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Abstract—With the ever-increasing advancements in sensor 

technology and localization systems, large amounts of spatio-
temporal data can be collected from moving objects equipped 
with wireless sensor nodes. Analysis of such data provides the 
opportunity of extracting useful information about movement 
behaviour and interaction between moving objects. Inherent 
characteristics of wireless sensor nodes cause the data collected 
by them to have low or irregular frequency and often be 
erroneous. Existence of different levels of uncertainty in these 
data makes the procedure of finding movement patterns difficult 
and ambiguous. In this paper, we propose a hierarchical 
approach to find the frequently visited paths using location data 
of people carrying a custom designed mobile wireless sensor 
node. We hierarchically cluster trajectories and find their 
resemblance at the finest level while dealing with the 
uncertainties. The performance evaluation results show that 
compared with previous schemes, our method performs better in 
presence of ambiguity and sources of data uncertainty. 

I. INTRODUCTION 
Integration of location acquisition technologies, such as 

GPS with data communication networks, such as wireless 
sensor networks has led to possibility of collecting a huge 
volume of time-stamped location data form humans, animals, 
and vehicles. Analysis of such spatio-temporal data can 
answer various questions about mobility patterns of 
individuals and groups, such as periodic patterns, swarm 
patterns, and movement interactions [1]. One of such 
questions is finding frequently visited paths traversed by 
individuals. Being able to answer this question is of 
importance for many real world applications such as urban 
planning [2], crowd sourcing, trip planning for tourists or cars 
[3], advertising (e.g. planning billboards), and animal 
behaviour analysis (effects of roads on animals) [4].  

One approach towards finding frequently visited paths, is to 
compare trajectories as a whole and find groups (clusters) 
with the larger number of similar trajectories. This general 
comparison misses similar partitions shared by trajectories 
which generally belong to different groups. Therefore, 
effective partitioning methods should be used to partition 
trajectories before grouping them into similar clusters. This 
partitioning can be performed by the use of semantic 
information inferred from the regions of interest (e.g. stopping 
points). 

On the other hand, when trajectories are partitioned and 
grouped based on the regions of interest the sub-trajectories in 
each group are already similar with respect to their origin and 
destination and potentially have common sub-paths. 

Therefore, finding their difference is difficult. Additionally, 
different sources of uncertainty make this procedure even 
more challenging. This is shown in Figure 1. 

     
Fig. 1.Figures in left and middle show two possible paths between A and 

B. Figure in right shows three different trajectories between point A and B 
resulted by interpolation. Black and red trajectories, each follow one of these 

paths and the blue trajectory is not even classifiable by human eye. 

When collecting spatio-temporal data by wireless sensor 
nodes, uncertainties [5] are introduced due to technical 
shortcomings . We categorise these uncertainties into (i) noise 
(a measurement which does not make sense considering the 
maximum speed and the distance from previous 
measurement), (ii) measurement error  (minor deviation from 
the correct value), (iii) discrete sampling, and (iv) missing 
samples. Discrete nature of sampling is the source of 
uncertainty between two consequent samples. The level of 
uncertainty is affected by the frequency with which position 
samples are taken [5]. In real world applications there are also 
samples missing. This implies that data is unavailable because 
of hardware failure, and transmission error, among other 
reasons. Missing samples increase the level of uncertainty 
even more.  

Representing trajectories from samples in presence of 
uncertainties is a challenge. One of the most popular methods 
in presenting trajectories is interpolating the two consecutive 
GPS measurements. Depending on the sampling rate, number 
of missing points, and their location, two similar trajectories 
may be presented completely differently, using interpolation 
(or two different trajectories may be presented similarly). 
Another alternative for trajectory representation is to use road 
network data. Other than for vehicles, which have road 
restricted movements, this approach is not very useful (for 
example for animals and pedestrians). Trajectory 
representation while dealing with the uncertainties can also be 
performed through correcting trajectories by the collective 
knowledge [6]. The collective knowledge in this case is the 
knowledge gained by considering mobility data of all 
trajectories on a specific path. As seen in Figure 2, the red 
points can better represent the frequently visited paths than the 
blue interpolating lines. 
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Fig. 2. Individual trajectories (blue lines) alone do not provide enough 

information to construct the route while their aggregation (red dots) can help 
reconstruct the route more accurately. 

Our contributions in this paper are as follows: Firstly, we 
propose a hierarchical grid based clustering approach based on 
the semantic and geographical data to find the frequently 
visited paths by people to the finest level of similarity. To the 
best of our knowledge this is the first time such hierarchical 
approach is used to find frequently visited paths. Secondly, we 
use the concept of collective knowledge to deal with the 
uncertainty of trajectory representation when the level of 
uncertainty caused by missing samples and discrete sampling 
is increased.  

II. RELATED WORK 
Previous researches on analysing trajectories mainly apply 

data mining methods such as clustering on the collected 
mobility data. One of the first methods in trajectory clustering 
was proposed in [7], which suggested to use a probabilistic 
model-based approach. Trajectories have also been clustered 
using similarity measures [8, 9]. Some popular similarity 
measures which have been used to compare trajectories are 
Euclidian distance [10], LCSS (Least Common Subsequence) 
[11], DTW (Dynamic Time Warping) [12], ERP (Edit 
distance with Real Penalty) [13], EDR (Edit Distance on Real 
sequences) [9], and CATS (Clue Aware Trajectory Similarity) 
[14]. Without getting help from a complementary method 
such as sliding window, these similarity measures can only 
find the similarity between complete trajectories and will not 
give any information about the common sub-trajectories. To 
be able to find similar fractions of trajectories, Traculus [8] 
focuses on finding the common portions of trajectories (sub-
trajectories) by first partitioning them based on the movement 
behavior and then clustering these trajectory partitions. 
Another view to finding frequent trajectories is by considering 
the semantic information such as regions of interest [15, 16] 
and finding frequent patterns in semantically defined 
trajectories. 

While considerable attention has been so far paid to finding 
similar trajectories considering the entire trajectory, not much 
attention has been paid to finding (dis)similar sub-trajectories 
between regions of interest (e.g. between semantic areas). The 
semantically similar sub-trajectories may be composed of 
different paths. The uncertainty in such data can also cause the 
procedure of finding (dis)similarity between paths harder. 

Recently, few methods have been proposed to deal with 
different notions of uncertainty in collected GPS data. In order 
to deal with the uncertainty caused by  measurement error a 
constant uncertain area around the trajectory points 
(cylindrical or square) is considered [17, 18]. In another 
approach this problem was addressed by proposing a variant 
of fuzzy C-Means clustering algorithm [19].  

Having daily trajectories of a person, we do not aim to find 
groups of complete trajectories which are similar, but instead 
we are interested to know what are the frequently used path 
between semantic places and where most of these trajectories 
are similar (e.g. what is the more visited road? ). In terms of 
finding partitions which are shared by different trajectories, 
our work is more in-line with Traculus [8]. While Traculus 
does not take the uncertainty of trajectory representation into 
account, we have tried to deal with this notion of uncertainty 
through use of collective knowledge of trajectories.   

III. PRELIMINARY 
The terms and notions that we use in this paper are as 

follows: A trajectory is a sequence of time-stamped sample 
points denoted by: 𝑇𝑟𝑖 = 𝑃𝑡1

𝑖 … 𝑃𝑡𝑛
𝑖 , where 𝑖 is the trajectory 

𝐼𝐷 and the indexes  (𝑡𝑖 … 𝑡𝑛)  represent the time-stamps of 
samples. The length of trajectories are variable and there are 
missing samples due to different reasons (hardware failure, 
environmental conditions, etc.). A semantic place is a spatial 
region extracted from a complete trajectory where the person 
has spent more than a predefined amount of time (τ). A sub-
trajectory 𝑆𝑇𝑟𝑖 = 𝑃𝑡1

𝑖 … 𝑃𝑡𝑛
𝑖  (the mobility data between two 

semantic places) is a fraction of a trajectory which has its first 
point in one semantic place (origin) and its last point is in 
another (destination). A path 𝑃𝐴𝑖  = {𝑆𝑃1 … 𝑆𝑃𝑘} is a group 
of sub-paths (retrieved from the collective knowledge) that 
represent the realistic route from an origin to a destination. A 
sub-path 𝑆𝑃𝑖  ={𝑔𝑖 … 𝑔𝑛} is a section of a path composed of a 
list of grid cells (𝑔𝑖). Sub-paths can be considered as units of 
difference between paths.  

 Given a trajectory database denoted by D= {𝑇𝑟1, … ,𝑇𝑟𝑚}, 
where each trajectory represents a sequence of spatial points 
visited by a person during a day, we are interested in finding 
frequently traversed paths and sub-paths between semantic 
places.  

IV. METHODOLOGY 

A. Overview 
 

 
Fig. 3. Overview of our hierarchical approach 

 
Grid based clustering methods quantize the object space 

into a finite number of grid cells on which all of the operations 
for clustering are performed [20]. We use a hierarchy of such 
grids as shown in Figure 3, to find frequently visited paths and 
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sub-paths. On a coarse grained scale, each grid cell represents 
common sub-trajectories based on their origin and destination. 
On a more fine grained scale, we find frequent paths and sub-
paths between each pair of origin and destination. Finally, we 
can get the intersection of sub-paths from all pairs of origin 
and destination.  

B. Level 1: Semantic grid 

We can use semantic information of the semantic grid to 
first cluster sub-trajectories based on the conceptual 
information we can achieve from the regions of interest. 
Regions of interests are places where a person stays longer 
than a predefined threshold. We extract such regions by the 
method proposed in [21], in which each stay point is a place 
where the speed of the person is near zero. Then we will 
group sub-trajectories into clusters such that each cluster 
contains sub-trajectories between the same origin and same 
destination. For instance, a grid cell in the semantic grid can 
store all sub-trajectories from home (origin) to work place 
(destination). (Existence of a pattern mining layer on top of 
the semantic grid is also possible to find the frequent semantic 
trajectories [18]). 

C. Level 2: geographical grid 
In the next level, we cluster sub-trajectories to find 

frequently visited paths and sub-paths between each pair of 
origin and destination. The challenge to face here is that these 
sub-trajectories are already somewhat similar (as they have 
the same origin and destination). Therefore, it is necessary to 
first find the source of difference between them. Additionally, 
some sub-trajectories have missing points which make their 
correct representation difficult and consequently make them 
unclassifiable with respect to different paths traversed.  

To address these challenges, we first aggregate all sub-
trajectory points (from the same semantic grid cell) to find a 
connected neighbourhood between the origin and destination 
based on the common knowledge of sub-trajectories. Then, we 
find the source of difference between paths in such 
neighbourhood. Afterwards, we redefine and group sub-
trajectories with respect to these units of difference. These 
procedures are better expressed in the following sections.  

1) Step 1: Finding connected neighbourhoods 
We form a geographical grid of size M × M. Having the 

start time of all sub-trajectories synchronized, each grid cell 
denoted by 𝑔𝑖, (1< 𝑖 < M2) will hold the number of sub-
trajectories which have a point in it, denoted by 𝑐(𝑔𝑖), along 
with the median of their time index, denoted by 𝑚(𝑔𝑖). With 
this median we can later keep the order of sub-paths. 

Assuming that there is no backwards movement between 
the origin and destination, if we only filter the cells {𝑔𝑖 | 
𝑐(𝑔𝑖) > defined threshold}, the layout of frequently visited 
paths between the origin and destination will become visible 
(in form of a connected neighborhood) based on the common 
knowledge of sub-trajectories. As seen in Figure 4, the paths 
that form a connected neighborhood may have some sub-paths 
in common and some different sub-paths. These sub-paths can 
be considered as the cause of (dis)similarity between two 

paths. Therefore, we need to break the connected 
neighbourhood to sub-paths to be able to use them to define 
frequent paths.  

       
Fig. 4. Left to right: A connected neighborhood between a pair of origin 

and destination and 3 frequently visited paths which can be intuitively 
inferred from collective knowledge of all trajectories. 

2) Step 2:Finding sub-paths in connected neighbourhoods 
     A frequently visited path can be represented as an ordered 
list of sub-paths. An idea to find sub-paths in the connected 
neighbourhood is to find breakpoints where a group of paths 
meet each other (converge) or where they separate from each 
other (diverge). Afterwards, the connected neighbourhood 
between these breakpoints can be defined as sub-paths.  

The Algorithm SPdefine explains how we find sub-paths 
between the origin and destination: 

Algorithm SPdefine 
Input: start point S, threshold TH,  a set of grid cells G={g|c(g)>0} 

     Output: A list of LSubPaths 
1. Add S to a queue Q and to List of Breakpoints  LBP 
2. While Q is not empty 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Do  
 SC← dequeue a cell from queue 
While SC is  not visited    
Visit SC 
Add SC to TempSubPath 
NonAdjacentNeighbors← All non-visited non-adjacent neighbor of SC 
with C(SC)> TH  
Intersection=0 
While | NonAdjacentNeighbors |=1 & ~Intersection 
 Visit NonAdjacentNeighbors(1) 

Add NonAdjacentNeighbors(1) to TempSubPath 
Intersection← Check if visited neighbors are in (LBP  –  
TempSubPath (1)) 

End 
If  | NonAdjacentNeighbors |>1 
 Add NonAdjacentNeighbors(1..n) to Q 

Add SC to the LBP 
End 

22. Add TempSubPath to the list of LSubPaths 
23. End 

    This algorithm starts traversing the grid from a cell which is 
selected as starting point (the cell which represents the origin) 
and follows the path on the grid by iteratively selecting 
neighbours (referred to as selected cell(s)(SC)) and moving 
forward. For moving forward, we define the concept of 
adjacent neighbours and non-adjacent neighbours as shown in  
Figure 5. The reason for choosing this definition is to be able 
to select more than one grid cell whenever necessary, for 
example when the width of a path is more than the width of a 
grid cell. Adjacent neighbours are neighbours of  selected 
cell(s) which have a common edge and non-adjacent 
neighbours are those neighbours without a common edge. A 
group of adjacent neighbours should be considered as one 
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non-adjacent neighbour for the selected cell. Therefore, when 
we chose neighbours as the next round’s selected cell(s), a 
group of adjacent neighbours might be chosen. 

 
Fig. 5. left: a selected cell in black with two non-adjacent group of 

neighbouring cells (red) to move forward from. Right: two selected cells 
(black) and their two non-adjacent neighbours (red) 

 
    In each iteration, the algorithm extracts selected cell(s) 
from the queue, adds it to the start of a sub-path and checks its 
neighbours. When there is only one unvisited non-adjacent 
neighbour (𝑁) (with 𝑐(𝑁) >  𝑇𝐻) and no breakpoints in the 
neighbours , this selected cell(s) will be added to the sub-path 
(lines 6-16). In case there are more than one adjacent cell to 
move forward from, this selected cell(s) will be added to the 
list of break points, the non-adjacent neighbours will be added 
to the queue, the current sub-path will be terminated and 
added to the list of sub-paths (lines 17-20). After a while, 
some sub-paths may have cells from both of their ends in the 
queue (a cell from their start and a cell from their end). In 
order to avoid traversing these sub-paths twice, when 
removing cells from the queue we will only select the cell(s), 
which are not already visited (lines 3-5). Finally, we will have 
a list of sub-paths in which each sub-path is defined by a list 
of cells denoted by {𝑔𝑖| 𝑖 ∈ 𝑀 ∗ 𝑀 } and one or two 
breakpoints (one on each end). 

3) Step 3: Ordering sub-paths in the tree of sub-paths 
After finding sub-paths in a connected neighbourhood 

between a pair of source and destination, we order them in a 
tree (we refer to it as tree of sub-paths). This ordering is done 
by matching the breakpoint in the beginning and end of each 
sub-path.  As it can be seen in figure 6, the ordered sequence 
of sub-paths from the route to the leaf of the tree shows the 
frequent paths from origin to destination. In this figure, the 
frequent paths inferred from the tree of sub-paths 
are :𝑃𝐴1={𝑆𝑃1, 𝑆𝑃2, 𝑆𝑃7}, 𝑃𝐴2={ 𝑆𝑃1 , 𝑆𝑃3 , 𝑆𝑃5,
𝑆𝑃6, 𝑆𝑃7}, 𝑃𝐴3={𝑆𝑃1 , 𝑆𝑃3 , 𝑆𝑃4, 𝑆𝑃6, 𝑆𝑃7}. 

   
Fig. 6. Left: A connected neighborhood between a pair of origin and 

destination with 7 sub-paths. Right: the representative tree of sub-paths 

4) Step 4: Redefining trajectories based on sub-paths 
and clustering them based on the tree of sub-paths 

After fragmenting a neighbourhood to the frequently visited 
sub-paths and finding frequently visited paths using the tree of 

sub-paths, we redefine each sub-trajectory in terms of sub-
paths. We start reading all the points on a sub-trajectory in 
order. If a point was in or near (in the neighbouring cells) a 
sub-path it will be replaced by that sub-path. This means that, 
existence of only one point in the sub-path indicates that this 
sub-trajectory passes the sub-path completely. Other points 
which are not on any sub-paths will remain intact (in case we 
are interested in outliers too). For instance, looking at Figure 
6, the new representation of sub-trajectory 𝑆𝑇𝑟1 will be {𝑆𝑃1, 
𝑆𝑃4, 𝑃3, 𝑆𝑃6, 𝑆𝑃7}. 

If we consider that each path in the tree is the core of a 
cluster, then the final step is to assign the redefined sub-
trajectories to the correct cluster. For the comparison we have 
chosen to use a similarity measure similar to LCSS [11], 
which ranks the matching parts between two time series based 
on their similarity. If 𝑆𝑃1…𝑚, and 𝑆𝑅𝑇1…𝑛, denote the list of 
sub-paths from a path (cluster), and the sub-path list of a 
redefined sub-trajectory, then the similarity measure between 
the redefined sub-trajectory and a path (cluster) formed by the 
tree is: 

𝑆𝑀 =  

⎩
⎨

⎧
0                                                                            𝑖𝑓 𝑚 = 0 𝑜𝑟 𝑛 = 0
𝑆𝑀�𝑟𝑒𝑠𝑡(𝑆𝑃),𝑟𝑒𝑠𝑡(𝑆𝑅𝑇)�+ 1                         𝑖𝑓 (𝑆𝑇1 =  𝑆𝑅𝑇1)
𝑆𝑀(𝑅𝑒𝑠𝑡(𝑆𝑃),𝑆𝑅𝑇)                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

In this way, each sub-trajectory is compared to all clusters 
and assigned to one or some clusters based on the maximum 
similarity. The points that remain on the redefined sub-
trajectory can be ignored as being noise.  

During this procedure we can also score the sub-paths. The 
score of a sub-path 𝑆𝑃𝑖  denoted by 𝑆𝑐𝑜𝑟𝑒(𝑆𝑃𝑖) is the number 
of the sub-trajectories that have followed it. If the maximum 
similarity measure of a sub-trajectory and the paths (clusters) 
is owned by one path (cluster), then the sub-trajectory belongs 
to that path (cluster) and the score of all sub-paths on the path 
are incremented by one. If the maximum similarity measure of 
the sub-trajectory is shared by some paths (clusters), that sub-
trajectory is uncertain between those paths (clusters). We can 
increment the score of the sub-paths forming those paths by 
1/(number of paths with maximum similarity measure). Sub-
trajectories that have equal similarity measure to all paths 
(potentially because they are only following the sub-paths  on 
the start and end) and those with a considerable number of 
remaining points are outliers.  

Let us consider the tree shown in Figure 6.  A sub-
trajectory, which is redefined as {𝑆𝑃1, 𝑆𝑃5, 𝑆𝑃7} has a 
similarity measure of 2 to 𝑃𝐴1 and 𝑃𝐴3 and similarity 
measure of 3 to 𝑃𝐴2. Therefore, it will be clustered with 𝑃𝐴2. 
This increases the score of each sub-paths on 𝑃𝐴2 by one. A 
sub-trajectory represented by {𝑆𝑃1, 𝑆𝑃3, 𝑆𝑃7} is similar to 
𝑃𝐴2 and 𝑃𝐴3 with a similarity score of 3 while its similarity 
score to 𝑃𝐴1 is 2. Therefore, it will be considered as uncertain 
between 𝑃𝐴2 and 𝑃𝐴3, and cause the score of each sub-path 
on these paths to increment by ½ score.  

If we consider having 𝑁 number of trajectories and 𝑃 
clusters (frequent paths), the complexity of the 
abovementioned clustering approach will be 𝑂(𝑁𝑃). For a 
density based clustering approach (e.g. Traculus [8]) the 
complexity will be O(𝑁2).  Therefore, when the number of 
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frequent paths (P) shared by a large number of trajectories are 
limited our approach performs more efficiently. 

D. Level 3: Intersection 
After all the sub-paths are scored with respect to the sub-

trajectories that follow them for each cell of the semantic grid 
(each pair of source and destination), we can compare the sub-
paths from one cell of the semantic grid to the sub-paths of 
other cells. In case the intersection of two sub-paths (in terms 
of the id of geographical grid cells) is not empty the 
intersected sub-path 𝑆𝑃𝑐 = {𝑔𝑖|𝑔𝑖 ∈ 𝑆𝑃𝑎  ∩  𝑆𝑃𝑏 }  will be 
added to the list of sub-paths with a score equal to the score of  
two sub-paths (𝑆𝑐𝑜𝑟𝑒(𝑆𝑃𝑐) =  𝑆𝑐𝑜𝑟𝑒(𝑆𝑃𝑎) +  𝑆𝑐𝑜𝑟𝑒(𝑆𝑃𝑏) ). 
By doing so, we will have a list of scored sub-paths, out of 
which the top sub-paths can be chosen as most frequently 
visited sub-paths.  

V. EVALUATION 

A. Experimental results 
In this section we will present the result of the experiments 

we performed on the data that we have collected with a 
custom designed sensor node (Figure 7). Although, the sensor 
node is designed to sample location data derived from GPS 
every one minute, the collected data shows that the sampling 
frequency is very irregular.  

 
Fig. 7. Image of the custom designed sensor node 

Before analysis, we have formed regions of interest by 
extracting regions where the person has stayed longer than 30 
minutes. Then we chose the group of sub-trajectories between 
two different staying points. The only previous clustering 
approach that addresses the problem of finding common sub-
trajectories is Traculus [8] which first partitions trajectories 
based on the change in the behaviour of  trajectory (e.g. 
direction). It then clusters the line segments using a line-based 
similarity measure. The behaviour of sub-trajectories that we 
formed between two semantic places are quite similar so we 
simply consider the sub-trajectory partitions as being the line 
segments achieved through interpolating consecutive 
measurements. 

We compare clustering of 74 sub-trajectories between two 
semantic places shown in Figure 8-a. The distance between 
these two places has been traversed through two distinct paths 
shown in Figure 8-b-c. Some sub-trajectories have enough 
number of points to be assigned to path 1 or path 2 while 
some other have only points on the intersected sub-paths and  
cannot be clustered by human eye (see Figure 1). The goal is 
to distinguish between these two paths as two clusters, to find 
the number of sub-trajectories that have followed them and 
also to find their intersection as the most frequently visited 
sub-path. As shown in Figure 8-d, Traculus will only find one 
cluster. The reason is that due to closeness of two different 
paths there is small spatial difference between sub-trajectories 

of two different paths and the uncertain trajectories fill this 
gap. In addition, existence of missing points and spatial 
closeness causes that different trajectories look the same. The 
tree of sub-paths  formed by our method, however, can find 
two frequent paths (clusters) between the source and 
destination with 4 sub-paths. Traculus represents the 
trajectories by getting an average of the cluster by a sweeping 
mechanism. We, however, represented the sub-paths by 
getting the average of points in each grid cell and ordered 
them by their median of timestamps. Using this mechanism 
the representation of sub-paths is closer to the realistic 
representation of them. Moreover, our method can make 
distinction between spatially close paths and uncertain sub-
trajectories. 

    
             a                                  b                                 c 

   
             d                                   e                                     f 
Fig 8 a) group of sub-trajectories, (b,c) two different paths common in one 
subpath b) path1 c) path2 d) representation of the only cluster found by 

Traculus e) representation of 4 sub-paths identified by our method f) the tree 
of sub-paths 

TABLE I 

NUMBER OF CLUSTERED TRAJECTORIES BEING IDENTIFIED USING THE TREE 
OF SUB-PATHS. 

Clusters Number of sub-trajectories assigned to the 
cluster with different grid sizes (GS) 

Actual number 
of sub 

trajectories in 
clusters GS= 70*70 GS= 80*80 GS= 100*100 

Path 1 13 22 22 24 
Path 2 12 35 37 38 

Uncertain 49 17 15 12 

TABLE  II  

 SCORE OF SUB-PATHS 

Sub-path Score of sub-path with different grid sizes 
(GS) 

Actual number 
of sub 

trajectories that 
have a point in 
the sub-path 

GS= 
70*70 

GS= 
80*80 

GS= 100*100 

Sub-path 1 74 74 74 74 

Sub-path 2 40.5 30.5 29.5 24 
Sub-path 3 37.5 42.5 44.5 38 
Sub-path 4 70 74 74 74 

We performed experiments with 3 different grid sizes. 
Table 1 and Table 2 show number of frequently visited paths 
and the score of sub-paths found respectively. In each table 
the last column shows the actual values which we measured 
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by analysing sub-trajectories visually. Table1, shows that the 
precision of the method increases as the grid size decreases. 
This is due to the fact that, the smaller the cell is, the easier it 
is to precisely represent the start and end of a sub-path. 
Therefore, the sub-trajectories that only have points near the 
start and end of a sub-path are better assigned to the right sub-
path. Table 2, shows that the scores of sub-paths 2 and 3 are 
more than actual number of sub-trajectories that have a point 
on them. The reason is that, there are 12 unclassifiable 
trajectories between two paths which we chose to split their 
score between their sub-paths. 

B. Different approaches and desirable properties 
Table 3 compares different approaches in terms of their 

support for different desirable properties in finding frequent 
sub-paths between semantic places. Generally, methods that 
are interpolation based are sensitive to uncertainties caused by 
discrete sampling and missing points. Methods that do not rely 
on a framework for partitioning trajectories are not able to 
find their similar sections. Noisy measurements can be 
ignored by a non-metric system of comparison (not measuring 
the distance of points but counting the number of similar 
points) [10] or density based clustering. In this paper, we 
address the problem of finding common sub-trajectories by a 
hierarchical approach. We ignore noisy measurements by 
scoring the similarity of trajectories to frequent paths. We use 
collective knowledge of sub-trajectories to redefine them. By 
doing so, we deal with trajectory representation uncertainty 
caused by discrete sampling and the problem of missing 
sample. We also address measurement errors to some extend 
by defining adjacent neighbours to move forward with and 
assigning points on sub-paths if they are close to them. 
However, in case sub-paths are very close to each other, our 
method cannot well deal with uncertainty.  

TABLE III 

COMPARISON OF DIFFERENT TRAJECTORY CLUSTERING APPROACHES WITH 
RESPECT TO DIFFERENT DESIRABLE PROPERTIES 

Methods 

Desirable properties 

Sub-
trajectory 

based 
clustering 

Being prune to notions of uncertainty 

Noise 

Missing 
samples & 

discrete 
sampling  

Measurement 
error 

Clustering by 
EDR [9] No Yes No1 No 

Traculus [8] Yes Yes No No 
[19] No No No Yes 

Our method Yes Yes Yes No 

VI. CONCLUSION 
      In this paper we propose a hierarchical approach to find 
frequently visited paths and sub-paths traversed by moving 
objects by using both semantic information and geographical 
data. First, we use the semantic information (stopping points) 
to cluster trajectories into groups of semantically similar sub-
trajectories. We then find frequently visited paths and sub-

                                                 
1 EDR has a mechanism to deal with gaps in data, but in case the paths are close to each 
other and have common sub-paths it will not be able to deal with the uncertainty of 
missing samples and discrete sampling 

paths in each of these clusters. We use the notion of collective 
knowledge to deal with uncertainty of trajectory 
representation and show that compared with existing 
approaches we can more efficiently identify similar 
trajectories in presence of uncertainty. 
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