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Abstract. Domain experts can benefit from optimisation simply by get-
ting better solutions, or by obtaining knowledge about possible trade-offs
from a Pareto front. However, just providing a better solution based on
objective function values is often not sufficient. It is desirable for domain
experts to understand design principles that lead to a better solution con-
cerning different objectives. Such insights will help the domain expert to
gain confidence in a solution provided by the optimiser. In this paper,
the aim is to learn heuristic rules on building spatial design by data-
mining multi-objective optimisation results. From the optimisation data
a domain expert can gain new insights that can help engineers in the
future; this is termed innovization. Originally used for applications in
mechanical engineering, innovization is here applied for the first time
for optimisation of building spatial designs with respect to thermal and
structural performance.
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Evolutionary algorithms

1 Introduction

During early phases of building design, decisions are made that significantly
influence the quality of the final design. As such, optimising during the early
stages can have substantial benefits. One of the first design steps entails captur-
ing the building spatial design (BSD). Since numerous disciplines are involved
in building design, multiple objectives have to be considered in the optimisation
process as well. Here the focus lies on the structural and thermal performance.

Up till now, a mixed-integer representation was defined for the BSD problem
in [6,8]. Based on this representation, multi-objective evolutionary algorithms
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have been devised, along with specialised operators in [4,5]. Further, the appli-
cation of the hypervolume indicator gradient [11], to improve local search, was
studied in [3], which resulted in a considerable amount of optimisation data.

Despite all this progress, the transfer of an optimisation result to a design
expert is not merely a matter of stating “this solution is better than the previous
one”. The design expert needs to be convinced that the optimisation result is
based on sensible design rules. Therefore, the optimisation result needs to be
made explainable. In addition to being able to provide an optimised design, and
being able to explain why it works well, it may also be possible to learn new
design rules from an optimised design. Once the designer has obtained a set of
proven design rules, they may apply these to similar problems, without having
to endure another lengthy optimisation process. Additionally, such rules can also
be integrated in co-evolutionary design algorithms like those considered in [7].

The process of learning innovative design rules from optimisation data was
introduced in [10], and termed innovization. This concept has since been applied
to a variety of problems such as clutch brake design in [10], and truss design in
[1]. Later, the learning process was interleaved with the optimisation process in
[13], and further automated in [1,9]. Furthermore, in [2] it was studied how an
optimiser learns new concepts over time. Here it is investigated if simple tech-
niques used to verify optimisation results may also lead to innovative insights.

This work is a first step in applying innovization in BSD. The following
contributions are made: Optimisation results are verified through data analysis
of a subset of the 800,000 solutions found by multi-objective optimisation in [3].
Handling a dataset of this size also results in new challenges. With this in mind,
here simple and computationally inexpensive analysis techniques are applied.

From here on, this paper first introduces the problem of finding heuristic
rules for building spatial design in Sect. 2. Following that, in Sect. 3 features are
defined to enable the discovery of such rules. The preparation of the considered
dataset is then described in Sect. 4. Section 5 evaluates the results from analysis
of the data, and the implications that follow. Finally, Sect. 6 briefly summarises
the study, draws conclusions, and proposes possible directions for future work.

2 Problem

Building spatial design (BSD) constitutes the arrangement of the internal and
external divisions of a building. These divisions together form a number of
spaces. A space is similar to a room. However, it also encapsulates concepts
such as open kitchen-living room combinations that are not structurally sep-
arated, or hallways. This work considers the multi-objective optimisation of a
BSD for structural and thermal performance. Structural performance is mea-
sured by means of compliance. This measure aggregates the total strain energy
in the structural elements that constitute the structural model related to the
BSD. Whereas thermal performance is taken as the total heating and cooling
energy required to maintain a comfortable temperature in a given BSD.

For an optimised BSD to be used, the solution must be trusted by the design
expert. To inspire such confidence in the optimised design, the optimised results
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should be made explainable. This can be achieved by learning heuristic design
rules from the optimisation data. Given such rules, it becomes clear why the
design is effective. Ideally, not only known rules that experts trust and under-
stand are obtained, but also new insights. By combining known and new design
rules it is possible for experts, and automated (e.g. co-evolutionary [7]) design
systems, to improve their design process. These improved design processes can
then be applied to similar problems, without another lengthy optimisation pro-
cedure.

3 Features

The supercube representation introduced in [6,8] is a mixed-integer represen-
tation of the building spatial design (BSD) problem, consisting of binary and
positive real numbers. Raw data in this format is difficult to interpret in terms
of building properties, making it difficult to learn directly from this data. To
ease this process, this section introduces elementary features that allow building
engineers to characterise a BSD. Such features are necessarily domain specific.
However, the same process may be applied in other domains.

Since the supercube representation is key to understanding the dataset and
features it is briefly introduced in the following. Since it is used for BSD, the
supercube representation considers a number of spaces that together form the
BSD. Each space is defined as a cuboid (3D rectangle), such that the whole
building consists of rectangular surfaces, like in Fig. 1. Additional constraints
ensure that the floors of all spaces are connected with the soil via other spaces,
that is, in the given representation no floating or overhanging spaces may exist.
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Fig. 1. Example building spatial design, annotated with a selection of features

All considered features are listed in Table 1 with their definitions and expla-
nations. Except for the last three, all other features are computed both for the
building and for individual spaces. Since the ordering of spaces is arbitrary,
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Table 1. Features, definitions, and explanations

Feature Definition Explanation

vol w × d × h Volume of the space, or sum of spaces for the full BSD

short min(w, d) Shortest horizontal edge, indicator of span

long max(w, d) Longest horizontal edge, indicator of span

height maxz − minz Height of the space or the full BSD

out sum(out area) Outside surface area, indicator of energy flow

in sum(in area) Inside surface area, indicator of energy flow

soil sum(soil area) Soil (ground floor) surface area, indicator of spread

horz sum(horz area) Horizontal surface area, indicator of total wall area

vert sum(vert area) Vertical surface area, indicator of floor and roof area

in out in/(in + out) Ratio between inside- and outside surface area

out vol out/vol Ratio between outside surface area and volume

long short long/(long + short) Ratio between longest- and shortest horizontal edge

meanh sum(h × roof area)/soil Mean height of the building

meanh h meanh/height Ratio between the mean height and the height

height soil height/soil Ratio between the height and the soil area

including values for each of them in the feature set would be of little use. There-
fore, statistics are taken over all spaces in a building for each feature. In par-
ticular, the min, max, mean, median, range, standard deviation and Gini index
(average deviation from the mean) are considered. Since the last three features
in Table 1 do not make sense for individual spaces (e.g. mean height of a space
is equal to its height), they are only computed for the building as a whole.

Values for w, d, h are found by taking max∗ − min∗, where ∗ corresponds
to x, y, z respectively. In other words, they are simply the distance between the
minimal and maximal coordinates of a given dimension. For example, the minx

and maxx of space 3 are marked in Fig. 1. Note that these values are computed
for the full design, as well as for individual spaces, as indicated for height in
Fig. 1 with h for the complete BSD, and h1, h2, h3 for each space.

To differentiate between various surfaces, the following surface area defini-
tions are used. First, to distinguish between different locations of the surfaces, a
non-overlapping division is made between inside (in area), outside (out area),
and soil (soil area) surface area. Exterior surfaces are considered as outside,
while interior surfaces are considered as inside. The ground floor which connects
with the soil is excluded from the outside surface area, and taken as soil surface
area. In Fig. 1, examples of inside and soil surface area are highlighted (the rest
is outside surface area). Second, to distinguish between walls and floors/ceilings,
a division between horizontal (horz area) and vertical (vert area) surface area
is made. The horizontal surface area includes all floors and ceilings, so also the
ground floor, while the vertical surface area consists of all walls, regardless of
them being interior or exterior. Finally, the roof area considered for meanh is
a part of the roof area in the BSD positioned at equal height.

Note that when considering a building as a whole, each surface is counted
only once per considered distinction (e.g. horizontal/vertical). However, on the
space level, surfaces are sometimes counted twice. That is, for two neighbouring
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spaces, both count their connecting surface as being part of, for instance, their
horizontal surface area. As a result, the sum of the surface areas of all spaces is
not (necessarily) equal to the total surface area of the building.

A few different features measure the same thing. For instance, the outside
surface area of a building has an equal distribution (but not value) to the mean
outside surface area of the spaces. Despite this, such features are kept to simplify
data processing. In the analysis, only one representative should be used for these
equivalent features, unless the differing values provide additional insights.

Additionally, some features may result in distributions similar to each other.
This is particularly common for the range, standard deviation, and Gini index.
However, even small differences may make one of them more valuable in distin-
guishing between solution classes than the other. Since, a priori, it is not known
which is more useful in which situation, all of them are included.

Finally, it is noted that NAN values may appear in a few cases. Some spaces
may be disconnected (meaning they do not share a wall with another space).
As a result, it can occur in a building design that none of the spaces has a
neighbour, from which it follows that their inside surface area is zero. In these
cases, the Gini indices of the interior surface area, and of the ratio between inside
and outside surface areas will be undefined and marked as NAN (the Gini index
divides by the sum of the set of spaces, which is zero in this case). However,
since these are very low quality solutions, they are not considered in the analysis
in the rest of the paper. This will become clear in the next section.

4 Data Preparation

In order to learn heuristic rules for building spatial design, the dataset from the
optimisation experiments in [3] is used. The dataset is a Pareto front and an
archive from a building design optimisation that aimed for a BSD consisting of
three spaces, with a total volume of 300 m3. Note that while these may seem
like simple BSDs, they already require 9 continuous and 81 binary variables to
encode with the supercube representation [6,8], leading to a large search space.
The optimisation runs resulted in a dataset of around 800,000 solutions. Here the
data is prepared for analysis in the following five steps. First, classes are defined
to enable the discovery of different qualities in different groups of solutions.
Second, the non-dominated (ND) set is identified. Third, the knee point solution
is identified. Fourth, solutions are assigned labels to link them to a class, based on
the previously identified ND set and knee point. Fifth, a procedure is described
to equalise the number of solutions in each class for those analysis techniques
that demand this. Note that all steps are defined such that they should at least
be generalisable for two-dimensional convex Pareto fronts.

To be able to learn from the features defined in the previous section, the
data is split into different classes. This is accomplished based on objective val-
ues, rather than features. Classification based on objective values allows for
the verification of the optimisation procedure: Do design experts agree that the
designs with good objective values are indeed good? In addition, it is often a
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combination of features that indicate a certain quality in the BSD, making fea-
ture based classification more complex. Further, by classifying on known good
qualities of a BSD, finding innovative design rules would become very unlikely.
Here, four categories of solutions are considered: the knee point area (KP), good
in the compliance objective (F1), good in the heating/cooling energy objective
(F2), and relatively bad solutions (BD). The aim is to data-mine for heuristic
design rules that make it possible to differentiate between all of these distinct
classes. For more objectives additional classes F* can be added as needed.

The classification considers two primary aspects: (1) It should clearly dis-
tinguish between the classes in the objective space, and (2) It should be com-
putationally efficient to enable processing of the large dataset of ca. 800,000
points. The computational efficiency should also allow the proposed methods to
generalise to larger BSDs than those considered here.
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Fig. 2. Division of data into different classes: All points (ALL), knee point area
(KP), objective one (F1), objective two (F2), bad solutions (BD); relative to the non-
dominated set (ND), and the knee point (kp). A subset of the full dataset is shown

Since the considered classes are defined based on the non-dominated (ND) set
and the knee point, these have to be identified first. For ND set computation the
well-known log-linear time algorithm based on sorting is employed [12]. Based
on the ND set, the knee point is derived as follows. First the objective values
of the ND set are normalised to a [0, 1] range, where outliers beyond 1.5 times
the interquartile range are set to the appropriate boundary value. Next, the
Euclidean distance to the origin (0, 0) is computed for each normalised ND point.
The point with the smallest distance is then taken as the knee point (indicated
with ‘kp’ in Fig. 2), which is a reasonable approximation for the given dataset.
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The data is then classified based on the knee point p = (p1, p2), and the
ND set. For this, the ND set is first reduced to the ND points that were not
considered an outlier after normalisation, but the non-normalised values are
used. In order to classify in a computationally efficient manner, each class is
defined by a bounding box. These bounding boxes are found based on the range
of the ND set in objective one r1, and objective two r2. For the knee point area
class (KP) the lower bound of the box is set to (0, 0), while the upper bound is
set to (p1+r1×0.2, p2+r2×0.2). For class F1 a lower bound of (p1+r1×0.35, 0),
and an upper bound of (p1 + r1 × 0.75, p2) are taken. Similarly, F2 is found with
the bounds (0, p2+r2×0.35), and (p1, p2+r2×0.75). Lastly, BD uses the bounds
(p1 + r1 × 0.35, p2 + r2 × 0.35), and (p1 + r1 × 0.75, p2 + r2 × 0.75). Following
this, points are assigned a label based on the box they fall in. Any remaining
unlabelled points are excluded from the analysis.

The result of the classification process is visualised in Fig. 2. Note that gaps
are left between the different classes to improve the chances of being able to
distinguish between them. If the classes would directly neighbour each other,
points on the border are likely to have very similar features. This would impede
learning what makes a solution perform well (or not) in one objective or the
other. Future work could study how these points can be included in the analysis.

In Fig. 3 a randomly selected example of a BSD is shown for each class.
Although the examples for KP and F1 look similar, the design for F1 is far more
elongated. This result can be expected, as the short spans (here coupled with
elongated spaces) allow F1 designs to reduce the strain energy, at the cost of a
larger surface area, reducing thermal efficiency. The F2 design shows the reverse,
with a much more compact design. Finally, the BD design is not as well arranged
in the spatial sense, and shows relatively poor performance in both objectives.

Fig. 3. Typical examples of the different classes, from left to right: KP, F1, F2, BD

After processing the dataset1 70,088 of the 806,430 solutions are labelled.
With 5978 KP, 3400 F1, 48,482 F2, and 12,228 BD solutions respectively. Given
the mixed-integer nature of the representation, multiple discrete subspaces can
be seen in Fig. 2, indicated by the different curves. Since the dataset is not
homogeneous, the resulting classes do not have an equal number of points. For
1 The dataset is available under http://moda.liacs.nl/index.php?page=code.

http://moda.liacs.nl/index.php?page=code
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some types of analysis, however, it is critical to have equally distributed classes.
In such situations excess solutions are removed from the larger classes uniformly
at random. In all other situations, all labelled data is used.

5 Results

Two techniques are used for data analysis, box plots and decision trees. Box plots
give insight into the distribution of feature data for different solution classes. As
such, it may be possible to identify features that allow for a clear distinction
between two or more classes. Further, the decision tree can provide information
about distinguishing features as well, since it generates clear rules based on such
features. Moreover, it gives confidence measures for the classification of solutions
to different classes. Finally, by using the learned decision tree on new data, it is
possible to validate whether those rules can indeed be used reliably.

5.1 Box Plots

To generate box plots all labelled data is used, with each feature normalised to a
[0, 1] range, without removing outliers. In the plots, each class is then visualised
by an individual box, such that any differences become clearly visible.

In Fig. 4 a subset of the features is shown that appears to allow for a signif-
icant amount of distinction between the different classes. Notice, for example,
how the mean of the most extended horizontal edge (long.mean) enables differ-
entiation between objective one (F1), and objective two (F2).

Surprisingly the soil surface area (soil.mean), and the horizontal surface area
(not in the figure) showed exactly the same distribution in all of their features.
This occurs because all buildings considered in the labelled dataset are single-
story buildings. For such single-story buildings, the horizontal surface area is
equal to the soil surface area plus the roof area. Since these two areas are equal,
the horizontal surface area is exactly twice the soil surface area, which results in
their equal distributions. It appears then that in general single-story buildings
have a good performance for the given objectives, even if they are not necessarily
optimal. After all, the labelled solutions are all relatively close the Pareto front
approximation. Naturally, this result may not generalise to designs with a larger
number of spaces. This also indicates it may be interesting to include an even
worse class of solutions in future analysis to see how things differ with even
worse solutions. Additionally, a feature indicating the number of stories a BSD
has could be useful as well in this case. Even if just to identify this type of
situation more easily.

5.2 Decision Trees

In order to use decision trees to their full potential, the data should be equally
distributed among the classes. As such, this is carried out as described previously.
Since the smallest class contains 3400 solutions, the other classes are reduced to
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the same number of data points, resulting in a total of 13,600 solutions. This total
is split into a training set of 10,200 solutions and a test set of 3400 solutions by
sampling uniformly at random. Note that as a result, the representation of each
class is not necessarily exactly equal in either of the training and test sets, but
still sufficiently close. The training and test sets then consist of approximately
2550, respectively 850 solutions per class. Only labelled solutions are used, no
normalisation is applied, and no outliers of individual features are removed. In
the future it may be of interest to do the same study with unlabelled solutions
to see if the generated rules generalise.

Given the prepared dataset, the decision tree in Fig. 5 was generated with the
R package rpart [14]. From this figure, it can be found that the longest horizontal
edge, the outer surface area, the ratio between the longest and shortest horizontal
edge, and the ratio between the inner and outer surface area provide important
information to distinguish between different classes of solutions.

These rules indicate properties of a building that contribute to qualities
present in different solution classes. The first split shows that relatively long
buildings (long.build) are likely to be efficient in objective one (compliance).
This split intuitively makes sense, since buildings that are more stretched out
are likely to have short spans. Note that this is under the assumption that not
just the building is stretched out, but the spaces as well (e.g. F1 in Fig. 3).

In the other branch buildings are a bit more compact. Additionally, it can be
seen that buildings where the minimal ratio of the spaces between the longest
and shortest horizontal edge (long short.min) is relatively high, are very likely
to be solutions in the knee point area. This indicates that although the building
as a whole is more compact, the individual spaces remain somewhat elongated
to balance between the two objectives. The primary split between low quality
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long.build >= 15

long_short.min < 0.8

out.build >= 236

in_out.std < 0.14

long.gini >= 0.043
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.00  .00  .99  .01

21%

KP
.00  .00  .02  .98
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Fig. 5. Decision tree based on data

solutions and the second objective (energy) is made based on the outer surface
area of the entire building (out.build). Since a larger outer surface area is an
indicator of a more significant loss of energy to the outside, this appears to be
a sensible rule. Further, these rules provide clear pointers on how to navigate
towards the PF. It may be possible to incorporate this in specialised operators
to speed up the optimisation process.

From the decision tree in Fig. 5 it appears classification of solutions is possible
with high precision. To validate this, the tree was used to classify the 3400
solutions in the test set. Table 2 shows the resulting predictions. All assignments
were made with a confidence of at least 90%, showing that it is possible to
classify designs quite reliably. A particularly notable result is the classification
of the majority of the solutions in the F2 and KP classes, which, for this dataset,
is done with near perfect confidence. Not only does this provide confidence in the
optimisation process, but these rules could even be useful during optimisation.
By classifying new solutions based on these rules it may be possible to identify
which solutions are more likely to perform well, such that expensive simulations
might only be needed for those.

Table 2. Decision tree results on the test set. Columns relate to the predicted probabil-
ity of belonging to a specific class, whereas rows refer to classes. Each cell then contains
the number of solutions that belong to a solution class, with a particular probability.

Predictions

BD

F2

0.0000 0.0008 0.0046 0.0048 0.0051 0.0162 0.0276 0.0345 0.0483 0.0926 0.9074 0.9241 0.9655 0.9784 0.9949 0.9952

1758 0 0 0 728 0 54 0 0 0 0 860 0 0

F1 1649 860 0 0 0 891 0

891 0 0 74

0 0 0 0 0 0 0

8 0 860 0 0 54 0 119

0 0

0 0

0 0 0 728 0

KP 72 860 0 0 898 0 0 0 1 0 119 0 54 0 0 0 748
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6 Conclusion

In summary, the results show that by using predefined features and decision
trees, it is possible to apply innovization to large datasets from Pareto optimisa-
tion in building spatial design (BSD), and to obtain meaningful results from an
engineering perspective. Furthermore, the obtained rules allow for high precision
(≥96%) classification of solutions.

Besides in generating insight, the design rules could also be useful in steering
the multi-objective optimisation process. For future work, it would be interesting
to investigate which moves in the optimisation process result in improvements.
In other words, given an existing design, what changes to its features will, with
high probability, result in an improved design. Furthermore, it may be possible to
apply learned rules in co-evolutionary design processes [7]. Or, as mechanism to
determine for which solutions to use expensive simulations during optimisation.

The current work analyses data for a specific type of building. To generalise
the conclusions, the same methods should be evaluated on a larger variety of
building types. Given the computationally efficient nature of the used approach,
it is probable that larger BSDs can be handled. This must, however, still be veri-
fied. Additionally, currently only a subset of the optimisation data is labelled. As
a result, it is unclear whether the learned rules generally allow the identification
of, for instance, solutions that perform well in objective one. It may be the case
that some areas of the objective space, that have not been considered here, have
similar characteristics in some features. This should be studied in the future. A
challenge here is how to do proper analysis with both sparse and dense areas in
the objective space.

Based on first discussions with a design expert good heuristics are learned
that accurately describe high quality BSDs. However, it remains difficult to
foresee the consequences of changes in feature values with respect to the objective
values. In order to improve this visual aids would be helpful. For instance, a slider
controlling the weights of the structural and thermal objectives could be used
to change the spatial design in real-time.
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for Scientific Research (NWO).
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