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Subhaditya Mukherjee, 3 Andreas C. Mü ller, 4 Lá szló Né meth, 5,6 Luis Oala, 7 Lennart Purucker, 8 Sahithya Ravi, 9 

Jan N. van Rijn, 10 Prabhant Singh, 3 Joaquin Vanschoren, 3,12, * Jos van der Velde, 3 and Marcel Wever 11

1 Department of Statistics, LMU Munich, Munich, Germany
2 Munich Center for Machine Learning (MCML), Munich, Germany
3 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, the Netherlands
4 Microsoft, Mountain View, CA, USA
5 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
6 Max Planck Institute for Demographic Research, Rostock, Germany
7 Dotphoton, Zug, Switzerland
8 Department of Computer Science, University of Freiburg, Freiburg, Germany
9 Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
10 Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
11 L3S Research Center, Leibniz University Hannover, Hannover, Germany
12 Lead contact

*Correspondence: j.vanschoren@tue.nl

https://doi.org/10.1016/j.patter.2025.101317

SUMMARY

OpenML is an open-source platform that democratizes machine-learning evaluation by enabling anyone to 
share datasets in uniform standards, define precise machine-learning tasks, and automatically share detailed 
workflows and model evaluations. More than just a platform, OpenML fosters a collaborative ecosystem 
where scientists create new tools, launch initiatives, and establish standards to advance machine learning. 
Over the past decade, OpenML has inspired over 1,500 publications across diverse fields, from scientists 
releasing new datasets and benchmarking new models to educators teaching reproducible science. Looking 
back, we detail and describe the platform’s impact by looking at usage and citations. We share lessons from a 
decade of building, maintaining, and expanding OpenML, highlighting how rich metadata, collaborative 
benchmarking, and open interfaces have enhanced research and interoperability. Looking ahead, we cover 
ongoing efforts to expand OpenML’s capabilities and integrate with other platforms, informing a broader 
vision for open-science infrastructure for machine learning.

INTRODUCTION

Machine learning (ML) is transforming scientific research, yet its 

trustworthiness and progress hinge on reproducibility and trans- 

parency in data provenance, model design, training, and evalu- 

ation, which remain elusive despite wide-ranging efforts. 1–4 

Imagine a world where all ML research can be easily shared in 

full transparency online, where richly described datasets are in- 

terconnected with all open-source code that uses them, the re- 

sulting trained models, reproducible benchmarks thereof, and all 

papers and other documents with interesting findings. Imagine 

that all of these artifacts are described and hosted in standard- 

ized ways that make them interoperable and reusable across 

platforms and tools. This would allow scientists across disci- 

plines to easily find the best ML techniques, understand their ca- 

pabilities, and reuse them in new settings, building effortlessly on 

each other’s work.

The wider open-science movement has made great strides to- 

ward this vision, advocating for open access to publications,

data, code, and results, creating guidelines and tools to describe 

them (e.g., Findable, Accessible, Interoperable, Reusable [FAIR] 

data 5 and Jupyter Notebooks 6 ) and platforms to host them 

(e.g., arXiv, GitHub). However, reproducing and reusing ML 

research, in particular, remains challenging due to the 

complexity and heterogeneity of datasets, models, and compu- 

tational environments, requiring much more detailed standards. 

Moreover, interdependent objects (e.g., data, code, and bench- 

marks) are still fragmented across specialized platforms, and, as 

the underlying technologies evolve, once-valuable resources 

can quickly become unusable or incompatible, a phenomenon 

known as technology drift.

In response to these challenges, we created OpenML, 7 a fully 

open-source platform that fosters collaboration by enabling 

users to upload and share datasets in uniform standards, define 

precise ML tasks to work toward common goals, and conve- 

niently share ML workflows and model evaluations directly 

from ML tools all on the same platform. OpenML provides a 

rich, uniform metadata structure to capture all the information

Patterns 6, 101317, July 11, 2025 © 2025 The Authors. Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ll
OPEN ACCESS

http://creativecommons.org/licenses/by/4.0/
mailto:j.vanschoren@tue.nl
https://doi.org/10.1016/j.patter.2025.101317
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2025.101317&domain=pdf
http://creativecommons.org/licenses/by/4.0/


in the ML life cycle and facilitate long-term reuse, as well as 

benchmarking suites to run more systematic model 

evaluations.

Over the past decade, OpenML has evolved into a vibrant, 

community-driven resource, inspiring over 1,500 publications 

while supporting research across diverse fields. With scientists 

releasing new datasets, developers benchmarking new algo- 

rithms, and educators teaching data science, OpenML has 

become a cornerstone for enhancing data-repository practices. 

In this paper, we reflect on more than a decade of building, 

maintaining, and expanding OpenML. We examine how its 

design, centered on rich metadata, collaborative benchmarking, 

and open interfaces, has enabled large-scale comparisons of 

ML algorithms. 8 Specifically, we perform a quantitative analysis 

across all research papers (until 2024) that have referenced 

OpenML papers to understand its adoption across communities. 

Beyond this analysis, we highlight several communities that have 

specifically adopted OpenML, including the reproducible bench- 

mark community, the AutoML community, as well as the educa- 

tion community. We also showcase community-driven suc- 

cesses, including major reproducibility initiatives, and discuss 

ongoing efforts to expand the platform’s capabilities. Our over- 

arching goal is to show how OpenML’s journey can inform the 

broader vision for open-science infrastructure in ML.

We start by explaining how OpenML was designed and devel- 

oped, and then we position OpenML in the context of related 

work. Next, we analyze the impact that OpenML has had on 

ML research. Finally, we reflect on lessons learned and what op- 

portunities remain to build a truly networked science environ- 

ment for open ML.

BUILDING OpenML

OpenML was designed to allow easy sharing and access to uni- 

fied, structured ML experiment data. We achieve this by decom- 

posing ML experiments into modular components and making 

the data available through the OpenML platform. Beyond tech- 

nical aspects, we also discuss community, funding, and chal- 

lenges in this section, in particular for reproducibility. We defer 

a discussion of ways in which we try to collaborate beyond 

OpenML by breaking the silos of data repositories to the end 

of the related work section.

Figure 1. The relationships between the 

concepts OpenML uses to define an ML 

experiment

The annotation of the connections denotes the 

cardinality; e.g., a task typically refers to exactly 

one dataset, but one dataset may be referenced 

by many tasks. A collection is a set of entities of 

the same type. We currently only support collec- 

tions of tasks, also called benchmarking suites, 

and collections of runs, which are called studies.

Decomposing ML experiments

A prototypical ML experiment consists of 

training a model with an ML algorithm on 

training data, producing predictions on 

test data, and evaluating those predic- 

tions. This is often repeated under resampling and across multi- 

ple algorithms and datasets in benchmark experiments. On 

OpenML, the prototypical ML experiment is broken down into 

distinct concepts: datasets, tasks, flows, runs, and collections. 

Figure 1 illustrates the relationship between these concepts. 

Datasets are a core concept of ML but do not constitute a scien- 

tific task. Tasks describe for each ML experiment which data 

should be used and what the evaluation procedure is, and they 

define the train-test splits. When an algorithm (flow) is then 

trained and evaluated, the results (e.g., predictions) are captured 

in a run. Anyone can upload any part of their ML experiment, 

which makes these objects freely available to other users. 

They are provided through various application programming in- 

terfaces (APIs), and each concept has its own standardized 

metadata. This makes it easy for people to build on each other’s 

work, for example, for a community to accept a standardized 

benchmarking suite, or to study the effect of algorithm hyper- 

parameter configurations by inspecting uploaded run results. 

Datasets

The vast majority of datasets on OpenML are structured, tabular 

datasets. These datasets span many different domains, such as 

healthcare, finance, and computer science, and consist of data 

organized into rows and columns. More recently, OpenML has 

added support for other modalities whose datasets can be 

defined by a header table combined with a file structure, sup- 

porting task types from the domain of, e.g., computer vision. 

One prominent example of image data on OpenML is Meta- 

Album, 9 a large collection of datasets with images from various 

domains to facilitate, among other things, transfer learning, 

meta-learning, and continual learning research.

Each OpenML dataset is described by metadata that include 

the name, description, author, license, and other information 

about the dataset. It is also possible to provide crucial contextual 

information by annotating individual features (columns) in the da- 

taset. Additionally, meta-features that describe the data values 

are also automatically computed and available. This includes 

simple meta-features such as the number of rows and columns 

in tabular data but also more complex types, including statistical 

meta-features (e.g., the mean standard deviation of all numerical 

columns), information-theoretic meta-features (e.g., the mean 

information gain of all categorical attributes), and landmarkers 10 

(e.g., the predictive performance of a simple classifier trained on
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the data). The metadata are available in a standardized way, 

which makes it easy to programmatically sort through the thou- 

sands of datasets on OpenML and select the datasets that fit 

certain criteria or use it for meta-learning. 11

Tasks

A dataset in itself does not constitute a scientific task. There are 

many ways in which an ML model can be evaluated on any given 

dataset, and this needs to be properly specified to make evalu- 

ations reproducible and to clearly communicate to other re- 

searchers how models should be meaningfully evaluated.

In OpenML, all these aspects are described in a task object, 

and any dataset may have many different tasks associated 

with it. An OpenML task always has a task type (e.g., classifica- 

tion, regression, learning-curve analysis, data-stream classifica- 

tion, survival analysis) and specific inputs and outputs expected 

for that type of task. For instance, for classification, the inputs 

would include a specific dataset and a reference to the labels 

(e.g., a target column in a tabular dataset). Additionally, one 

could define sensitive columns to be masked out or an evalua- 

tion measure that is of interest (although OpenML always com- 

putes many evaluation measures, so one can filter on them later). 

Second, to ensure reproducible evaluations, tasks include 

training and test splits such as hold-out or cross-validation. 

Flows

Flows describe algorithms, scripts, tools, and anything else that 

can be used to train models and generate predictions. A flow 

description includes the name, description, hyperparameters 

of the algorithm or script parameters, and a list of dependencies. 

The goal of creating a flow is to allow an algorithm (configuration) 

to be understood and recreated faithfully. There are a few inte- 

grations with popular ML libraries, like scikit-learn, 12 that allow 

the creation of flows automatically from algorithms defined by 

those libraries. In these cases, it is also possible to automatically 

recreate a model from a flow description, although reproducing 

custom flows is a challenge we are planning to address in the 

future.

Runs

When applying a flow to a task, i.e., training a model and mak- 

ing predictions for a specific dataset and data split, the result- 

ing data are captured in a run. Run data include predictions of 

the model, the hyperparameter configuration used for training, 

and possibly also other information, such as measurements of 

wall clock or processor time, or locally computed evaluation 

measures. One of the core design elements of OpenML is 

that a run is always performed on the computer or the server 

of the user. The client downloads all important concepts (i.e., 

the dataset object, the task object, and data splits) to the local 

machine, initiates and trains a model, and makes predictions 

for the test instances. These predictions, together with informa- 

tion about the flow that produced them, are then uploaded 

back to the OpenML server. That allows for flexibility and 

scalability.

When a run is uploaded to the OpenML server, several perfor- 

mance measures will be calculated by the OpenML server based 

on the uploaded predictions. For example, it will automatically 

calculate the accuracy, per-class precision and recall, and 

f-measure for runs performed on classification tasks and the 

root-mean-square error for a run on a regression task. All of 

the run data, including its computed metadata, are also available 

through the API and may be used to, e.g., study the effect of hy- 

perparameter tuning for an algorithm across different runs. 13,14 

Collections

Collections are sets of OpenML objects of the same type that 

belong together. They were originally introduced as bench- 

marking suites (for collections of tasks) and studies 

(for collections of runs), 8 and those are currently also the only 

supported collections.

Collections provide an easy way for communities to share and 

reuse, e.g., benchmarks. Prominent examples include the 

benchmarking suites OpenML Curated Classification bench- 

mark (OpenML-CC18 8 ), OpenML Curated Tabular Regression 

benchmark (OpenML-CTR23 15 ), the AutoML benchmarking 

suites, 16 and Meta-Album. 9 The OpenML-CC18 benchmarking 

suite, for example, is a collection of 72 different tasks that 

meet specific criteria, such as dataset size. For clarity, we refer 

to collections of tasks as benchmarking suites in the remainder 

of this paper, as it is the more commonly used name.

Infrastructure

The OpenML website and libraries are the main user-facing com- 

ponents. From the website, the user can browse the datasets, 

tasks, and other concepts, along with their relations, as illus- 

trated in Figure 2. From the overview pages, metadata are dis- 

played and available in various standardized formats. The user 

is assisted in preliminary analyses by visualizing, among others, 

the feature statistics of datasets and the results of runs. These 

visualizations are also entirely open source and can be extended 

by the community.

To perform ML experiments, the user can interact with 

OpenML through software libraries to obtain the relevant re- 

sources, such as the dataset and the metadata for validation 

splits. The user then runs the experiment, and may report the re- 

sults, in the form of a run, back to the OpenML platform. Soft- 

ware libraries are available in Python, 17 R, 18,19 and Java. 20 The 

libraries allow the user to load, use, and publish datasets, tasks, 

flows, and runs with just a few lines of code. Independently 

developed packages can also be found for Julia, .NET, and 

Rust, but often offer limited functionality (e.g., only allowing to 

download datasets).

While any ML model may be used in experiments, OpenML 

integrates with popular ML frameworks to make automatic 

evaluation easy. In Python, models from scikit-learn, 12 Tensor- 

flow, 21 and PyTorch 22 can be used; in R, models from mlr3 23 

and its predecessor mlr 24 ; and, in Java, WEKA. 25 A model

Figure 2. An overview of various pages of the OpenML website

On top, the search bar of the landing page and the menu are shown, enabling users to explore the datasets and ML experiments. Next, a view is displayed of each 

of the four main concepts used in OpenML. Clockwise from top left: first, two pages of the CoverType dataset: one displaying dataset details and another 

showcasing a scatterplot of the class distribution plotted against two features, which is part of the analysis page. Second, a 10-fold cross-validation task for this 

dataset is depicted (top right), which can be combined with a random forest classifier from scikit-learn (the flow, bottom right), resulting in an area under the curve, 

f-measure, and other evaluation measures in the run (bottom left).
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defined in any of these frameworks can be easily applied to 

any dataset or task from OpenML. Figure 3 (top) shows 

simple example code that evaluates an ML model from a sup- 

ported library. Figure 3 (bottom) illustrates the advantages of 

having access to OpenML run results: without running any 

new experiments, we can, for instance, study the effect of hy- 

perparameter configurations on model performance, visualized 

in Figure 4. Vice versa, frameworks such as scikit-learn 12 (mod- 

ule: sklearn.datasets.fetch_openml) and PyTorch 22 (module: 

torchrl.envs.OpenMLEnv) offer data loaders for OpenML to 

simplify dataset retrieval for users familiar with their respective 

code bases.

Figure 5 shows the general system architecture of the various 

components of OpenML. Users typically interact via the website 

or client libraries, while, under the hood, multiple components

Figure 3. Example scripts using "openml- 

python" (version 0.15.1)

Top: example code of the Python API using scikit- 

learn, applying a random forest classifier to an 

OpenML task and publishing the results on 

OpenML. Bottom: code to retrieve the results of all 

runs that apply flow 8353 (a scikit-learn pipeline 

containing a support vector machine) on task 6 

(classification on the ‘‘letter’’ dataset). The visual- 

ization subroutine plot_run_evaluations_c_vs_ 

gamma can be found in the supplemental 

information. Figure 4 shows the resulting plot.

Figure 4. The support vector machine performance landscape 

generated by Listing 3

Using hundreds of evaluations downloaded from OpenML, represented by 

black dots, we visualize the effect of hyperparameters C (x axis) and gamma (y 

axis) on the model accuracy (hue). Figure adapted from Feurer et al. 17

make up the core of the OpenML 

ecosystem. The actual data reside on- 

premise in S3 buckets, the metadata in 

databases and in a search engine. Addi- 

tionally, the REST API offers a uniform 

interface to access OpenML (meta)data 

and serves as a single control mecha- 

nism to ensure data quality. Finally, services periodically poll 

the metadata to perform tasks such as data conversion, meta- 

feature calculation, and evaluation of recently uploaded runs.

Reproducibility

Reproducibility is a cornerstone of scientific progress but re- 

mains particularly challenging in empirical ML due to the 

complexity and variability of experimental setups. 2 OpenML 

was designed with reproducibility in mind and aims to directly 

address these challenges by providing a collaborative platform 

that facilitates the sharing, organization, and reuse of ML exper- 

iments. Through its standardized APIs, OpenML enables re- 

searchers to upload datasets, flows, and runs in a structured 

and machine-readable format. OpenML aims to foster reproduc- 

ibility in the following ways.

Open and FAIR principles: OpenML ensures that all data, 

tasks, flows, and runs are easily discoverable, have unique 

IDs, and are usable across different platforms, tools, and frame- 

works, complying with FAIR principles. 5

Consistent APIs and convenient tooling: the APIs produce 

consistent metadata for every shared resource. This simplifies 

code, removes hurdles to adoption, and enables users to follow 

reproducible patterns in their code with less time investment or 

in-depth expertise.

Predefined data splits: OpenML provides predefined splits for 

tasks, such as k-fold cross-validation or hold-out validation sets, 

ensuring consistency across studies, making experiments com- 

parable and eliminating ambiguities in experimental setups. 

Experiment logging: using OpenML’s APIs, each run will be re- 

corded with rich metadata, such as wall clock or processor time, 

and can easily be uploaded to OpenML.

Benchmarking suites: curated benchmark suites (i.e., collec- 

tions of tasks and datasets) provide researchers with reproduc- 

ible baselines for comparison, reducing the cherry-picking of 

benchmarks and allowing more standardized setups. 

Together, these features lower the barriers to reproducibility 

in ML research, fostering more robust scientific inquiry 

and enabling faster progress through collaborative validation
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and reuse of prior work. However, it is important to note 

that, while OpenML includes many features designed to 

enhance reproducibility, it can by itself not guarantee full 

reproducibility.

Long-term reproducibility remains a significant challenge for 

the larger ML community. Precisely specifying code so that it re- 

mains runnable many years into the future is inherently difficult, as 

its dependencies may have updates with breaking changes or 

become unavailable altogether. Containerization (e.g., packaging 

the requisite Python, scikit-learn, and OpenML client versions in 

a Docker image) can mitigate these issues to a large extent. 

However, when containers require contact with the outside world 

(e.g., to download datasets), the static interface of the legacy 

container may become misaligned with the outside world as its 

servers move or receive updates to their interface.

We identify two possible solutions to this problem. One should 

either make the container self-contained (e.g., by also including 

all the data within) or you need to guarantee that the servers with 

which it communicates maintain full backward compatibility 

indefinitely. For a while, OpenML ensured this full backward 

compatibility as it reduces the burden on the researcher and al- 

lows for smaller research artifacts. However, in a rapidly evolving 

field such as ML, this scenario created an unsustainable burden 

on the project, particularly given its voluntary nature and limited 

resources.

Instead, users are encouraged to view OpenML as a signifi- 

cant step toward improved reproducibility. Runs can make 

some research artifacts, such as predictions and models, 

directly available. Moreover, their metadata, such as the flow, 

task, and dataset used in the experiment, also provide much 

(but not all) of the critical information required to reproduce the 

experiment even in the absence of a container. Last but not least, 

we would like to point out that, from a scientific view, exact 

reproducibility does not guarantee inferential reproducibility, 

the actual goal we should strive for. 26

Community

OpenML is an open-source, community-driven project. All our 

code is open source, including the platform itself, and we

welcome new contributors. Our meetings and hackathons are 

open to all. Like many other open-source projects, a community 

of volunteers develops and maintains OpenML. Most of 

OpenML’s core contributors are PhD students and academics, 

often working in empirical ML, benchmarking, AutoML, and ML 

software. They volunteer their time, most commonly during 

working hours, as the platform aligns with their research inter- 

ests. We have a merit-based governance structure for deci- 

sion-making and community interaction. The community 

engagement is mainly handled through Slack and GitHub.

To foster a stronger community, we organize multiple in-per- 

son, week-long hackathons every year, where the community 

comes together to work on the OpenML platform and have dis- 

cussions to shape OpenML’s roadmap. These hackathons have 

proved to be highly effective in making significant platform- 

related decisions, such as the development of OpenML- 

Python and the transition of OpenML’s standard dataset format 

to Parquet. Over the past 4 years, we have also organized 

smaller, targeted mini-hackathons focused on specific subcom- 

munities, such as those working on engineering aspects or a 

particular API.

We are fortunate to be able to find institutions willing to provide 

a venue free of charge, often rooms in universities of our core 

contributors, and that many members of our community are 

able and willing to provide their own travel and accommodation 

funds, most commonly through their employers. This means that 

we can host events on a shoe-string budget or none at all, which 

allows us to have them more frequently. We also explicitly keep 

community building in mind during the hackathons, and, as such, 

we often organize at least one social event and plan for common 

lunches and dinners.

The majority of long-lasting active community participants 

(e.g., contributors) come from in-person contact, such as when 

we get the opportunity to speak at events and conferences, 

through the hackathons we organize, or through a place of 

work. However, there are also cases where people join our online 

meetings, contact us through e-mail, or immediately provide a 

code contribution through a pull request, as a point of first 

contact.

Figure 5. An overview of the OpenML com- 

ponents

Every component of the OpenML ecosystem is 

depicted as a block. Arrows visualize communi- 

cation, such as data retrieval or updates, whereby 

the arrow originates from the component that ini- 

tiates the communication. Users can choose to 

interact via the website, via OpenML libraries in 

multiple programming languages, or interact with 

the REST API directly. The website includes a 

search engine and interacts with the back end for 

user authentication and actions such as uploading 

datasets and creating tasks. Metadata are stored 

in an SQL database, and files (e.g., datasets and 

models) are stored in an object store. Scheduled 

server jobs do various tasks such as analyzing 

datasets and evaluating runs.
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Funding challenges

So far, OpenML’s funding has mostly been in kind, such as 

server and network infrastructure provided formerly by Leiden 

University and currently by the Eindhoven University of Technol- 

ogy, individual contributors being allowed to make contributions 

during their working hours and being provided with funding for 

attending workshops, or institutions offering to host our hacka- 

thons free of charge (for a more complete overview, see the 

acknowledgments section). While we are grateful for these con- 

tributions, they are often ad hoc and irregular, which makes 

developing and sustaining OpenML as a long-term service 

challenging.

At a bare minimum, OpenML requires funding for hardware, as 

servers need to be replaced periodically, and maintenance, as 

hardware components and software updates need to be 

installed. However, realistically, a project of this scale also needs 

funding for one or a few full-time developers who can ensure the 

software remains useful as research in ML changes, provide 

support to users, and manage the community.

Unfortunately, funding for open science remains limited. Most 

research funding primarily supports research personnel rather 

than physical infrastructure and often focuses on specific 

stand-alone outputs that do not align with strengthening existing 

initiatives. Finally, research software-engineering staff are often 

excluded from funding, which makes securing funding for these 

critical roles more difficult. While open-source projects like 

OpenML offer very rewarding work, offering long-term career 

prospects is a critical issue that needs to be addressed. 

Thankfully, we do see improvement in this area, with better 

recognition for other academic contributions (e.g., the declara- 

tion on research assessment [DORA]), open science becoming 

increasingly valued through both dedicated funding calls, and 

mandating open-science practices for research grants. How- 

ever, prospects for long-term research software engineers in 

general, and with long-term projects in particular, are not directly 

addressed by these developments and so remain an open 

challenge.

RELATED WORK

Constructing new ML algorithms and benchmarks is a strong 

focus of ML research, while optimizing ML pipelines for given 

data and tasks is a key aspect in applied data science. Popular 

ML libraries like scikit-learn, 12 mlr, 23,24,27 PyTorch, 22 Weka, 25 

or JAX 28 support this through unified interfaces and design 

of modular and composable components. Alongside these li- 

braries, a sophisticated tooling ecosystem has sprung up over 

the years to drive empirical research into ever-better ML algo- 

rithms. 29 We introduce several prominent examples in the re- 

maining text and summarize them in Table 1. The resulting

collection of tools comprises dataset and experiment manage- 

ment, model sharing, and competitions, and established the 

rapid, empirical side of machine research we see today.

From the outset, ML had a strong empirical component. 30 Da- 

tasets, the primary input to ML algorithms, capture what we aim 

to predict and measure. 31 Improving predictive performance on 

these datasets, conducting rigorous scientific benchmarking, 

and understanding performance differences—including the in- 

fluence of hyperparameter effects and modeling compo- 

nents—are all common goals in ML research. Reproducibility 

(and replicability) are important traits of experimental research 

as they serve as a core validation mechanism (see Herrmann 

et al. 2 for a detailed discussion on the state of ML research). 

Providing rich artifacts increases reproducibility 3 and reduces 

the complexity of new comparisons, 7,32 allowing a fast, efficient, 

and robust scientific process. In addition, it enables meta-ana- 

lyses, as illustrated in Figure 4, which let us take a bird’s-eye 

view of a hypothesis across methods, experiments, or datasets. 

Despite rapid progress, ML research is still plagued with repro- 

ducibility issues due to bad sharing practices that confound 

and limit the impact of the field. 2,3,33

ML data-sharing standards

A key part of interconnected ecosystems is shared concepts and 

interfaces that enable different components to interact. One way 

to formalize such concepts is ontologies, and the OpenML com- 

munity has actively worked on a shared vocabulary to systemat- 

ically describe and catalog datasets, models, and results. The 

first effort was an ontology for describing ML experiments called 

Exposé , 34 which was later harmonized with other ontologies into 

the W3C standard MLSchema 35 and still forms the vocabulary 

with which OpenML concepts such as datasets, tasks, flows, 

and experiment runs are described.

Continued efforts toward a lingua franca of ML artifacts have 

resulted in platform-agnostic schemas for describing ML data- 

sets, such as Croissant. 36 Based on Schema.org, it is now 

shared across the data repositories Kaggle, HuggingFace, Data- 

verse, and OpenML (see next subsection for a description).

Data hubs and task repositories

Before OpenML, there existed a patchwork of public ML dataset 

repositories, especially the UCI Repository 37 and MLData 38 (now 

defunct), while a host of more specialized collections, like 

KEEL, 39 domain-specific repositories, 40,41 and dataset lists on 

researchers’ private webpages, such as Luis Torgo’s regression 

suite, 42 serve particular research communities. OpenML was the 

first platform that provided unified access to most of these data- 

sets, with unified formats and APIs. This example was followed 

by other repositories, such as PMLB. 43 Kaggle and Hugging 

Face later also started hosting datasets and have become

Table 1. A selection of popular, generalist tooling platforms used in ML and their features

Feature UCI Kaggle HuggingFace W&B MLflow Sacred Hydra DVC Codabench Dynabench OpenML

Data and task hub ✔ ✔ ✔ × × × × × × × ✔

Model and results hub × ✔ ✔ ✔ ✔ × × ✔ × × ✔

Experiment management × × × ✔ ✔ ✔ ✔ ✔ × × ×

Community benchmarking × ✔ ✔ × × × × × ✔ ✔ ✔
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important hubs for sharing datasets. These repositories are in 

many ways complementary with OpenML, e.g., they provide 

more free-form sharing of datasets, but do not store all datasets 

in standardized data formats to allow universal data loading and 

more extensive APIs, like OpenML does by design. Hugging 

Face now does offer data loaders for many datasets. In this 

space, OpenML remains the only platform that is fully open 

source (including its infrastructure) and non-commercial, which 

allows it to build bridges with these platforms that benefit all, 

as we discuss below. More recently, dataset search engines 

like Google Dataset Search and AWS Open Data Registry conve- 

niently index datasets from all over the web. That said, they 

currently do not describe ML tasks in machine-readable formats, 

nor do they support the tracking of experimental results on these 

datasets or enable collaborative analyses like OpenML does.

Experiment management

Tools like Weights & Biases, 44 MLflow, 45 Sacred, 46 Hydra, 47 

DVC, 48 and others enable researchers to track, version, and 

orchestrate ML pipelines and experiments. These frameworks 

provide reproducible workflow management but typically focus 

on computational aspects rather than facilitating scientific 

collaboration. While they shine at tracking experiment metadata 

and managing dependencies, they generally lack integrated 

facilities for open collaboration or sharing and discovering data- 

sets, models, and results across the research community.

Model and results hubs

On the model and evaluation side, platforms like HuggingFace 

and Kaggle have emerged as popular destinations for sharing 

pre-trained models and associated results. Management tools 

like Weights & Biases or MLflow also provide sharing capabilities 

for these artifacts, albeit more focused on internal use within one 

organization or business. While these services excel at their spe- 

cific functions, they often operate in isolation rather than 

providing an integrated environment across communities and 

the complete ML research life cycle.

Community benchmarking

General-purpose challenge platforms like Codabench, 49 Kaggle, 

or Dynabench 50 provide infrastructure for standardized algo- 

rithm evaluation. Specialized hosted benchmarks also exist, 

such as AlgoPerf, 51,52 DataPerf, 53 or Chatbot Arena, 54 which 

cater to gradient-based optimization, data-centric, and LLM 

communities, respectively. While these platforms enable 

comparative evaluation, they typically focus on competition 

rather than collaboration. Although competition can be an effec- 

tive motivation, it can also lead to obfuscating intermediate and 

negative results as well as incremental improvements.

In the landscape of ML tooling, OpenML provides an inte- 

grated platform that connects many aspects of ML research, 

from dataset sharing to experiment tracking to collaborative 

analysis. It has similarities with Kaggle or HuggingFace 

(Table 1) in this regard. Still, it differs from these other platforms 

with its particular emphasis on networked science principles, 

enabling organic collaboration while maintaining scientific rigor 

through standardized tasks and evaluations. The platform com- 

plements existing tools by providing APIs that allow integration 

with popular frameworks while adding collaborative capabilities

that emerge from connecting researchers, datasets, and results 

into a unified system.

Breaking the silos

The OpenML platform is designed to avoid becoming another 

isolated data silo by actively integrating with other platforms 

like Hugging Face and Kaggle to create an interconnected 

ecosystem. This is achieved through several initiatives.

(1) Development and adoption of community standards. We 

co-created the Croissant metadata format 36 for datasets 

in collaboration with Kaggle, HuggingFace, and Google 

Dataset Search. This facilitates data interoperability and 

enables efficient data and model sharing between infra- 

structures.

(2) APIs. OpenML has extensive APIs in multiple languages 

(e.g., Python, R, Julia), which in turn allow integration 

into ML libraries (e.g., scikit-learn, 12 PyTorch, 22 

TensorFlow, 21 mlr3, 23 and MLJ 55 ).

(3) Direct integration with other platforms. OpenML and Kag- 

gle collaborate to identify and link datasets hosted on 

both platforms, making it easier for users to navigate 

between related dataset pages. As such, Kaggle users 

can find benchmarks of those datasets on OpenML, and 

OpenML users can find notebooks analyzing these data- 

sets on Kaggle.

(4) Pursuing complementary goals. OpenML aims to pioneer 

capabilities not yet available on other platforms. For 

instance, our APIs, uniform data formatting, and bench- 

marking tools facilitate the progressive automation of 

ML tasks and the creation of tabular and other founda- 

tional models.

(5) Focus on networked science principles. OpenML aims to 

create a ‘‘world-wide lab’’ to accelerate scientific 

research itself. It covers the entire ML life cycle, from da- 

tasets to models and evaluations, and allows people to 

organize all knowledge online. Much like Wikipedia, it al- 

lows people to build on top of each other’s work. While 

there are other tools to track ML experiments (e.g., 

MLFlow 45 ), OpenML also allows people to build on top 

of the latest results of others and is unique in that respect.

On the other hand, it still lacks integration with other aspects of 

research, such as papers, code, and discussions. This is the 

focus of future work, and we plan to closely integrate with plat- 

forms that already offer those services, such as arXiv, 

PapersWithCode, MLFlow, and HuggingFace, to realize this. 

Some of this integration work may require significant changes 

to OpenML itself or for platforms to grow toward each other.

IMPACT OF OpenML

Over the years, OpenML has had a significant impact on the ML 

community, as shown by its widespread adoption, usage statis- 

tics, and numerous research papers citing OpenML-related 

works. 7,8,17,18 Conferences like ECMLPKDD 56 and the NeurIPS 

Datasets and Benchmark 57 track also encourage authors to 

use OpenML, among a few other platforms, for open, reproduc- 

ible research. To quantitatively assess this impact, we
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conducted a comprehensive literature analysis of papers that 

cite OpenML. In this section, we discuss the general trends we 

observed and highlight specific areas where OpenML has 

made an impact.

Literature search

Using Google Scholar, we identified research papers citing the 

first core OpenML paper, 7 the Python and R connectors, 17,18 

and the paper introducing benchmarking suites. 8 In total, we 

collected 1,789 papers (published between 2014 and 2025), 

which we systematically analyzed to understand how OpenML 

has been used in research. The collected papers were distrib- 

uted among all co-authors, who manually reviewed them and 

answered a questionnaire designed to capture key aspects of 

OpenML’s usage in the paper. Some papers were excluded 

from further analysis because they were not fully accessible, 

not available in English, or for other reasons documented. We 

have also excluded papers published in 2025 as the year is still 

in progress while writing the paper, to avoid skewed interpreta- 

tions of trends. The questionnaire and selection process are 

documented in the supplemental information, and the final data- 

set as well as the analysis code are available online on GitHub. 58 

The final analysis is based on 1,528 papers. Our analysis focuses 

on the primary use cases of OpenML, including the use and pub- 

lication of datasets, benchmarking suites, and experiments. We 

distinguish between papers that include at least one OpenML 

core contributor as co-author and those that do not. We also 

highlight papers that use OpenML in unique ways, were highly 

influential, or offer unique insights into the value OpenML can 

bring to ML research. In the following, we first provide general 

findings before surveying several fields of ML research that use 

OpenML in more detail.

General findings

Table 2 presents the distribution of OpenML usage across 

various categories. Some papers use, e.g., both datasets and 

experiment data, so the sum of percentages exceeds 100%. 

Most papers that cite OpenML also interact with the technical 

platform in some way (instead of only discussing OpenML in 

text). We find that OpenML is predominantly used as a dataset

repository, with 1,127 papers using OpenML datasets in exper- 

iments. Many of those include some evaluation of ML algorithms, 

but other use cases include evaluating meta-feature selection

techniques, 59 understanding performance evaluation mea-

sures, 60 surrogate benchmarking, 61 learning-curve analysis, 62

and instance space analysis. 63 Among the papers that only

cite OpenML but do not actively use it, 90.4% reference the first

OpenML paper, 7 while the remaining 9.6% cite usage of one of

the OpenML libraries. 8,17,18

In addition to datasets, OpenML benchmarking suites have 

been used in 194 papers. These suites have been instrumental

in tasks such as model comparison, hyperparameter optimiza-

tion, meta-learning, and AutoML system evaluation.

Figure 6 shows the trends in using datasets and benchmarking

suites over time. The consistent increase in both categories high-

lights the growing adoption of OpenML in ML research. This is

further supported by usage statistics from the platform, which

are shown in Figures 7 and 8.

OpenML also supports scientific progress by enabling re- 

searchers to build on previous work by reusing prior experiment 

data. A smaller subset of papers (4.3%) leverages OpenML’s 

experiment results to analyze algorithm performance or study 

hyperparameter tuning strategies. Approximately 3.3% of pa- 

pers contribute to OpenML by uploading datasets or experi- 

mental results. This is a relatively small number, which may be 

due to several factors. First, the primary focus in ML research 

is the development of algorithms, which are often evaluated 

based on established datasets or benchmarks, so uploading 

new datasets to central repositories (instead of GitHub or a 

custom website) is less incentivized in this line of research. Sec- 

ond, creating new datasets is a labor-intensive task, which has 

only been getting more recognition in ML in recent years (e.g., 

due to dedicated publication venues such as the NeurIPS Data- 

sets and Benchmark track). Moreover, while 73.8% of the 

papers use OpenML datasets, less than 2% of the articles have 

uploaded experimental results. Again, while researchers share 

their experimental results, 65–67 most only include them in papers. 

There are currently few incentives for researchers to publish 

reproducible experimental results in data repositories. Addition- 

ally, OpenML requires experiments to be linked to both an existing 

task and a flow in order to upload them. This can be a substantial 

hurdle for users, which we aim to address in future work. 

Finally, we find that 5.8% of papers make use of OpenML in a 

more advanced manner (beyond downloading data and running 

on curated benchmarking suites), such as creating bench- 

marking suites, integrating OpenML into novel ML frameworks, 

or using precomputed meta-features to construct a knowledge 

graph. 68

Overall, many researchers are engaging in direct and indirect 

collaboration on the platform by using datasets, benchmarking 

suites, and experimental results published by other users in their 

own work. In the remainder of this section, we will highlight some 

of those individual works.

Benchmarking and empirical analysis of ML algorithms 

Having a vast base of experimental data containing ML experi- 

ments allows us to investigate the behavior of ML algorithms, un- 

der which circumstances they work, and why they work the way 

they do. In the experiment database, a preliminary version of

Table 2. Usage of OpenML in published research, based on 

papers that cite OpenML

Use cases # of papers % of papers

% co-authored by 

core members

Included in analysis 1,528 – 11.0

Only cite OpenML 319 20.9 7.2

Use datasets 1,127 73.8 11.0

Use benchmarking 

suites

194 12.7 27.8

Use experimental 

results

66 4.3 28.8

Upload datasets 23 1.5 69.6

Upload experimental 

data

27 1.8 74.1

Other interactions 88 5.8 28.4

Thesis publications 202 13.2 5.4
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OpenML, several of these patterns were already investigated, 69 

such as the performance of algorithms across datasets or the ef- 

fect of dataset meta-features on hyperparameters.

OpenML and its software libraries have also been used to 

automatically create and store massive amounts of bench- 

mark result data to enable further large-scale analysis. Pu- 

rucker et al. 70 use model predictions stored on OpenML to 

benchmark ensembles, requiring only a fraction of the cost 

of collecting the data without OpenML. Kü hn et al. 71 and 

Binder et al. 72 collect massive amounts of performance data 

on hyperparameter configurations across datasets from 

OpenML. To illustrate, Binder et al. 72 collected evaluations of

seven different ML algorithms on up to 119 OpenML datasets 

from the OpenML-CC18 suite and the AutoML Benchmark 

(AMLB) for various hyperparameter configurations, resulting 

in more than 4 million model evaluations across many hyper- 

parameter configurations over many different datasets (see 

below for uses of such data).

Furthermore, Codabench, 49 a platform for ML competitions, 

treats benchmarking as a long-term competition and uses data- 

sets from OpenML for many of their challenges.

OpenML has also been used to determine the effect of feature 

selection on classifier performance across datasets with varying 

sizes, 73 as well as under which dataset sizes linear models 

compete with non-linear models, 74 and even to propose a taxon- 

omy of ML algorithms based on (dis)agreement in model predic- 

tions. 75 In addition, the run data on OpenML can be analyzed to 

explore the modeling choices and iterative development of pipe-

lines by its users. 76 Lastly, the predictions available on OpenML 

can also be used to study the impact of calibration on different 

metrics, for example, for different class imbalances 77 or to 

benchmark novel calibration methods, 78 but the available pre- 

dictions can also be used to better understand the behavior of 

metrics in ML. 60 Recently, OpenML has had a positive impact 

on the trending research field ‘‘tabular deep learning,’’ where 

OpenML is used as a major source of test data. 65,79–81

While the OpenML benchmarking suites 8,15,16 received much 

attention, researchers are investigating them further. Cardoso 

et al. 82 use item-response theory to shrink the OpenML-CC18 

by 50%. McElfresh et al. 65 manually define performance criteria 

to obtain a suite of challenging datasets. Curating benchmarking 

suites will remain relevant, as the research community has not 

yet settled on proper design techniques for benchmarking 

suites. 83

Meta-learning

The term meta-learning is slightly overloaded as it has been used 

by multiple communities. On one hand, meta-learning is used in

Figure 6. Number of new papers published each year using OpenML datasets and benchmark suites

Gray markers denote milestones in the development of OpenML for context. Data from 2025 were excluded as the year was still in progress at the time of writing.

Figure 7. Number of datasets uploaded by year

In 2014–2015, many datasets were being imported from older dataset re- 

positories. In 2016, over 17,000 drug-discovery datasets were uploaded. 64
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the context of the algorithm-selection problem, where an ML 

model (the meta-model) is trained to predict which model would 

perform best on a given dataset, based on characteristics of the 

dataset. 11,84 On the other hand, meta-learning is used as a 

method to transfer knowledge of a given (gradient-based) model 

across datasets. 85,86 OpenML has proved very useful for both 

types of meta-learning.

For traditional algorithm selection, OpenML provides a large, 

diverse repository of datasets, their meta-features, and experi- 

mental results, 11 and several meta-datasets have been devel- 

oped to train meta-models. For example, the datasets on 

OpenML can be used to build data-preprocessing assistants. 87 

Notably, a meta-dataset from OpenML (OpenML-Weka- 

2017 20 ) has been used in the open algorithm selection competi- 

tion 2017. 88 This dataset consists of 105 distinct datasets, 17 

Weka algorithms, and 105 meta-features. To extend the density 

of datasets, Zabashta and Filchenkov 89 propose to generate 

new datasets for meta-learning via active learning and demon- 

strate that this can result in better algorithm-selection perfor- 

mance. Carvalho et al. 90 analyze the availability of meta-features 

across OpenML datasets and conclude that there is a discrep- 

ancy in the number of meta-features available per dataset. 

They extract a meta-dataset consisting of 459 datasets, 7 

Weka algorithms, and 14 meta-features that can be used for 

meta-learning experiments. Olier et al. 64 uploaded various quan- 

titative structure-analysis relationship (QSAR) datasets to 

OpenML in various different representations, and they per- 

formed a meta-learning experiment to predict which representa- 

tion and algorithm would perform best for a given dataset. This 

experiment was later extended to incorporate multi-task 

learning. 91

While transfer learning for gradient-based models is typically 

performed on image-based tasks (due to the homogeneity of 

this type of tasks), datasets from OpenML have been used in 

the development of a meta-learning system that can be applied

to tabular data. 92–94 A particular complexity of working with 

tabular data is the heterogeneity of the datasets. Various 

tasks have different numbers of input variables and different 

numbers of classes, making it complex to utilize a single archi- 

tecture across all tasks. The Chameleon algorithm utilizes a da- 

taset encoder that represents datasets into a latent feature 

space such that the meta-learning method Reptile 95 can be 

applied to it.

More recently, in the realm of foundation models, XTab 93 pre- 

trains a transformer architecture across datasets from the 

AMLB, 16 while TabDPT 94 is a TabPFN-style model 79 that is 

trained on datasets from OpenML instead of synthetic data.

AutoML

AutoML research, which aims to construct optimal systems 

based on realistic evidence, is often driven by (automated) ac- 

cess to reliable empirical data. Thus, the AutoML community 

often interacted with OpenML and was among its first users. In 

2015, Feurer et al. 96 extensively used OpenML to develop 

Auto-sklearn, fetching 140 datasets for meta-learning and eval- 

uation. As a matter of fact, the need for extensive metadata in the 

development of Auto-sklearn was the initial motivation for the 

development of the Python API. Moreover, with the introduction 

of the AMLB, 16 data from OpenML became the de facto standard 

for benchmarking tabular AutoML systems. 81,97–101 The AMLB 

consists of software that can automatically create the experi- 

ment environment, e.g., by downloading and installing AutoML 

software, and it combines this with OpenML benchmarking 

suites for automatic and reproducible data loading. The AMLB 

is also used in integration tests of industrial AutoML software. 98 

OpenML has also been used considerably in empirical 

research regarding hyperparameter optimization and the study 

of hyperparameter effects and importance. Van Rijn and Hutter 14 

use functional ANOVA across performance results obtained from 

all datasets in the OpenML100 benchmark suite to determine 

which hyperparameters of different learners are important and 

need to be tuned. Additionally, they use experimental data to 

infer good priors to sample from during hyperparameter optimi- 

zation. Probst et al. 13 determine which hyperparameters are 

important by defining a measure dubbed ‘‘tunability’’ and calcu- 

late it over a subset of the OpenML-100 benchmark. They also 

suggest a way to automatically construct search spaces based 

on the same data.

The above-mentioned data of Kü hn et al. 71 were in turn used 

by Perrone et al. 102 to build surrogate models for benchmarking 

hyperparameter optimization algorithms. HPO-B, 103 using the 

same data, and YAHPO Gym, 61 using the data from Binder 

et al., 72 go even further and use large-scale results data from 

OpenML to build full benchmarking platforms for hyperpara- 

meter-optimization algorithms, releasing tabular and surrogate 

benchmarks for hyperparameter optimization.

In the realm of hyperparameter optimization, Feurer et al. 104 

explore finding well-performing ML pipelines on similar datasets 

using datasets from OpenML. Datasets from OpenML are also 

used to construct small sets of optimal hyperparameter configu- 

rations that can be searched sequentially and efficiently as a 

convenient alternative to more expensive and complex search 

algorithms. 66,96,105 To avoid the need to evaluate multiple hyper- 

parameter configurations altogether, Van Rijn et al. 106 and

Figure 8. Number of email-verified OpenML users by year

Note that registering is only required for uploading or getting an API key. Most 

users use OpenML without registering. For instance, the website has 300,000 

unique yearly users.
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Gijsbers et al. 107 instead use data from OpenML to try to auto- 

matically find a single hyperparameter configuration that may 

be expressed as a function of dataset meta-features, providing 

a default configuration that adapts to dataset characteristics. 

Finally, the hyperparameter configurations found via meta- 

learning play an integral part in the AutoML systems Auto- 

sklearn, 96,104 Auto-sklearn 2.0, 100 and AutoGluon, 66,98 the latter 

being the default ML toolkit inside Amazon, used by thousands 

of internal and external users.

Education 

OpenML’s easy access to toy and realistic data, and, in its com- 

bination with standard ML toolkits, convenient tooling has many 

benefits for education, as students can easily run their own ex- 

periments and deepen their knowledge about ML in a hands- 

on manner. Through the software packages provided, students 

can access thousands of datasets in a homogeneous way. 

This allows educators to let students experiment with ML 

much more easily and eliminate interruptions in the learning pro- 

cess. For instance, a search on coursehero.com yields hundreds 

of instances where OpenML is used in education, especially for 

lab work and assignments. 

OpenML also allows ‘‘classroom challenges,’’ where students 

compete in building the best models, with a leaderboard on 

OpenML (available for any OpenML task), and afterward share 

the models so that other students can see the best solutions 

and learn from them. OpenML is also frequently used in online tu- 

torials, such as those for scikit-learn and Fairlearn. Finally, we 

found almost 200 thesis publications where OpenML was refer- 

enced, usually because OpenML was used as part of their 

research. Note that these only include the theses that are in- 

dexed by Google Scholar, as in reality there might be many 

more theses that acknowledge the use of OpenML.

DISCUSSION

Take-aways from building and maintaining OpenML 

Looking back, there are several lessons we can draw from 

our work.

First, establishing a common vocabulary and standards to 

describe ML datasets, tasks, models, and results is crucial to 

facilitate a free exchange of resources and findings. This is never 

easy because scientific fields, tools, and platforms evolve 

quickly. We updated our schema three times in the last decade 

(with Exposé , ML-Schema, and Croissant). Bringing all major 

data hubs together to define a common standard and to keep 

the standard as simple as possible, as we did with Croissant, 

has proved helpful in gaining adoption and building bridges be- 

tween platforms. Croissant only covers datasets, but initiatives 

are underway to extend it to tasks and model evaluations as well. 

Second, providing open APIs and libraries in multiple lan- 

guages has allowed users to easily use and share resources 

directly from their favorite tools with minimal code, without 

concern for the underlying storage mechanisms. For instance, 

when someone creates a dataset in a pandas dataframe, they 

can share it via the Python API, which stores it as Parquet files 

on the OpenML servers. Another scientist can import that data- 

set directly into PyTorch to train an ML model and then share the 

model and evaluations on OpenML. This also automatically links

datasets to models and their evaluations and ensures rich meta- 

data without additional work. Moreover, by using a language- 

agnostic REST API and language-specific APIs, OpenML can 

naturally adapt as new tools and languages become popular. 

This does require a continuous drive to develop new APIs and 

tool integrations and to make the infrastructure easily extensible 

and maintainable to stay abreast with the fast-moving field. 

Third, reproducibility is hard. OpenML was designed with 

reproducibility in mind, providing features such as rich metadata, 

predefined tasks with data splits, and experiment logging via 

library integrations. Still, as ML tools evolve, old models (or flows) 

cannot always be loaded into new versions of these tools unless 

one containerizes every environment used, which does not 

scale. Moreover, the added complexity of registering tasks and 

models before experiments can be shared proves too much for 

many researchers. Logging experiments via callbacks (as in 

Weights&Biases or MLFLow) has proved much more practical 

but does not guarantee reproducibility, and no such tool has a 

popular hub for publicly sharing experiment logs. It is a difficult 

trade-off that probably requires new standards for sharing ML 

experiments and significant adoption of these standards in ML 

libraries.

Fourth, platforms such as OpenML require constant commu- 

nity engagement, welcoming new contributors and organizing 

open meetings and hackathons. During the COVID pandemic, 

the project felt a significant slowdown when such events could 

not be held and researchers had to focus on different tasks. 

Next to in-kind contributions, open-science platforms require 

funding for full-time developers to maintain the most critical soft- 

ware, provide user support, and manage the community. With 

most funding focused on research output, obtaining funding 

for such activities can be challenging. However, we do see a 

general trend toward more recognition of open science and the 

engineering effort that is required to support it. Therefore, we 

encourage anyone who finds OpenML helpful in their research 

to contribute, for example, by improving documentation, giving 

feedback, helping with code, or uploading ML artifacts.

Fifth, focus on what drives research forward. For instance, 

benchmarking suites such as OpenML-CC18, Meta-Album, 

and the AMLB have been instrumental in systematic model com- 

parisons and driving research, especially in meta-learning and 

AutoML where a significant number of papers build on 

OpenML. Focusing on research creates incentives for scientists 

to invest effort in open science and helps them establish good 

careers. It also directly progresses scientific research. For 

instance, benchmarking suites increase reproducibility by stan- 

dardizing evaluations, comparability by using the same suites 

across studies, and reliability by facilitating large-scale evalua- 

tions that are more general than hand-picking datasets.

Sixth, dataset curation is important. ML datasets may be 

incorrectly described (e.g., omitting crucial information about 

the variables or origin of the dataset). Tasks may be ill-defined 

(e.g., specifying the wrong target or input features), and run re- 

sults can be flawed due to methodological errors such as test 

set leakage or improper seed tuning (e.g., selecting seeds to 

maximize accuracy). Using a curated data repository like 

OpenML helps avoid certain data-quality problems and ambigu- 

ities, 108 but unreflected use can also undermine research qual- 

ity. 109 As open sharing of datasets is a foundational principle of
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open platforms, they typically lack an upfront formal review pro- 

cess, leaving potential for errors. However, (community-driven) 

quality control and the creation of curated task and run collec- 

tions provide an effective remedy. These collections can 

serve as quality seals, enhancing trust for users who seek reli- 

able results or demonstrate the trustworthiness of their own 

contributions.

Seventh, the datasets used by the ML community evolve over 

time. Changes may occur because previously unnoticed flaws 

are discovered or ethical considerations arise (e.g., Iris, Boston 

Housing). While we currently facilitate discussions of such issues 

via the openml-data repository (https://github.com/openml/ 

openml-data), a more direct and integrated mechanism for flag- 

ging and discussing datasets would be beneficial (e.g., by treat- 

ing each individual dataset as its own git repository and issue 

tracker).

Eighth, the ML landscape is constantly evolving. Methodolog- 

ical advancements have all but replaced hand-crafted feature 

extraction methods for vision, text, and speech with deep- 

learning methods that render tabular datasets with such ex- 

tracted features obsolete. 108 That said, tabular datasets are still 

highly relevant in many domains and play a new important role in 

the emergent field of tabular foundation models. 79,81,110,111 

Moreover, new methods make earlier problems (too) easy. For 

instance, computer vision classifiers can almost perfectly 

‘‘solve’’ datasets such as CIFAR-10, CIFAR-100, and even Im- 

agenet, 112 and we see extremely fast saturation of new bench- 

marks for LLMs. The advent of foundation models that can 

memorize public datasets 113 or that are pre-trained on public da- 

tasets will pose a significant issue for research, and this is a key 

open problem that requires our attention. More generally, reus- 

ing datasets over and over might lead to adaptive overfitting, 114 

even though we are not aware of any documented case of this. In 

all, creating and maintaining new, challenging benchmarks is a 

continuous effort and an important catalyst for innovation in ML. 

Ninth, documenting the underlying data-generating process of 

experiments is important. For example, in our meta-analysis, we 

found that findings depend heavily on how tasks were selected, 

how flows and their hyperparameter configurations were deter- 

mined, and the scientific motivation and practical context in 

which tasks, flows, and runs are created. This information ex- 

poses underlying assumptions, clarifies intended use cases, 

and helps gauge the external validity of any downstream anal- 

ysis. If such information is not available (described in papers or 

available online), any analysis based on these results might be 

biased in various ways, thereby undermining the validity of scien- 

tific conclusions. Similar to point six, task and run collections 

offer a practical remedy by promoting transparent, standardized, 

and reproducible experimental settings. Moreover, systematic 

explorations of hyperparameters already exist on OpenML 

(e.g., see Kü hn et al. 71 ) and further enrich the evidence base 

for reliable meta-analysis.

Tenth, OpenML serves a surprisingly broad user community. 

While the primary focus has traditionally been to help scientists 

conduct empirical evaluations of ML algorithms, other important 

use cases emerged. For instance, scientists from other fields up- 

load datasets to more quickly obtain good models of their data, 

while others might seek to identify effective starting models that 

perform well on similar, already-existing datasets. Other users

share the results of benchmarking studies to be used by other re- 

searchers (e.g., as baselines). OpenML shows all run results 

alongside tasks to help with this, but we caution that these re- 

sults also need to be interpreted with care due to optimization 

bias. An open challenge is to support the sharing of datasets 

with privacy concerns, as OpenML currently requires open li- 

censes and ensures GDPR compliance. OpenML’s community 

is always eager to extend its functionalities to better address 

additional user scenarios, thus enhancing its utility and attracting 

a wider audience.

Future

Looking forward, we aim to use these insights to further enhance 

OpenML’s functionality and empower the ML community. First, 

we aim to simplify the process of conducting reproducible yet 

more flexible research, enabling researchers to share and 

compare their findings easily. This involves streamlining the 

sharing of datasets, models, and benchmarks, making it easier 

for users to contribute to the platform and access a broader 

range of resources. More concretely, this encompasses several 

aspects, including better documentation support (e.g., data- 

sheets 115 and model cards 116 ); increasing support for datasets 

of different modalities; code integrations such as callbacks in 

popular ML libraries, especially facilitating the integration of 

deep learning libraries to support reproducible benchmarks; 

and developing more collaboration tools (e.g., integration with 

Jupyter Notebooks and HPC resources). Another primary goal 

is to integrate even more with other platforms. This interopera- 

bility will be facilitated by adopting community standards 

such as Croissant, and we are already working with our 

Croissant partners to extend it toward ML tasks and bench- 

marks. Moreover, we also aspire to integrate with community 

platforms that offer additional resources such as papers, code, 

notebooks, experiment tracking, and discussions (including 

arXiv, PapersWithCode, MLFlow, Kaggle, and Hugging Face). 

We aim to avoid reinventing the wheel and instead create a 

more interconnected ecosystem and empower existing commu- 

nities. All in all, we hope to realize the vision of a truly networked 

science environment for OpenML, especially by integrating 

OpenML as closely as possible with other dedicated platforms 

and research infrastructure.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Joaquin Vanschoren (j.vanschoren@tue.nl).

Materials availability

The source code of all pieces of software required to host the repository, of all 

clients, and also of several studies is available under open-source licenses at 

https://github.com/openml. OpenML, and the datasets, tasks, flows, runs, and 

collections are available at https://openml.org itself. Finally, the new material is 

available on GitHub as described in the next subsection.

Data and code availability 

• The final survey data, as well as all original code, are available at https:// 

github.com/openml/OpenML-Paper-Impact-Analysis at https://doi. 

org/10.5281/zenodo.15464166 and are publicly available as of the 

date of publication.
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• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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A. Català , eds. (Springer), pp. 471–483.

60. Flach, P., and Kull, M. (2015). Precision-Recall-Gain Curves: PR Analysis 

Done Right. Adv. Neural Inf. Process. Syst. 28, 838–846.

61. Pfisterer, F., Schneider, L., Moosbauer, J., Binder, M., and Bischl, B. 

(2022). YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity 

Benchmark for Hyperparameter Optimization. In Proceedings of the 

First International Conference on Automated Machine Learning, 188 

(Proceedings of Machine Learning Research), pp. 3/1–39.

62. Mohr, F., Viering, T.J., Loog, M., and van Rijn, J.N. (2022). LCDB 1.0: An 

extensive learning curves database for classification tasks. In Machine 

Learning and Knowledge Discovery in Databases (ECML PKDD 2022), 

13717 (Lecture Notes in Computer Science), pp. 3–19.
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