 experiments were performed using α, β-CROWN for
verification (Zhang et al., 2018), which is considered state of the art in neural network
verification. This deviation of verifier use from the previous section is motivated by the size
of the architectures we employ for these datasets. We use GPU-accelerated α, β-CROWN,
and as there are no methods currently known to us that allow for efficient and dependable
status communication between multiple GPU nodes involved in verification tasks and a
root CPU node that coordinates the k-binary search, we use 1-binary search in this section.
Furthermore, for k-binary search to be as efficient as possible, verification queries need to
be terminated while running, which turned out to be practically impossible in our GPU
setup. Therefore, we used standard binary search (k = 1) for CIFAR-10 and GTSRB, using
102 ε values ranging from 0.00 to 0.4 in increments of 1/255. This approach differs from
the one used for MNIST, as our focus was solely on investigating full pixel differences.

Execution environment. The experiments for MNIST were run in the same execution
environment as outlined in Section 4.1. The GTSRB and CIFAR-10 experiments were
carried out on a second cluster of machines, each equipped with 4 NVIDIA GeForce GTX
1080 Ti GPUs and 11 GB VRAM per GPU. For both datasets, we set a time restriction
of one hour of wallclock time per query; wallclock time was chosen because of our use of
GPUs. We used Python 3.10 with CentOS 7.0
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5.2 Verification Gaps and Quality of Robustness Distributions

In this section, we investigate the extent to which the added complexity of adversarial train-
ing and more sophisticated datasets, specifically CIFAR-10 and GTSRB, affect robustness
distributions.

Table 2 shows an overview of quality measures for the robustness distributions deter-
mined in our experiments. We note that the percentage of cases in which a critical termi-
nation occurs for conventionally trained MNIST networks is higher than the value reported
in Section 4.2, as there, the average was taken over all twelve networks and training as well
as testing data. The percentage of instances for which a critical termination occurred in-
creases significantly when the networks are trained adversarially, compared to conventional
training. Furthermore, for the CIFAR-10 network, a large percentage of instances could not
be solved at all (i.e., not a single query was successful). As the robustness distributions of
this network have a large percentage of unsolved instances (making it of low quality, see
Section 3.2) and since the network has a low general accuracy, we have decided to exclude
it from further analysis.

Network Training
test
accuracy

KS-test passed
% critical
terminations

% unsolved
instances

Average
verification
gap

train test test test test

MNIST nn Standard 0.757 True True 4.938 0 0.002
FGSM 0.910 False False 31.461 0 0.003
PGD 0.802 False False 35.065 0 0.003

MNIST relu 4 1024 Standard 0.941 True True 19.355 0 0.003
FGSM 0.978 False False 36 0 0.003
PGD 0.782 True False 31.169 0 0.003

CIFAR 7 1024 Standard 0.540 True False 43.860 29.825 0.008
FGSM 0.367 True True 31.429 51.429 0.017
PGD 0.510 False False 29.787 61.702 0.023

GTSRB 6 256 Standard 0.800 False False 25 0 0.005
FGSM 0.604 True True 66.197 0 0.019
PGD 0.613 True True 66.667 0 0.005

GTSRB 7 1024 Standard 0.794 False False 62.921 0 0.010
FGSM 0.586 True False 75.757 0 0.028
PGD 0.673 False True 84.615 0 0.029

Table 2: Details on the quality of the robustness distributions of the fully-connected neural
networks for the MNIST, CIFAR-10 and GTSRB datasets. Test accuracy was measured over
the entire test set for each respective network. KS-test refers to the Kolmogorov-Smirnov
test we used to test for log-normality with a significance level of 0.05. If an empirical
robustness distribution does not pass this test, there is evidence that it significantly deviates
from a log-normal distribution. A critical termination occurs when for an instance, there are
one or more out-of-memory or time-out errors for queries falling between ε̃∗ and p̃. Unsolved
instances refer to cases where we could not find a single solution for any verification query
for a given instance due to out-of-memory or time-out errors. The average verification gap
is the average gap between ε̃∗ and p̃ for all solved instances over the testing data. Note that
the minimum interval between ε-values tested is 0.002 for the MNIST dataset, and 0.0039
for the CIFAR-10 and GTSRB datasets.
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Figure 8: Empirical CDF for the empirical robustness distributions of neural networks
across MNIST, CIFAR-10, and GTSRB datasets. The shaded area illustrates the difference
between ε̃∗ and the upper bound p̃ of the respective image. (a) and (b) show the MNIST
networks with the highest and lowest median ε̃∗. (c) illustrates the CIFAR-10 architecture
trained with different methods. (d) and (e) show the GTSRB networks with the highest
and lowest median ε̃∗. Note that the axis scaling differs for different datasets.

In Figure 8, we show the robustness distributions for the three datasets for the fully-
connected neural networks with different training regimens. We can see that, indeed, the
number of critical terminations for both CIFAR-10 and GTSRB networks is substantially
higher than for the MNIST networks. Using the Kolmogorov-Smirnov test with a signifi-
cance level of 0.05, we conclude that for the GTSRB and CIFAR-10 networks, the ε̃∗ and
p̃ distributions are significantly different from each other, except for the CIFAR-10 archi-
tecture trained with FGSM. The large number of critical terminations is caused by the
complexity of the verification queries around the transition phase, i.e., the ε values that are
close to the boundary between safe values and values leading to adversarial examples. This
indicates that the distributions are not of high quality as there is a high uncertainty in the
actual shape of robustness distributions, except for the MNIST networks and CIFAR-10
architecture trained with FGSM, see Appendix K, Table 23.
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Figure 9: Boxplots of the empirical robustness distributions for the MNIST and GTSRB
neural networks in comparison to the adversarially retrained versions of these networks on
training and testing data. Note that the axis scaling for the GTSRB networks differs from
that for the MNIST networks. Using the KS-test with significance level 0.05 we did not
find any significant differences between the distributions for training and testing data.

5.3 Robustness Distributions of Adversarially Trained Fully-Connected
Neural Networks

In this section, we report the main results of our empirical investigation of the influence
of adversarial training on the robustness distributions of a fully-connected neural network.
Our goal was to demonstrate that ε̃∗ distributions can give a nuanced picture of the effects
of adversarial training on the robustness of a given neural network.

Figure 8 shows that adversarial training increases the robustness of the networks we
studied in allmost all cases. While this is clear for most networks, for CIFAR 7 1024 and
GTSRB 7 1024 we visually confirm this due to overlap between the ε̃∗ and p̃ of some
distributions. The mean ε̃∗ for all distributions were quite larger after using adversarial
training, see also Appendix E. Figure 9 provides boxplots of the same distributions, and
again, shows the increase in ε̃∗ when using adversarial training. Surprisingly, we not only
found that adversarial training increases the robustness of the least robust inputs, but we
also observed an increase in the robustness for the entire set of verified inputs. The latter is
clearly visible from the respective robustness distributions, which demonstrates once more
how the nuanced view of robustness provided by these can produce new insights.

Table 2 shows whether the robustness distribution of a neural network passed the
Kolmogorov-Smirnov test. Interestingly, we observed that although the robustness dis-
tributions of the standardly trained MNIST neural networks appear to follow a log-normal
distribution, adversarial training changes this; for the GTSRB networks, we see the oppo-
site as the robustness distributions of the adversarially trained networks seem to follow a
log-normal distribution where that of the standardly trained does not. Additionally, the ro-
bustness distributions show distinct shapes across different datasets and training methods,
though no consistent correlations were found between datasets.

Furthermore, we found evidence that adversarial training generally increases the compu-
tational complexity of verifying the networks, examined in this study while also enhancing
their robustness. For example, for MNIST nn the number of queries that timed out was
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69 and 59 times higher for FGSM and PGD training, respectively compared to standard
training (see also Appendix F).

6. Empirical Investigation on Adversarially Trained Convolutional
Neural Networks

In a third set of experiments, we investigated the effect of adversarial training on the
robustness distributions of convolutional neural networks. We did this in a way similar to
the second set of experiments, except that we used a GPU-based method for the verification
of the networks trained on MNIST as well, due to the nature of the network architectures
we considered. The main results of these experiments are discussed in Section 6.3 after we
discussed the experimental set-up and the quality of the obtained robustness distributions.

6.1 Setup of Experiments

In the following analysis, for each dataset, we use the same instances for verification as in
Section 5.1 and we use the same methods for training the different architectures.

Choice of networks. We selected two architectures from the literature (Mirman et al.,
2018), convSmall and convMedG, which were both trained using three different methods.
These networks were also part of the study performed by König et al. (2024). Both networks
were trained on MNIST data and contained convolutional layers as well as ReLU activation
functions. convSmall was trained by Mirman et al. (2018) using conventional training,
denoted Point in the literature, as well as DiffAI and PGDK adversarial training (see also
Section 2). convMedG was trained using conventional training as well as PGDK with two
different perturbation radii, namely 0.1 and 0.3, which specify the maximum size of the
perturbation used in adversarial training. These networks were also considered in the work
of König et al. (2024) and achieve a testing accuracy ranging from 0.977 to 0.991. Additional
specifics regarding the number of images used for each network, as well as comprehensive
training and testing accuracy scores, can be found in Appendix E, Table 8.

For the analysis of the CIFAR-10 networks, we selected two convolutional networks,
ConvBig and resnet 4b. While ConvBig was used by König et al. (2024) and C. Müller et
al. (2021), resnet 4b was selected from the VNNCOMP 2021 CIFAR-10 benchmark (Bak et
al., 2021).

Finally, we incorporated two convolutional neural networks trained on GTSRB. The
architecture of these is based on the network from the work by Wu, Wicker, Ruan, Huang,
and Kwiatkowska (2020), which addresses the maximum safe radius and feature robustness
problems under the assumption of Lipschitz continuity. We refer to this architecture as
GTSRB cnn deep game. It is a 10-layer network, featuring 4 convolutional layers and a
max-pooling layer. The authors used the same network architecture for CIFAR-10 and
GTSRB, but since only the CIFAR-10 version is available online, we reconstructed and
trained the network on the GTSRB dataset from scratch for this work.

The second CNN is inspired by a network from the VNNCOMP 2023 (Brix, Bak, et al.,
2023) GTSRB benchmark, which featured binarised neural networks. We included the ar-
chitecture referred to as Accuracy Efficient Architecture for GTSRB and Belgium Dataset,
although, for simplicity, we call it GTSRB cnn vnncomp23. This is a 5-layer network, fea-
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turing 3 convolutional layers. We retrained this network from scratch without binarisation,
which we consider to fall outside of the scope of this work. The GTSRB cnn vnncomp23
network trained with FGSM led to verification errors from α, β-CROWN, which is why
we have excluded it from our analysis. Values for the training hyperparameters for the
CIFAR-10 and GTSRB networks can be found in Appendix I, Tables 21 and 22

Algorithm setup. The neural networks for MNIST used in this part of the study contain
convolutional layers, which could not generally be solved by the BaB verifier used in Section
4 and 5.1. This choice prompted us to use standard binary search for verification of all
networks, as in Section 5.1 with α, β-CROWN for verification. We used the same range of
ε values for the MNIST networks as we did in Section 5.1. The choices for the other two
datasets are the same as described in Section 5.1.

Execution environment. All experiments in this part of our study were carried out on
a cluster of machines, each equipped with 4 NVIDIA GeForce GTX 1080 Ti GPUs and 11
GB video memory per GPU. We provided the same time budget of an hour in wallclock
time but did not impose any memory constraints. We used Python 3.10 with CentOS 7.0

6.2 Verification Gaps and Quality of the Robustness Distributions

In this section, we investigate the effect of the added complexity of using convolutional
networks. In these distributions, we encountered more uncertainty considering the ε̃∗, due
to time-outs and out-of-memory errors. Our goal was to understand the extent to which
this uncertainty affects our empirical results.

Table 3 shows an overview of quality measures for the robustness distributions. The
percentage of instances for which a critical termination exists is larger than for the fully-
connected networks considered in the previous section, and, as before, we observed an
increase for adversarially trained networks. Notably, for the CIFAR-10 networks, a large
percentage of verification instances once again could not be solved.

Figure 10 shows empirical CDF plots of the robustness distributions for the convolu-
tional neural networks with different training regimens. The robustness distributions are
generally of lower quality than those presented in the previous section; specifically, the veri-
fication gaps for almost all convolutional networks are rather large. As a notable exception,
for the convSmall network trained with DiffAI rather than Point or PGDK, we found that
the verification time decreased and the verification gaps turned out to be relatively small.
We noticed that, while in Section 5.2 a non-zero ε̃∗ could be found for most instances, for
the GTSRB networks, the robustness distributions generally have lower bounds of 0, and
for CIFAR-10, even the conventionally trained networks have robustness distributions with
lower bounds of 0. For this reason, and because CIFAR-10 contains a large number of verifi-
cation instances that cannot be solved, we excluded the networks trained on these datasets
from further investigation. In this part of our analysis, only the ε̃∗ and p̃ distributions of the
convSmall architecture trained with standard training and DiffAI do not differ significantly
from one another; see also Appendix K.
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Network Training
test
accuracy

KS-test passed
% critical
terminations

% unsolved
instances

Average
verification
gap

train test test test test
convSmall (MNIST) point 0.983 False False 76.344 0 0.012

DiffAI 0.997 True False 73.196 0 0.006
PGDK 0.990 True True 98 0 0.037

convMedG (MNIST) point 0.986 False False 78 0 0.016
PGDK 0.1 0.991 False False 98.881 0 0.053
PGDK 0.3 0.998 False False 100 0 0.036

conv big (CIFAR-10) Standard 0.650 False True 39.063 21.875 0.007
FGSM 0.588 True True 44.444 53.704 0.024
PGD 0.593 True True 50.943 47.170 0.046

resnet 4b (CIFAR-10) Standard 0.884 invalid invalid 12.162 18.919 0.004
FGSM 0.668 True True 3.333 59.524 0.027

GTSRB cnn deep game Standard 0.927 invalid invalid 85.416 0 0.016
FGSM 0.857 invalid invalid 90.425 0 0.029
PGD 0.793 invalid invalid 100 0 0.048

GTSRB cnn vnncomp23 Standard 0.947 invalid invalid 85.714 0 0.013
FGSM 0.880 invalid invalid 95.745 3.614 0.031

Table 3: Details on the quality of the robustness distributions of the convolutional neural
networks for the MNIST, CIFAR-10 and GTSRB datasets. The test accuracy is measured
over the entire test set for each respective network. KS-test refers to the Kolmogorov-
Smirnov test we used to test for log-normality with a significance level of 0.05. If an empirical
robustness distribution does not pass this test, there is evidence that it significantly deviates
from a log-normal distribution. A test marked as invalid indicates a situation where our
data did not adhere to the assumptions of the KS-test; this happened when there were
verification instances for which we found a ε∗ of 0, as log-normal distributions consist of
strictly positive random variables. A critical termination indicates a situation where a
verification instance gave rise to one or more out-of-memory errors or time-out errors for
queries that lay between the ε̃∗ and p̃. Unsolved instances refer to cases where we could not
find a single solution for any verification query for a given instance due to out-of-memory
or time-out errors. The average verification gap is the average gap between ε̃∗ and p̃ for all
solved instances over the testing data. Note that the minimum interval between ε-values
tested is 0.002 for the MNIST dataset and 0.0039 for the CIFAR-10 and GTSRB datasets.

6.3 Robustness Distributions of Adversarially Trained Convolutional Neural
Networks

We now report the results of our empirical investigation of the influence of adversarial train-
ing on the robustness distributions of a given neural network. Our goal was to demonstrate
that ε̃∗ distributions can capture to what extent adversarial training affects the robustness
of convolutional neural networks.

From Figure 11, we can see that for convMedG, the robustness improved significantly
when trained with PGDK with weight 0.3, while for the other networks, we did not observe
a significant improvement due to training. This increase in robustness comes at a marginal
cost, as the training accuracy is only minimally worse than that of the conventionally trained
network (0.995 vs 0.996), while the testing accuracy of the adversarially trained network
turned out to be slightly better than that of the conventionally trained network (0.988 vs
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(c) resnet 4b (CIFAR-10)
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(d) convBig (CIFAR-10)
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Figure 10: Empirical CDF for the empirical robustness distributions of convolutional neural
networks across the MNIST, CIFAR-10 and GTSRB datasets. The shaded area illustrates
the difference between ε̃∗ and the upper bound p̃ of the respective image. (a) and (b) show
the MNIST networks trained with different methods, (c) and (d) illustrate the CIFAR-10
networks trained with different methods. (e) and (f) show the GTSRB networks trained
with different methods.

0.986). The means of the distributions after adversarial training do significantly differ from
those induced by conventional training, except for convSmall trained with DiffAI, see also
Appendix E Table 8. We believe this lack of improvement can partially be explained due to
the low quality of the robustness distributions; since the verification gap is quite large for
most networks from any of the three datasets, it could be possible to detect a quantitative
improvement from robustness distributions of a quality higher than that we were able to
achieve here.

7. Discussion and Outlook

In this study, we have shown the limitations of assessing neural network robustness solely
based on robust accuracy concerning a fixed perturbation radius, denoted by ε. In partic-
ular, the robustness of networks varies greatly under different perturbation radii. As an
alternative, we propose robustness distributions, which provide a far more nuanced view of
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Figure 11: Boxplots of the training and testing distribution of ε̃∗ for two MNIST networks,
trained using conventional training as well as two adversarial training methods. Using the
Kolmogorov-Smirnov test, we did not find significant differences between the distributions
of training and testing data.

neural network robustness. Rather than a single robust accuracy value, our approach pro-
vides a considerably more informative distribution describing the robustness across different
input data. The robustness distributions provide a holistic view of robustness across a wide
range of different ε values, which can aid in better-informed model selection for more robust
models. We determine the robustness distributions over a set of critical ε values. A critical
ε value represents, for a given input, the maximum amount of perturbation for which we
can prove robustness. While determining critical ε values comes at an additional computa-
tional cost, we show that, when utilising parallel k-binary search, they can be determined
efficiently.

It is computationally challenging to calculate the critical epsilon distributions. We have
developed measures to assess the quality of these distributions, notably the verification gap,
the percentage of critical terminations and the percentage of unsolved instances. While
for the MNIST networks (fully connected feed-forward networks, convolutional networks,
both trained conventionally and adversarially), we often obtain small verification gaps,
indicating that the verification engine was able to solve most queries, resulting in high-
quality distributions. However, for the CIFAR-10 and GTSRB networks, more queries result
in time-out and out-of-memory errors, resulting in lower-quality robustness distributions,
from which we can not make general statements. This, in turn, indicates that further
advances are needed to obtain robustness distributions for networks on challenging datasets.

Analysing these critical ε (or more generally: robustness) distributions, we have found
evidence that, at least for the fully-connected MNIST ReLU networks we have analysed,
they closely resemble log-normal distributions. Determining why these robustness distribu-
tions tend to follow a log-normal distribution is a question that is left for future work.
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We also found evidence that the robustness distributions for inputs that the network
was not trained on (testing data) do not differ significantly from those of the inputs used
for training. This is notable since the critical epsilon value is directly related to the decision
boundary. Where the training process has the opportunity to adapt the decision boundary
based on the training data, this has not happened for the testing data. Generally, it is
common that a relatively small, yet significant, number of observations already converge
to a constant and reliable distribution. That leads us to believe that the use of critical ε
distributions makes it possible to confidently make general statements of the robustness of
a given network, without the need to determine the critical ε value for the entire dataset.

To further demonstrate the power of robustness distributions, we performed a correlation
analysis on the critical ε values for different MNIST fully-connected networks. This analysis
uncovered that there is generally a moderate to strong correlation in the perturbation size
needed for an image to be able to deceive different networks. At the same time, we found
that these networks may differ in the classes they mispredict for a given non-robust input.

We also investigated the effect of adversarial training on robustness distributions on
multiple datasets and architectures. We found that the robustness distributions can capture
the increased robustness produced by adversarial training for part of the datasets and
architectures. By using robustness distributions, we were able to quantify the change in
robustness in a statistically meaningful way.

At the same time, for part of the architectures we investigated (for example, all the
CIFAR-10 networks), complete verification is too expensive, and we cannot find high-quality
robustness distributions even with state-of-the-art verification methods. As we have shown
the power of robustness distributions in giving insight into and comparing the robustness
of networks, it is necessary to focus on methods that can find the critical ε of these more
complex networks.

In this part of the investigation, we also found that adversarially trained neural networks
do not seem to follow log-normal distributions. This warrants further research on what
determines the shape of the robustness distributions.

In future work, we plan to explore ways to increase the efficiency of calculating critical
ε distributions via k-binary search, e.g., via reusing information from other images. Addi-
tionally, investigating the effect of different norms, besides the l∞ norm, on the shape of the
robustness distribution would be interesting. To further understand the effect of training
regimen and architecture on the shape of the robustness distributions, it is essential to do
a more principled study of different training regimens for the same architecture. We also
believe that it would be desirable to have a single robustness metric that is sound, gener-
alisable and preferably computationally cheaper, based on the notion of the distribution of
critical ε over input data. Finally, we are interested in analysing robustness distributions
for a broader range of machine learning tasks, such as regression.

In this paper, we have introduced the concept of robustness distributions, which provides
a nuanced view of the robustness of neural networks and thus enables new and powerful
techniques for analysing the robustness of machine learning methods. While we have de-
veloped and studied this concept in the context of neural networks, it can, in principle,
be applied more broadly and thus enable further progress in the broader area of robust
machine learning.
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Appendix A. Details of k-binary Search Analysis

k Total queries Time-out errors Out-of-memory errors Cancelled queries

Absolute Absolute Ratio Absolute Ratio Absolute Ratio

1 14 547 119 0.008 5 643 0.388 206 0.014
2 13 516 191 0.141 131 0.010 1 961 0.145
4 21 025 1 228 0.058 140 0.007 6 499 0.309
8 32 646 1 677 0.051 86 0.003 15 949 0.438
16 25 761 217 0.008 205 0.008 12 398 0.481

total 107 495 3 432 6 205 37 013

Table 4: Statistics of instances investigated for training data for different values for k. The
number of total queries includes all ε values investigated over all images and all twelve
networks. The number of time-out errors is the total number of time-outs encountered
(at 3 600 seconds) considering all queries over all networks and all images. The number
of out-of-memory errors is the total number of queries that resulted in a memory error.
The column cancelled queries displays the total number of queries that became redundant,
as another query was solved while running this specific query, giving valuable information
about this query.
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Appendix B. Statistics Robustness Distributions MNIST
Fully-Connected Conventionally Trained

network lowest ε̃∗ mean ε̃∗ instances accuracy
training testing training testing training testing training testing

net 0.013 0.005 0.042 0.038 99 99 0.996 0.996
net 256x2 0.011 0.007 0.037 0.034 99 100 0.995 0.995
relu 6 100 0.007 0.009 0.065 0.063 96 98 0.969 0.968
relu 3 50 0.007 0.005 0.058 0.052 97 98 0.964 0.962
relu 4 1024 0.005 0.003 0.073 0.068 93 97 0.945 0.941
relu 9 100 0.005 0.009 0.064 0.057 96 95 0.957 0.956
relu 3 100 0.005 0.003 0.057 0.057 98 97 0.971 0.968
relu 9 200 0.003 0.003 0.072 0.067 95 97 0.957 0.956
net 256x4 0.001 0.011 0.072 0.067 98 99 0.991 0.990
net 256x6 0.001 0.001 0.071 0.064 97 98 0.997 0.978
relu 6 200 0.001 0.005 0.067 0.067 98 98 0.972 0.969
nn 0.001 0.001 0.030 0.027 80 76 0.745 0.757

Table 5: Statistics of the ε̃∗ distributions and the testing and training accuracy over all
testing and training instances for the 12 conventionally trained, fully connected ReLU net-
works. We report the minimum and mean of the largest safe radius that we found, ε̃∗, both
for training and testing data. Additionally, we report the number of correctly classified
images per network and the training and testing accuracy over all MNIST training and
testing data respectively.
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Appendix C. Size of Sample for Robustness Distributions

ε̃∗ mean ± variance
p-value KS
two-sample test

Network N=100 N=400

relu 9 200 0.072± 0.038 0.067± 0.033 0.716
net 256x4 0.072± 0.035 0.072± 0.032 0.640
net 256x6 0.071± 0.035 0.069± 0.031 0.995
nn 0.030± 0.022 0.028± 0.024 0.81
net 256x2 0.037± 0.015 0.039± 0.017 0.296

Table 6: Comparison of the robustness distribution of the ε̃∗ of 100 random MNIST training
images used in this work and the robustness distribution of the ε̃∗ of 400 additionally
random MNIST training images (mean and standard deviation). This second set of 400
images strictly does not contain any of the images of the original 100 images. The table
shows the outcomes of a two-sample Kolmogorov-Smirnov (KS) test at a significance level
of 0.05. The test shows whether the respective ε̃∗ distributions are deemed from the same
distribution, in all cases we cannot reject the H0 of log-normality.
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Figure 12: Emperical CDF for the empirical robustness distributions for the 100 MNIST
images of conventionally trained neural networks in comparison to another 400 random
images for this architecture on training data. Note that we create the CDF with images that
are correctly classified of these 100 and 400 images, this might mean that the distribution
is created with less than 100 and 400 images respectively, depending on the accuracy of the
network. We have added a red dotted line representing the log-normal distribution fitted
on the 100 samples for each network. All robustness distributions, except for net 256x4,
with 100 images tend to follow a log-normal distribution. While the distributions are highly
similar (see Figure 12), the Kolmogorov-Smirnov test becomes conservative at large sample
sizes and fails to detect that the distributions of 400 images follow a log-normal distribution,
as expected. The Kolmogorov-Smirnov test becomes overly conservative for large samples,
especially when considering discrete data.
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Appendix D. Statistics of Running Time Robustness Distributions
MNIST Fully-Connected Conventionally Trained

network Total time k=2 Average per image
Average
verification
time [h]

Total time all

wallclock [h] cpu [h] wallclock [h] cpu [h] wallclock [h] cpu [h]

net 159 272 0.8 1 0.12 440 1183
net 256x2 49 86 0.25 0.43 0.04 154 49
relu 6 100 430 829 2 4 0.38 1263 2988
relu 3 50 219 418 1 2 0.18 603 1566
relu 4 1024 490 932 3 5 0.41 1507 3742
relu 9 100 448 851 2 4 0.37 1281 3074
relu 3 100 409 782 2 4 0.34 1078 2819
relu 9 200 491 953 3 5 0.42 1568 3704
net 256x4 550 1022 3 5 0.43 1407 3691
nn 95 171 0.59 1 0.09 286 759
net 256x6 493 948 3 5 0.42 1462 3943
relu 6 200 450 868 2 4 0.39 1409 3392

total 4283 8132 2 4 0.29 12459 31260

Table 7: Information of the running time in CPU time in hours and wallclock time in hours
of the experiments inferring the ε̃∗ distributions for fully-connected conventionally trained
MNIST networks. Total time k = 2 contains the running time for all experiments for k = 2
and total time all contains the total time for all different values for k. The total and average
times consider both testing and training instances.
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Appendix E. Statistics of Robustness Distributions for Fully-Connected
Architectures including Adversarial Training

Network
Training
method

Lowest ε̃∗ Mean ε̃∗ Instances Total errors Accuracy

train test train test train test train test train test

mnist nn Standard 0.001 0.001 0.030 0.031 81 81 0 0 0.745 0.757
FGSM 0.001 0.007 0.188 0.174 92 89 0 0 0.912 0.910
PGD 0.017 0.007 0.270 0.268 84 77 0 0 0.799 0.802

mnist relu 4 1024 Standard 0.005 0.005 0.073 0.073 93 93 0 0 0.945 0.941
FGSM 0.077 0.017 0.244 0.223 97 100 0 0 0.980 0.978
PGD 0.017 0.007 0.290 0.290 85 77 0 0 0.780 0.782

convSmall Point 0.005 0.005 0.144 0.138 90 93 9 6 0.987 0.983
DiffAI 0.079 0.025 0.155 0.149 98 99 0 0 0.981 0.977
PGDK 0.117 0.019 0.156 0.159 92 100 7 0 0.995 0.990

convMedG Point 0.013 0.047 0.127 0.127 100 100 0 0 0.996 0.986
PGDK w 0.1 0.071 0.059 0.135 0.133 97 84 3 16 0.999 0.991
PGDK w 0.3 0.059 0.137 0.279 0.288 96 98 3 1 0.995 0.988

Table 8: Statistics of the ε̃∗ distributions and the testing and training accuracy overall
testing and training instances for the MNIST architectures. The total error contains the
number of instances that could not be verified due to the verification process leading to only
time-outs and errors. The bold values indicate that the mean of the adversarially trained
distribution is significantly different from the conventionally trained distribution according
to a t-test with a significance level of 0.05.

Network
Training
method

Lowest ε̃∗ Mean ε̃∗ Instances Total errors Accuracy

train test train test train test train test train test

cifar 7 1024 Standard 0.000 0.000 0.002 0.002 38 40 17 24 0.641 0.540
FGSM 0.000 0.0078 0.025 0.036 18 17 18 14 0.362 0.367
PGD 0.000 0.000 0.007 0.006 17 18 29 47 0.663 0.510

conv big Standard 0.000 0.000 0.000 0.000 63 49 14 35 0.975 0.650
FGSM 0.000 0.0039 0.011 0.01 20 25 29 48 0.668 0.588
PGD 0.000 0.000 0.010 0.010 18 19 25 41 0.654 0.593

resnet 4b Standard 0.000 0.000 0.000 0.000 81 59 14 19 0.987 0.884
FGSM 0.000 0.0039 0.013 0.017 13 17 25 23 0.441 0.668

Table 9: Statistics of the ε̃∗ distributions and the testing and training accuracy over all
testing and training instances for the included CIFAR architectures. The total error contains
the number of instances that could not be verified due to the verification process leading
to only time-outs and errors. The bold values indicate that the mean of the adversarially
trained distribution is significantly different from the conventionally trained distribution
according to a t-test with a significance level of 0.05.
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Network
Training
method

Lowest ε̃∗ Mean ε̃∗ Instances Total errors Accuracy

train test train test train test train test train test

gtsrb 6 256 Standard 0.000 0.000 0.009 0.008 98 84 0 0 0.989 0.800
FGSM 0.000 0.000 0.023 0.023 76 71 0 0 0.771 0.604
PGD 0.004 0.000 0.027 0.027 70 69 0 0 0.767 0.613

gtsrb 7 1024 Standard 0.000 0.000 0.007 0.007 100 89 0 0 0.982 0.794
FGSM 0.000 0.000 0.015 0.014 72 66 0 0 0.776 0.586
PGD 0.000 0.000 0.015 0.015 89 78 0 0 0.875 0.673

gtsrb cnn deep game Standard x x x x 100 96 0 0 1.00 0.927
FGSM x x x x 100 94 0 0 0.979 0.857
PGD x x x x 96 86 0 0 0.952 0.793

gtsrb cnn vnncomp23 Standard x x x x 99 95 0 0 1.00 0.957
FGSM x x x x 100 91 0 0 0.965 0.885
PGD x x x x 91 79 0 0 0.901 0.724

Table 10: Statistics of the ε̃∗ distributions and the testing and training accuracy over all test-
ing and training instances for the included GTSRB architectures. The total error contains
the number of instances that could not be verified due to the verification process leading
to only time-outs and errors. The bold values indicate that the mean of the adversarially
trained distribution is significantly different from the conventionally trained distribution
according to a t-test with a significance level of 0.05. For the instances where no ε̃∗ could
be found, we included an x.
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Appendix F. Statistics of Running Time Robustness Distributions with
Different Training Methods

Network Train method
Total
running time [h]

Time-outs Errors
Avg.Running
time [h]
per image

Avg.Running
time [h]
per query

mnist nn Standard 170.983 3 8 1.055 0.089
FGSM 972.197 209 0 5.371 0.383
PGD 758.036 178 2 4.708 0.340

mnist nn
relu 1024 Standard 931.710 40 54 5.009 0.409

FGSM 1639.122 548 1 8.320 0.560
PGD 924.545 227 1 5.707 0.415

Total FFNN 5436.432 1205 66

convSmall Point 537.199 484 627 2.699 0.224
DiffAI 160.453 156 271 0.814 0.090
PGDK 1956.685 1884 1791 10.138 0.421

convMedG Point 722.142 656 867 3.611 0.259
PGDK w 0.1 2062.852 2004 2954 10.915 0.357
PGDK w 0.3 1618.928 1537 2136 8.135 0.346

Total CNN 6028.259 6721 8646

Table 11: Information of the running time in CPU time for the FFNN architectures and
GPU time for CNN architectures in hours of the ε̃∗ experiments. The total and average are
all considering testing and training experiments. The total running times include time-outs
and errors.

Network Train method
Total
running time [h]

Time-outs Errors
Avg. Running
time [h]
per image

Avg. Running
time [h]
per query

cifar 7 1024 Standard 100.824 93 4223 0.847 0.021
FGSM 109.764 101 3296 1.638 0.030
PGD 231.360 219 7829 2.084 0.028

conv big Standard 77.299 61 5189 0.477 0.013
FGSM 160.322 122 8084 1.314 0.019
PGD 148.233 105 8602 1.235 0.017

resnet 4b Standard 21.811 5 3728 0.126 0.005
FGSM 1173.877 165 4944 2.201 0.033

Total 2022.943 871 103369

Table 12: Information of the running time in GPU time in hours of the ε̃∗ experiments for
the CIFAR architectures. The total and average are all considering testing and training
experiments. The total running times include time-outs and errors.
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Network Train method
Total
running time [h]

Time-outs Errors
Avg. Running
time [h]
per image

Avg. Running
time [h]
per query

gstrb 6 256 Standard 79.161 70 0 0.435 0.062
FGSM 643.098 620 0 4.375 0.439
PGD 625.913 598 0 4.503 0.451

gtsrb 7 1024 Standard 300.614 291 0 1.591 0.204
FGSM 907.038 900 0 6.573 0.554
PGD 1179.660 1169 0 7.064 0.578

gtsrb cnn
deep game Standard 8.656 0 564 0.044 0.005

FGSM 13.497 0 1258 0.070 0.006
PGD 19.240 0 2108 0.106 0.007

gtsrb cnn
vnncomp23 Standard 4.953 0 635 0.025 0.003

FGSM 8.396 0 1566 0.044 0.004
PGD 4.970 0 721 0.029 0.003

Total 3795.196 3648 6852

Table 13: Information of the running time in GPU time in hours of the ε̃∗ experiments for
the GTSRB architectures. The total and average are all considering testing and training
experiments. The total running times include time-outs and errors.
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Appendix G. Performance in terms of Accuracy for Adversarial Training
and Adversarial Attacks

train acc standard PGD 0.2 PGD 0.3
network name training

convMedGRELU PGDK w 0.1 99.9 99.2 40.6 0.5
PGDK w 0.3 99.5 98.8 95.9 93.0
Standard 99.6 98.6 10.8 0.0

convSmallRELU DiffAI 98.1 97.7 14.8 0.3
PGDK 99.5 98.9 49.1 2.5
Standard 98.7 98.2 21.3 0.5

mnist nn FGSM 02 91.2 91.0 44.4 8.1
PGD 79.9 80.2 62.3 51.9
Standard 74.5 75.4 0.0 0.0

mnist relu 4 1024 FGSM 02 98.0 97.8 64.7 15.4
PGD 78.0 78.2 68.0 63.2
Standard 94.5 93.8 0.1 0.0

Table 14: Table with the accuracy scores for the MNIST networks. The training accuracy,
standard accuracy and robust accuracies for the PGD adversary are listed.

train acc standard PGD 4/255 PGD 8/255
network name training

cifar 7 1024 Standard 64.1 54.0 11.4 1.6
FGSM 36.3 36.7 30.8 25.6
PGD 66.4 51.0 37.6 26.4

conv big Standard 97.6 65.0 3.0 0.4
FGSM 66.8 58.8 45.6 33.1
PGD 65.5 59.3 47.2 35.7

resnet 18 Standard 100.0 88.4 0.4 0.0
FGSM 70.3 66.8 53.6 41.1
PGD 80.5 71.1 56.6 42.2

resnet 4b Standard 98.7 74.5 0.0 0.0
FGSM 44.2 43.9 35.7 29.3
PGD 53.4 52.0 41.5 32.4

Table 15: Table with the accuracy scores for the CIFAR-10 networks. The training accuracy,
standard accuracy and robust accuracies for the PGD adversary are listed.
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train acc standard PGD 4/255 PGD 8/255
network name training

gtsrb 6 256 Standard 98.9 80.0 19.7 8.4
FGSM 77.1 60.4 45.1 32.7
PGD 76.7 61.3 47.9 35.9

gtsrb 7 1024 Standard 98.2 79.4 28.2 15.5
FGSM 77.6 58.6 42.7 31.3
PGD 87.5 67.3 52.3 38.5

gtsrb cnn deep game Standard 100.0 92.7 26.6 12.9
FGSM 98.0 85.7 50.4 32.9
PGD 95.2 79.3 63.7 45.8

gtsrb cnn vnncomp23 Standard 100.0 95.7 21.7 5.3
FGSM 96.5 88.5 64.1 42.5
PGD 90.1 72.4 55.1 39.8

Table 16: Table with the accuracy scores for the GTSRB networks. The training accuracy,
standard accuracy and robust accuracies for the PGD adversary are listed.
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Appendix H. Model Information

network neurons parameters linear layers conv layers

net 1K 669K 3 0

net 256x2 0.5K 269K 3 0

relu 6 100 0.5K 119K 6 0

relu 3 50 0.1K 42K 3 0

relu 4 1024 3K 2913K 4 0

relu 9 100 0.8K 150K 9 0

relu 3 100 0.2K 89K 3 0

relu 9 200 1.6K 440K 9 0

net 256x4 1K 400K 5 0

net 256x6 1.5K 532K 7 0

relu 6 200 1K 319K 6 0

nn 512 269K 3 0

convSmall 5K 89K 2 3

convMedG 8K 1587K 2 3

Table 17: Details about the MNIST model architectures

network neurons parameters linear layers conv layers

cifar 7 1024 6K 8405K 7 0

resnet 4b 14K 123K 2 9

conv big 62K 2466K 3 4

resnet 18 558K 11173K 1 17

Table 18: Details about the CIFAR-10 model architectures.

network neurons parameters linear layers conv layers

gtsrb 6 256 1K 1060K 6 0

gtsrb 7 1024 6K 8438K 7 0

gtsrb cnn deep game 221K 8438K 3 4

gtsrb cnn vnncomp23 260K 1775K 3 3

Table 19: Details about the GTSRB model architectures.
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Appendix I. Training parameters

network training lr step size gamma batch size epochs

mnist nn FGSM 0.008940 5 0.893000 256 20

PGD 0.000590 9 0.730000 256 100

mnist relu 4 1024 FGSM 0.002020 2 0.990000 256 20

PGD 0.001360 9 0.620000 256 100

Table 20: Training parameters for the MNIST models.

network training lr step size gamma batch size epochs

cifar 7 1024 Standard 0.000090 8 0.280000 128 30

FGSM 0.000910 8 0.300000 128 15

PGD 0.000200 2 0.980000 128 50

conv big Standard 0.001600 9 0.570000 128 30

FGSM 0.000390 5 0.720000 128 15

PGD 0.000580 9 0.017000 128 50

resnet 4b Standard 0.002000 8 0.210000 128 30

FGSM 0.010520 3 0.510000 128 15

PGD 0.001490 8 0.041000 128 50

Table 21: Training parameters for the CIFAR-10 models.

network training lr step size gamma batch size epochs

gtsrb 6 256 Standard 0.001630 4 0.630000 128 50

FGSM 0.001430 3 0.877000 128 20

PGD 0.001510 8 0.270000 128 50

gtsrb 7 1024 Standard 0.000960 10 0.980000 128 50

FGSM 0.000660 10 0.467000 128 20

PGD 0.000690 10 0.540000 128 50

gtsrb cnn deep game Standard 0.001200 9 0.030000 128 50

FGSM 0.000747 9 0.864000 128 20

PGD 0.000680 10 0.082800 128 50

gtsrb cnn vnncomp23 Standard 0.000921 9 0.047629 128 50

FGSM 0.000777 7 0.666632 128 20

PGD 0.001032 9 0.101743 128 50

Table 22: Training parameters for the GTSRB models.
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Appendix J. Verification Gaps
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Figure 13: Boxplots of the verification gaps of the MNIST networks.
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Figure 14: Boxplots of the verification gaps of the CIFAR-10 networks.
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Figure 15: Boxplots of the verification gaps of the GTSRB networks.

50



Robustness Distributions in Neural Network Verification

Appendix K. Uncertainty in Determining the Exact ε∗

Network Training method t-test KS test
train test train test

mnist nn Standard x x 0.588 0.588
FGSM 0.799 0.703 1.0 0.999
PGD 0.893 0.820 0.999 0.997

mnist relu 4 1024 Standard 0.723 0.727 0.957 0.991
FGSM 0.672 0.714 0.993 1.000
PGD 0.839 0.801 0.985 0.975

convSmall Point 0.015 0.046 0.001 0.011
DiffAI 0.173 0.204 0.356 0.276
PGDK 0.000 0.000 0.000 0.000

convMedG Point 0.001 0.001 0.000 0.000
PGDK w 0.1 0.000 0.000 0.000 0.000
PGDK w 0.3 0.000 0.000 0.000 0.000

cifar 7 1024 Standard 0.000 0.000 0.000 0.000
FGSM 0.149 0.094 0.191 0.751
PGD 0.000 0.000 0.000 0.000

conv big Standard 0.000 0.000 0.067 0.585
FGSM 0.000 0.000 0.000 0.000
PGD 0.000 0.000 0.000 0.000

resnet 4b Standard 0.000 0.000 x x
FGSM 0.007 0.001 0.024 0.005

gtsrb 6 256 Standard 0.000 0.000 0.649 0.019
FGSM 0.000 0.000 0.000 0.072
PGD 0.000 0.000 0.000 0.007

gtsrb 7 1024 Standard 0.000 0.000 0.001 0.002
FGSM 0.000 0.000 0.000 0.000
PGD 0.000 0.000 0.000 0.000

gtsrb cnn deep game Standard 0.000 0.000 x x
FGSM 0.000 0.000 x x
PGD 0.000 0.000 x x

gtsrb cnn vnncomp23 Standard 0.000 0.000 x x
FGSM 0.000 0.000 x x
PGD 0.000 0.000 x x

Table 23: This table shows, for each architecture and training method, for both the training
and testing data distributions, a comparison of the distribution of the ε̃∗ and the distribution
of the smallest ε-value, denoted by p̃, at which an adversarial example was found. Note
that ε̃∗ is a strict under-estimation of ε∗, due to discretisation and verification gaps. When
these distributions are similar, we have found the εa∗ distribution with high precision. The
table shows the p-value of the Kolmogorov-Smirnov test and the t-test with a significance
value of 0.05. The tests that prove that the distributions are significantly different are bold,
and the tests that could not be performed due to not reaching the criterion are replaced
with an x.
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