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Abstract

Remote sensing imagery has an ever-increasing impact on important downstream applications, such as vegetation mon-
itoring and climate change modelling. Clouds obscuring parts of the images create a substantial bottleneck in most
machine learning tasks that use remote sensing data, and being robust to this issue is an important technical challenge.
In many cases, cloudy images cannot be used in a machine learning pipeline, leading to either the removal of the images
altogether, or to using suboptimal solutions reliant on recent cloud-free imagery or the availability of pre-trained models
for the exact use case. In this work, we propose VPint2, a cloud removal method built upon the VPint algorithm,
an easy-to-apply data-driven spatial interpolation method requiring no prior training, to address the problem of cloud
removal. This method leverages previously sensed cloud-free images to represent the spatial structure of a region, which
is then used to propagate up-to-date information from non-cloudy pixels to cloudy ones. We also created a benchmark
dataset called SEN2-MSI-T, composed of 20 scenes with 5 full-sized images each, belonging to five common land cover
classes. We used this dataset to evaluate our method against three alternatives: mosaicking, an AutoML-based regres-
sion method, and the nearest similar pixel interpolator. Additionally, we compared against two previously published
neural network-based methods on SEN2-MSI-T, and evaluate our method on a subset of the popular SEN12MS-CR-TS
benchmark dataset. The methods are compared using several performance metrics, including the structural similarity
index, mean absolute error, and error rates on a downstream NDVI derivation task. Our experimental results show
that VPint2 performed significantly better than competing methods over 20 experimental conditions, improving perfor-
mance by 2.4% to 34.3% depending on the condition. We also found that the performance of VPint2 only decreases
marginally as the temporal distance of its reference image increases, and that, unlike typical interpolation methods, the
performance of VPint2 remains strong for larger percentages of cloud cover. Our findings furthermore support a cloud
removal evaluation approach founded on the transfer of cloud masks over the use of cloud-free previous acquisitions as
ground truth.
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1. Introduction

Remote sensing data, such as the data obtained con-
stantly from Earth observation satellites, is of tremendous
importance in monitoring the health of our planet. How-
ever, when working with remote sensing data, data pro-
cessing pipelines that could otherwise produce excellent
results are often challenged by clouds obscuring parts of
a satellite image. In some cases, these cloudy images are
omitted entirely, even to the point of on-board hardware
and software solutions being developed for satellites to
avoid sending cloudy data back to Earth [1, 2]. Alter-
natively, cloud-free images are produced by a combination
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of cloud masking and mosaicking cloud-free pixels from a
previous image onto the cloudy pixels of a target image
[3, 4]. Although such an approach allows an application
to accept the input image, pixel values from dynamic pro-
cesses get outdated relatively quickly, and finding recent
cloud-free images can be challenging. This can be a prob-
lem for tasks such as vegetation monitoring or the mapping
of extreme events (e.g., floods or fires). Therefore, accu-
rate and up-to-date estimations for cloudy regions would
be much preferred, particularly in such dynamic environ-
ments.

Creating these cloud-free estimations for remote sensing
images can be a challenging task. Environmental factors
like the sun’s azimuth and zenith angles, atmospheric con-
ditions, vegetation, and the landscape change over time. A
cloud removal algorithm would need to account for these
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changes, which is difficult, considering the variability of
the temporal distance to the last known cloud-free im-
age. Similarly, the environment may have evolved in un-
predictable ways, such as by extreme events or human ac-
tivity. In recent years, deep learning-based cloud removal
methods have shown strong performance compared to tra-
ditional methods. However, for downstream users, pre-
trained (deep) neural networks may require very precise
combinations of input conditions such as the sensor, res-
olution and preprocessing, which may not be feasible for
their use case, while developing new models for specific
use cases is generally not trivial because new architectures,
appropriate training configurations and (potentially large-
scale) training datasets would be required.

In this article, we present a method to address these
challenges by employing a technique that propagates the
information in cloud-free pixels of the same image rather
than using old pixel values. Specifically, we present a
new cloud removal algorithm building upon our previously
proposed spatial interpolation algorithm value propaga-
tion interpolation (VPint) [5]. In short, VPint iteratively
calls a recursive update rule that propagates known values
throughout a grid, applying spatial weights derived from
a feature dataset. We have extended the algorithm to be
suitable for the reconstruction of multispectral imagery.
Our method uses the previously sensed imagery from the
same time series as a feature dataset to inform the interpo-
lation algorithm on the spatial structure of the underlying
region of interest. It uses this structure to interpolate the
reflectance values from the current, up-to-date image. In
doing so, the current environmental conditions will also
be propagated, rather than attempting to estimate these
a priori to correct for them.

Applying VPint to optical remote sensing imagery in-
troduces three main challenges: cloud removal being a re-
mote sensing image processing rather than a general in-
terpolation problem, temporal heterogeneity and explod-
ing values: firstly, the original VPint algorithm leveraged
machine learning models to predict the intensity of spatial
autocorrelation between two spatially neighbouring points.
However, in cloud removal, the intricate textures, transi-
tions and objects in the image must be reproduced ex-
actly, requiring a more precise representation of the spa-
tial structure. Secondly, different sets of pixels may change
in different ways between the feature dataset and target
image, such as a (dynamic) crop field next to a (static)
road. The relationship between these objects will change
over time, introducing inaccuracies in the reconstructed
target image. We refer to this problem as temporal hetero-
geneity. Thirdly, faulty pixels, solar glint or transmission
errors can introduce erroneous values into the feature data,
which can result in unrealistically large pixel value predic-
tions that get propagated throughout the reconstructed
image. We refer to this problem as exploding values. To
address these issues, we propose VPint2, which incorpo-
rates a new method for computing spatial weights and in-
cludes extensions to the original VPint algorithm that alle-

viate problems caused by these phenomena: identity prior-
ity and elastic band resistance. Although VPint2 is aimed
at improving VPint’s applicability to optical remote sens-
ing data, it is likely that it will similarly enjoy improved
performance in other application areas where similar chal-
lenges arise, particularly in image processing. Through
our experiments, we aimed to gauge the effectiveness of
VPint2 as a cloud removal algorithm compared to exist-
ing methods, and to investigate under which conditions its
performance is particularly strong.

Our contributions presented in this article are as follows:

• We propose a novel cloud removal method, leveraging
the spatial structure from previously sensed imagery
to propagate the non-cloudy values of the up-to-date
cloudy image. Our method does not require a training
phase and can be easily applied to any type of land
surface data, requiring no additional data compared
to pixel substitution approaches.

• We extended the spatial interpolation algorithm
VPint to create VPint2, which modifies the algorithm
to be applicable to remote sensing image process-
ing problems, and features two enhancements we dub
identity priority and elastic band resistance, improv-
ing its performance and its applicability to remote
sensing datasets. We include an auto-adaptation
mechanism to allow VPint2 to adapt its configuration
to specific patches and bands.

• We created a benchmark dataset of 20 matched
(target–cloud mask–temporal features) sets of top-of-
canopy Sentinel-2 imagery, called SEN2-MSI-T. Un-
like existing benchmarks, the true images are avail-
able as ground truth, as the clouds are derived from
a different image, and the features are available at
various specific time intervals. This allows for a bet-
ter evaluation of methods, and the results from our
experiments show that typical evaluation approaches
using a recent cloud-free acquisition as ground truth
can be problematic.

• We tested our method on SEN2-MSI-T and the ex-
isting SEN12MS-CR-TS benchmark dataset against
mosaicking (temporal replacement), automated-
machine-learning-based regression, similar pixel inter-
polation and neural-network-based approaches. Our
experiments demonstrate that our method performs
better than competing methods in all 20 conditions
we tested in our main experiments, and in 17 out of
20 conditions in our experiments for Level 1C data.

The remainder of this article is organised as follows. In
Section 2, we formalise cloud removal as a general interpo-
lation problem; Section 3 covers the related work; Section
4 details our proposed method; Section 5 explains our ex-
perimental setup, and the results of our experiments are
presented in Section 6. Finally, in Section 7, we draw some

2



general conclusions and briefly discuss avenues for future
work.

2. Problem statement

Cloud removal can be formalised as a general spatial
interpolation problem. Let image O denote the matrix
representation of the original input image with clouds to
be removed. This image consists of pixels oij ∈ O, where i
the row index, and j is the column index of the pixel, cor-
responding to the spatial position (i, j). Since all spectral
bands in optical images are affected by thick clouds, cloud
removal methods will typically need to be applied indepen-
dently to all bands (we therefore introduce no additional
band notation). Next, we use T to denote the matrix of
the corresponding true (ground truth) cloud-free image,
consisting of pixels tij ∈ T, which would be unknown in
practice, and F, consisting of pixels fij ∈ F, as the ma-
trix of the cloud-free reference (feature) image obtained at
some point in time prior to O. Finally, we use C to de-
note the set of cloudy target image pixels oij for O (cloud
mask). Our aim is to find a model M(O,F, C), taking
the target image, feature image and cloud mask as input,
and generating a predicted cloud-free image T̂ with pixels
t̂ij ∈ T̂ resembling T as closely as possible. The problem
thus becomes to find:

M∗ ∈ argmin
M

L(T,M(O,F, C)) (1)

Here L is the loss function of interest (for example, mean
absolute error).

3. Related work

Given its importance to downstream remote sensing
tasks, cloud removal in optical satellite data is of signifi-
cant interest in the research community. Generally speak-
ing, cloud removal must be guided by some type of in-
formation complementarity, which may be spatial, multi-
modal, temporal, or a mixture of these. In addition to
this, there are also cloud removal methods operating on
the spectral domain to remove thin clouds (which, due
to partial transparency, retain some surface information)
[6, 7, 8, 9, 10, 11, 12, 13]. However, since we aim to re-
move all types of clouds along with their shadows, we do
not consider this type of method further in this section.

Spatial methods rely on patterns within the cloud-free
regions of an image to reconstruct cloudy regions. Much
of the work we will refer to in this section contains a spa-
tial component, for example, through the use of convolu-
tional neural networks (CNNs) or the selection of suitable
nearby pixels. However, most of these methods will also
exploit other types of information complementarity. In
contrast, general-purpose spatial interpolation techniques
can also be used for single-image cloud removal by consid-
ering cloudy pixels (and cloud shadows) as missing data.

This approach has been explored for other types of missing
data in remote sensing imagery (sensor faults) by Zhang et
al. [14]. However, many interpolation methods suffer from
poor scalability, and Shen et al. [15] found that interpo-
lation approaches are primarily effective at filling small
gaps, such as the Landsat ETM+SLC-off dataset [16]. In
the case of cloud removal, clouds can cover relatively large
parts of an image which, combined with the high resolu-
tion of the imagery, results in large gaps, for which in-
terpolation methods have not been popular nor especially
successful so far.

Multi-modal methods exploit the information com-
plementarity between different sensors, notably synthetic
aperture radar (SAR), which penetrates cloud cover, to
reconstruct cloud-free images. One of the most prominent
examples of this type of cloud removal is DSen2-CR by
Meraner et al. [17], which is based on convolutional neural
networks (CNNs) and leverages SAR data. Xu et al. [18]
proposed global-local fusion approaches to minimise per-
formance degradation due to speckle noise and the do-
main gap between optical- and SAR data. Han et al. pro-
posed a transformer-based approach for SAR-optical data
fusion-based cloud removal [19], and Liu et al. proposed
an attention-based network fusing Sentinel-2 and Sentinel-
3 data sources [20]. General adversarial network (GAN)
methods performing cloud removal using SAR-optical data
fusion include the work by Xu et al. [21] and Darbaghshahi
et al. [22], whereas Jing et al. proposed a method leverag-
ing denoising diffusion [23]. Fusing optical data with other
data sources, particularly SAR data, can be a challenging
problem due to temporal shift, the noisy nature of SAR
measurements, incomplete or non-overlapping spatial cov-
erage at desired time steps, and the complex preprocessing
pipelines SAR data typically require.

Multi-temporal methods exploit the temporal in-
formation complementarity of satellite imagery to gap-
fill missing data. Here we differentiate between multi-
temporal methods, which may exploit temporal informa-
tion in a variety of ways, and the specific case of time-
series modeling methods, which operate on a consistent
time-series of images. A commonly used multi-temporal
approach is mosaicking. Typically, a user would use cloud
detection methods [24], such as s2cloudless [25] or SEn-
SeIv2 [26], to automatically detect cloudy pixels, fetch the
most suitable non-cloudy pixel from past imagery (based,
for example, on temporal distance), and mosaic these non-
cloudy pixels onto a target image. We refer to this ap-
proach as temporal replacement, for which recent exam-
ples of practical use of this type of method include work
on downstream tasks such as ecological monitoring [27]
and (tree extent) mapping [28]. More sophisticated mo-
saicking approaches may account for changes in atmo-
spheric conditions, solar azimuth and zenith angles, and
other potentially confounding processes [3], or incorporate
histogram matching [4, 29]. The accuracy of the recon-
structed images will be greatly dependent on the avail-
ability of suitably recent cloud-free images. Pixel-wise re-
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gression models can also be used to directly predict the
pixel values of the target image using pixel values in the
reference image as features. Due to the multicollinearity
likely to be present in the different bands of the feature
image, partial least squares (PLS) approaches tend to be
preferred over ordinary least squares (OLS) models in re-
mote sensing applications, as they compute inherently in-
dependent components [30, 31, 32]. Some approaches, such
as the CHAIN and CROSS models proposed by Fischer
et al. [33], use graphical and probabilistic models instead
of grid-based spatial statistical models. Some methods,
such as (M)NSPI [34, 35], WLR [36], STMRF [37], CLMP
[38] and STWR [39], use temporal information to predict
reconstructed pixel values from a local spatial neighbour-
hood of matching pixels.

Time-series modeling methods are a specific case of
multi-temporal methods in which the full time-series of
(possibly cloudy) regular temporal acquisitions by satel-
lites is exploited for information complementarity. Zhu
et al. [40] proposed the use of three time-series models,
at varying levels of complexity, to predict missing pixel
values in time-series of Landsat images, wheras SSTC-
CR by Zheng et al. [41] leverages tensor decomposition
to model various relationships between the spatial, spec-
tral and temporal domains of the time-series of satellite
data. More recently, multiple neural network-based ap-
proaches have been proposed for multi-temporal cloud re-
moval, often incorporating multi-modal data as an addi-
tional component. UnCRtain-TS by Ebel et al. [42] com-
bines a multi-temporal approach with SAR-optical data
fusion, and supports uncertainty estimates on its predic-
tions. Zhang et al. [43] applied a CNN on fused tempo-
ral features, Zhang et al. [44] applied a CNN on decom-
posed tensors, Zhao et al. [45] leveraged diffusion mod-
els for cloud removal on time-series data, and Zou et al.
proposed a fast diffusion approach using SAR data [46].
Stucker et al. [47] used convolutional layers to encode and
decode spatial information, while performing temporal at-
tention on the resulting latent representations of individual
time steps. Multi-temporal approaches are typically less
applicable to scenarios where only one or a few target im-
ages are relevant to the user, or when there are large or
inconsistent temporal gaps in data.

In the following, we address weaknesses in the existing
work by proposing a novel cloud removal method called
VPint2, which extends the value propagation interpola-
tion (VPint) [5] algorithm. Interpolation methods, due
to the weaknesses of existing methods in gap-filling large
clusters of missing data, have not been explored much for
the purpose of cloud removal. Our proposed method, over-
coming the weaknesses of existing interpolation methods,
therefore offers a novel branch of research in cloud removal
as a multi-temporal (single reference image) interpolation
method.

4. Methods: Value propagation-based interpola-
tion (VPint)

The VPint algorithm1 was inspired by Markov reward
processes [48], particularly their application in reinforce-
ment learning settings to estimate state values using im-
mediate rewards and discounted future rewards. When
applied to cloud removal, given a cloudy target image and
a previously sensed non-cloudy image as features, it re-
turns a cloud-free reconstructed target image. The pro-
cess is applied independently for all spectral bands, thus
being robust to the typically diverse spatial patterns in
different bands of remote sensing imagery, and offering a
considerable potential for parallelisation for imagery with
a large number of spectral bands. The general workflow
for applying VPint2 to cloud removal is shown in Figure
1.

4.1. Value propagation interpolation algorithm

VPint [5] is a spatial interpolation algorithm that recur-
sively propagates known values through unknown values,
multiplied at every recursive step by spatial weights rep-
resenting spatial autocorrelation between pairs of pixels.
A spatial weight < 1 would represent a decrease in value
for the original pixel compared to a neighbouring pixel,
and a weight > 1 would represent an increase thereof. In
the case of cloud removal, cloudy pixels (and cloud shad-
ows) would be unknown values, whereas non-cloudy pixels
would be known values.

The spatial weights can be static, in which case no fea-
ture image is needed, and values regress to an initialisa-
tion value (typically the mean) with distance. However,
the main benefit of using VPint for cloud removal stems
from its support for location-specific data-driven weights.
In this case, features derived from a reference image can
inform the choice of weights for the VPint algorithm, by
containing information on the spatial structure of the un-
derlying scene. In the original VPint algorithm, these
weights could be predicted from other, related variables us-
ing machine learning models. This allowed the algorithm
to make relatively smooth predictions, based mainly on
spatial autocorrelation. In optical satellite data, images
have sharp edges, textures and other challenging, abrupt
changes, calling for a different approach to computing spa-
tial weights. Therefore, we propose a modification to the
core of VPint to directly compute exact spatial weights at
runtime, without the need of an explicit optimisation or
training procedure, making it a training-free method. We
will refer to this updated algorithm as VPint2.

In optical satellite data, if two images are taken of the
same area at different times, the spatial structure of the
land surface of two co-registered images sensed at differ-
ent times would remain (mostly) static. For example, a

1The code for VPint2, which supercedes the original VPint
algorithm, can be found on GitHub at https://github.com/

ADA-research/VPint2
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Figure 1: General workflow for applying VPint2 to cloud removal problems. First, the input- and feature images are split up into individual
bands (for which we show one example in the red band). Next, for every band, the predicted image is initialised to fill cloudy pixels with
the mean value of the image (other initialisations are possible), and the spatial weights for the neighbours of every pixel are computed and
stored in a 4-channel image, where every channel represents a direction. In this image, for every pixel, the channels contain weights by which
a neighbouring value would need to get multiplied to form the pixel’s value in the feature image. If identity priority is used, these weights
are then refined into a re-weighted neighbour weight image with lower impact for more extreme weights. After this, in the update loop, a
new image is computed iteratively by multiplying a neighbour value image (with predicted image values for neighbouring pixels in channels
corresponding to those of the weight image) with the weight image. If using elastic band resistance, the growth of values in the resulting
new predicted image is constrained by comparing the previous predicted image to that of the current iteration. After auto-termination (or a
specified maximum number of iterations has been reached), the most recent (constrained) predicted image becomes the predicted image for
this band. All bands are then combined again to form the cloud-removed output of VPint2.

residential suburb may change in hue as time passes and
seasons change (dynamic values), but whether it is shiny
in the sun or snowed over in winter, the similarity be-
tween the pixels within houses, trees and gardens the field
will remain relatively high (static spatial structure). This
means that the weights within these structures should re-
main close to 1 (a weight of 1 between a pair of pixels
signifies that they are identical). Similarly, the weights on
the border can be expected to be further removed from
1, as the neighbouring pixels on the border will be more
dissimilar from one another, requiring a transition for the
values being propagated.

This intuition gives rise to the notion of objects in an
image. Pairs of pixels belonging to the same object (same-
object pairs) will have weights close to 1, and pairs of pixels
not belonging to the same object (different-object pairs)
will have weights further removed from 1. These objects
need not be explicitly defined (i.e., no object detection
algorithms are necessary). Instead, they are contained in
the spatial weights derived from the reference image.

This consistency of the spatial structure over time is the
property we exploit with VPint2, by assuming temporally
static spatial relationships for temporally dynamic values,
and feeding the reference image as a feature set to the al-
gorithm. The manner of deriving weights from a feature
image can vary, and has a high impact on the behaviour
of the method. The predictions from a machine learn-
ing model, as used in the original VPint algorithm, could
not easily model the strong and abrupt changes in remote
sensing image processing tasks. However, when using very
precise weights with sufficient variability to be applicable
to images, mistakes and errors can also have a larger im-

pact on performance. Therefore, one of the challenges in
applying VPint to remote sensing (and possibly general
image processing) tasks is to use an approach for deriving
spatial weights that is both exact and reliable, while mit-
igating the risks of large errors that exact, non-smoothed
weights entail.

To address this problem, we can leverage the property
of satellite data automatically revisiting the same area at
specific time intervals. Although the latest cloud-free ref-
erence image could be months in the past, especially given
the temporal autocorrelation of cloudy and rainy weather,
we can exploit these reference images in VPint2 by ex-
tracting the spatial structure of a location, using the past
reference image as a feature image to compute highly ac-
curate spatial weights. A simplified illustration of how this
spatial structure is used can be found in Figure 2.

Concretely, we instantiate the predicted image T̂ with
pixels t̂ij by copying non-cloudy pixels oij /∈ C from O,
and initialise t̂ij for all cloudy pixels oij ∈ C as the mean
value of O (other initialisation approaches are possible).
Let N(i, j) denote the set of neighbouring positions (i′, j′)
for a given position (i, j). With τ denoting the current
iteration, we iterate the following update rule:

t̂τ+1
ij =

oij , if oij /∈ C
1

|N(i,j)| ·
∑

(i′,j′)∈N(i,j)

γi′j′

ij · t̂τi′j′ , otherwise (2)

The update rule of Equation 2 contains a number of
important elements. First, all non-cloudy pixels (that is,
oij /∈ C) merely take on the static value of the input image.
For cloudy pixels, at every iteration, a local prediction is
computed, using the weighted average of predicted values
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Figure 2: A basic, one-dimensional, unidirectional example illustrat-
ing the process of VPint2. The middle two cells in the target image
are unknown, whereas the reference image is fully known. Although
the values themselves lie in a different range (multiplied by 10 in this
simplified example), the relationships between neighbouring cells are
the same in this example. By computing weights from the reference
image, we can interpolate the unknown values in the target image.
In reality, interactions would bi-directional, and the problem would
have two spatial dimensions.

of neighbouring unknown pixels (or static known values
where available). Here |N(i, j)| denotes the number of
neighbours to pixel t̂ij (in practice 4 for all pixels apart

from the image edges), and γi′j′

ij is the spatial weight be-
tween the pixels at positions (i′, j′) and (i, j). This weight
is computed from the corresponding pixels in feature im-
age F as:

γi′j′

ij =
fij
fi′j′

(3)

Thus the value of every cloudy pixel in T̂ is determined
by the values of its local neighbours, which, if cloudy, are
themselves determined by their neighbours. At every iter-
ation and recursive step, the neighbouring values are mul-
tiplied by a spatial weight derived from the feature image,
allowing the algorithm to incorporate complex structures,
textures and variability within subsets of the image.

By iterating Equation 2, pixel values are updated re-
peatedly, anchored by non-cloudy target values that are
propagated following the spatial structure given by F
(through γ), until an equilibrium configuration is reached.

4.2. VPint2 properties

VPint2 has a number of desirable properties that exist-
ing cloud removal methods do not yet offer. First, VPint2
estimates the current state of the measured quantity, as
opposed to methods merely copying previous information
(which was already known). Second, it offers the advan-
tage of not needing any training, thus avoiding the prob-
lems of methods that need to either attempt to train one
general model applicable to all cases, extrapolate from a
specialised model that does not generalise well, or train on
a prohibitively small training set of non-cloudy pixels from
the same image. Third, the results and inner workings of
VPint2 can be understood by analysing the reference im-
age in combination with the update rule of Equation 2.

On the other hand, as an interpolation method, VPint2
requires at least one non-cloudy pixel in the input data,

otherwise it would simply reconstruct the feature image.
This might make it less suitable for cloud removal in
smaller patches, where the probability of all pixels being
cloudy is higher.

In terms of computational cost and efficiency, the run-
ning time of VPint2 will depend on its implementation.
However, the implementation-independent efficiency can
be approximated by drawing a parallel with neural net-
works, which are often described based on the number of
parameters in the network. Since both neural networks
and VPint2 are based on matrix multiplication, the com-
putational effort mainly stems from the amount of multi-
plications and matrix elements that must be multiplied. In
the case of VPint2, the time complexity to run on a single
band is O(e ·h ·w ·4), where e is the number of iterations or
epochs for which VPint2 will be run (typically around 20),
h is the height of the input image, and w is the width of the
image. For example, if we run VPint2 for 100 iterations on
a 100 × 100 image, resulting in 4 000 000 multiplications,
the entire pipeline of VPint2 would be the equivalent of
running inference only on a 4 million parameter neural net-
work, while not requiring a prior training step. In practice,
VPint2 will generally perform more frequent, smaller ma-
trix operations compared to a typical neural network with
a similar number of parameters, resulting in a slower run-
ning time. On the other hand, the multispectral nature of
optical satellite data allows for great opportunities in par-
allelisation over bands, since VPint2 considers these bands
independently. Therefore, we have extended the original
VPint algorithm with a multiprocessing setup for Earth
observation imagery, resulting in a substantial speedup of
about 60% to 70% compared to the original algorithm (for
empirical results, see Figure 7c). In the future, combining
the parallelisation with GPU-accelerated matrix computa-
tions may speed up the algorithm even further.

4.3. Further enhancing VPint2 for remote sensing data

Applying VPint2 to remote sensing imagery comes with
particular challenges, some of which may also be encoun-
tered in general image processing problems. In particu-
lar, VPint2 will perform worse when i) objects in the im-
ages changed over time between the feature and target
images in different ways (e.g., one stays constant while
another changes hue), which we will refer to as temporal
heterogeneity, and ii) sensor faults or other inaccuracies
are present in the feature set, resulting in extremely large
weights (and extremely large values that get propagated
further), which we refer to as exploding values.

To illustrate the problem of temporal heterogeneity, re-
call the concept of objects introduced in Section 4.1. In the
case of removing clouds from optical imagery, the within-
object relationships (weights close to 1) will typically be
easy to exploit, whereas between-object relationships will
be less reliable. For example, a road next to a forest will re-
main mostly static throughout the seasons, while the forest
may be shedding and gaining leaves over time. This means
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that the spatial weights between the road and the for-
est computed from the reference image (for example, one
from a summer, when the forest was full of green leaves)
will no longer apply to the new between-object relation-
ships (for example, one from an autumn, when the leaves
may be gone, or yellow and brown). At the same time,
the internal homogeneity of both objects will generally be
mostly intact. The original VPint2 algorithm, however, re-
lies equally on within-object and between-object weights,
and can therefore suffer from artefacts and other inaccu-
racies caused by temporal heterogeneity. Visually, such
artefacts would look like a fading gradient of an incorrect
colour that is strong at the borders of objects and gradu-
ally fades into the colour hue of the rest of the object.

We consider an image reconstruction to suffer from ex-
ploding values when the VPint2 algorithm is diverging
from, rather than converging to, a stable solution. This
problem can arise in rare cases, because image data, and
remote sensing imagery in particular, can suffer from in-
consistencies, faulty pixels and other quality issues. If this
occurs in the target image, these pixels can be treated
as ‘missing’ and interpolated along with cloudy pixels, as
long as the issues are identified in advance. However, some
possible causes of quality issues in the data, such as solar
glint or transmission errors, are not always easy to detect
automatically. Moreover, if the issue exists in the feature
image, it cannot simply be interpolated even if detected ac-
curately. Because the weights derived from a faulty pixel
can introduce an unrealistically large weight into the sys-
tem, values multiplied by this weight can then be amplified
too much by other weights and propagated along to other
pixels as well. Similarly, the location of the border be-
tween objects can move over time. If the border between
objects lies within the cloudy region in the feature image,
but outside the cloudy region in the target image, it would
be wrongly applied, despite the transition having already
occurred in the target image (the opposite case of not be-
ing applied at all is also possible). In both of these cases,
a disruption in the balance of the system of weights would
cause unreasonably large values to be estimated, passed
on to their neighbours, and grow at an even faster rate in
the next iteration, resulting in ‘exploding values’ in that
area.

Addressing these challenges, we propose two technical
enhancements to the VPint2 method, thereby boosting its
general performance and its applicability to remote sensing
imagery.

4.3.1. Identity priority

Given the problems caused by temporal heterogene-
ity, our first enhancement of VPint2 aims to exploit reli-
able within-object relationships, while minimising the im-
pact of less reliable between-object relationships. Since
between-object relationships are more likely to suffer
from temporal heterogeneity than same-object relation-
ships (though both are possible), prioritising the informa-
tion from neighbours belonging to the same object can

alleviate the impact of this problem. To this end, we
extended the VPint2 algorithm by incorporating identity
priority. Recall Equation 2, where t̂τ+1

ij for unknown val-
ues was updated to the weighted average of neighbouring
values. In effect, this update rule computes four indepen-

dent predictions γi′j′

ij · t̂τi′j′ for every neighbouring pixel at
positions (i′, j′), and VPint2 later uses the mean thereof
as its prediction. We realise identity priority by using a
weighted mean instead of an average prediction. Specifi-

cally, we assign a priority weight λi′j′

ij (separate from the

spatial weight γi′j′

ij ) to an individual prediction based on
the spatial weight’s distance to 1 (which would signify a

same-object relationship). By computing λi′j′

ij to be equal

to γi′j′

ij for spatial weights ≤ 1, but dividing 1 by γi′j′

ij

for spatial weights > 1, this distance is equal in both di-
rections. As a result, we prevent bias towards over- or
underestimations, as a spatial weight indicating a halved
value (0.5) would have the same priority weight as a spa-
tial weight indicating a doubled value (2). Moreover, in
some cases it may be beneficial to increase or decrease the
degree to which weights close to 1 are favoured. To con-
trol this intensity, we introduce a new parameter β, which
determines the strength of the identity priority procedure.
Thus, priority weights are computed as:

λi′j′

ij =

β · γi′j′

ij , if γi′j′

ij ≤ 1

β · 1

γi′j′
ij

, otherwise,
(4)

and if we denote the sum of priority weights
∑

(i′,j′)∈N(i,j)

β ·

λi′j′

ij as Λij , the modified version of Equation 2 becomes:

t̂τ+1
ij =

oij , if oij /∈ C
1

Λij
·

∑
(i′,j′)∈N(i,j)

λi′j′

ij · γi′j′

ij · t̂τi′j′ , otherwise

(5)
The choice for the identity priority intensity parameter
β can be highly relevant to the error rates of the algo-
rithm. If it is set too high, error rates tend to increase
on images (or regions thereof) where the between-object
relationships did not change much in the time between the
target and reference images, even if the results still look
plausible to the human eye. Conversely, if β is set too
low, some images may suffer from higher error rates, and
visual artefacts may appear due to the temporal hetero-
geneity. We opted to automatically adapt β based on the
performance of the algorithm on a validation set derived
from the available cloud-free pixels, using the procedure
described in Section 4.3.3. Regardless of the strength of
β, identity priority cannot fully prevent artefacts from oc-
curring at the borders of objects in specific cases, namely
when two different objects in the target image were part of
the same object in the feature image (thus having weights
close to 1).
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4.3.2. Elastic band resistance

The problems caused by exploding values can be sub-
stantial, particularly due to the value propagation-based
nature of VPint2 propagating these errors throughout the
entire image. To some extent, the impact of such errors can
be mitigated by clipping the possible values in an image,
but in this case, the exploded values would still greatly
hamper performance by filling parts of the image with
the user-defined maximal value. Moreover, such a hard
threshold would leave little room for unlikely, but phys-
ically meaningful, high values. Therefore, we propose to
combine a conservatively used hard threshold (that should,
ideally, never be met) with a soft additional enhancement
to VPint’s update rule, which we refer to as elastic band
resistance. This enhancement is aimed at improving per-
formance on specific pixels, as well as preventing unreason-
able predictions from propagating and possibly amplifying
further, while still allowing exceptionally large increases in
values where exceptional circumstances call for it. As an
analogy, we can compare the increase of values at a certain
pixel to stretching an elastic band. Up to a certain thresh-
old, in this case the length of the elastic band, it can be
moved freely. However, beyond this threshold, the further
one stretches the band, the higher the resistance will be,
and the more force needs to be applied to achieve even a
tiny amount of additional length. This behaviour can be
modelled using Hooke’s law:

F = k ·∆L (6)

Here, F is the force required to stretch an elastic band
for an additional length ∆L. This is controlled by the re-
sistance k, where high values for k require higher amounts
of force for smaller stretching lengths.

We can adapt Equation 6 to our update function. If we
define µ as the threshold beyond which we wish to apply
resistance and ∆t̂τ+1

ij as the amount of change between t̂τij
and t̂τ+1

ij after running Equation 2 or 5, we can update an

old pixel value t̂τij to its new value t̂τ+1
ij as:

t̂τ+1
ij =

{
t̂τij +∆t̂τ+1

ij , if t̂τ+1
ij < µ

t̂τij +∆t̂τ+1
ij − k · t̂τij , otherwise

(7)

Since we use t̂τij instead of ∆t̂τ+1
ij as our penalty term,

Equation 7 deviates somewhat from Hooke’s law as stated
in Equation 6. However, this provides us with the desired
property: the larger the absolute difference between the
previously predicted value t̂τij and µ, the stronger the re-

sistance applied by k ·t̂τ+1
ij will be, even if the force remains

constant.
By applying this penalty term to the VPint2 update

rule, drastic increases in values caused by exploding values
could be dampened to a great extent, while this dampening
would be much weaker on lower, more reasonable values.
As a result, this functionality can address the problem of
exploding values, provided the parameters µ and k are set
appropriately. Much like β, overly aggressive settings for

these parameters would result in higher error rates, due
to values being unable to increase as far as they should.
Thus, for these parameters as well, proper configuration is
key in the performance of VPint2 for cloud removal, which
we achieved through auto-adaptation.

4.3.3. Auto-adaptation

Identity priority and elastic band resistance introduce
new parameters, which we propose to set automatically us-
ing auto-adaptation. When using proper configurations for
β, µ and k, these extensions successfully alleviate problems
VPint2 would encounter when applied to remote sensing
imagery. They may also be effective at alleviating similar
problems in other applications that suffer from faulty pix-
els or changing spatial structure, such as video processing
or pipelines reliant on noisy measurements. However, as
explained in Section 4.3.1 and 4.3.2, inappropriate settings
can have deleterious effects on the performance of VPint2.
Moreover, the best performing parameter settings tend to
vary greatly between scenes, patches within a scene, and
even the spectral bands within the same image. As a re-
sult, a single configuration for a full image will not per-
form optimally, since the performance gains in one area
may come at the expense of losses in another. On the
other hand, manually selecting the appropriate parameter
settings for all 12 bands of all 400 patches in a scene would
not be feasible. Therefore, the automatic configuration of
VPint2 is essential to its successful application.

We added a self-adaptive mechanism for automatically
setting β, µ and k to appropriate values. This mechanism
leverages the available data by sub-sampling known data-
points into a validation set, where pixels with the greatest
mismatch between the target and feature images are pri-
oritised. The adaptation algorithm can then search for ap-
propriate parameter settings by sampling from the param-
eter space of possible configurations, and running VPint2
on the image with additional datapoints missing. This
allows the algorithm to assign a validation loss to every
parameter configuration that is sampled. The algorithm
supports grid search and random search in its current im-
plementation, but in principle, any black-box optimisation
algorithm can be used. To ensure that performance will be
at least on par with the original VPint algorithm, a config-
uration with no identity priority or elastic band resistance
is always sampled first, although it is possible that the
available validation pixels are not representative for some
patches.

5. Experiments

This section explains the experimental setup used to
evaluate the performance of VPint2 on cloud removal
tasks. We first explain the questions that motivated our
study and then cover the data we use in our experiments,
the methods against which we compare, and our experi-
mental setup.
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(a) Cropland (b) Forest (c) Herbaceous (d) Shrubs (e) Urban/built up

Figure 3: Example target patches for the five land cover classes of our benchmark dataset. Figure 3a shows a patch from cropland in Hungary,
Figure 3b shows a patch from a forested area in Angola (for which the target is from a dry period, but features for 6 months are green),
Figure 3c shows a patch with herbaceous vegetation from Kazakhstan, Figure 3d shows a patch with shrubland from Mexico, and Figure 3e
shows an urban patch from the US.

5.1. Questions addressed in our experiments

Our experiments were aimed at answering the following
questions (which we later refer to as Q1, Q2, Q3 and Q4):

1. Can identity priority and elastic band resis-
tance improve VPint2’s applicability to remote
sensing imagery? We lead with this question, as
the answer to it will determine how VPint2 is used
throughout the rest of our experiments.

2. Can VPint2 achieve significantly better results
than competing methods? We quantitatively eval-
uate this across scenes of different land cover classes,
taking advantage of the diversity in our dataset to al-
low different methods to perform well on images from
different types of ecosystems and geography.

3. How do the temporal distance between tar-
get and feature images, and the percentage
of cloud cover in the input image, affect the
relative performance of the methods? In many
cases it can be difficult to procure recent cloud-free
images, and interpolation methods are typically bet-
ter at gap-filling small amounts of missing data, mak-
ing these meaningful variables to study. Moreover,
since VPint2 requires a cloud-free reference image as
features, it should still be able to perform well for
higher temporal distances. We measure the perfor-
mance against four temporal distances of 1 week, 1
month, 3 months, and 6 months, and per-patch per-
formance against the percentage of cloudy pixels in
the patches.

4. How well does VPint2 perform in terms of run-
ning time compared to competing methods?
Running time can be an important factor in the prac-
tical use of a cloud removal method. We compare
the average running time for different levels of cloud
cover, as this is often a key factor in the computa-
tional efficiency of cloud removal methods.

5. What is the overlap between the errors pro-
duced by different methods, and how could
complementary strengths be exploited? We vi-
sualise errors between methods, and explore the im-

pact of ensembling strategies for improved perfor-
mance.

5.2. Data

In our experiments, we focused on multi-spectral
Sentinel-2 imagery (level 2A) as a use case for our method.
The two Sentinel-2 satellites from the European Space
Agency (ESA) measure reflectance values at 13 wavelength
bands. The RGB bands (2,3,4) and band 8 have a spa-
tial resolution of 10 m2, bands 5,6,7,8A,11 and 12 have a
spatial resolution of 20 m2, and bands 1,9 and 10 have a
resolution of 60 m2. Band 10 is dropped in level 2A im-
ages, as it is mainly used for atmospheric correction, leav-
ing 12 spectral bands to remove clouds from. We found
existing benchmarks datasets to be scarce, and the few
available benchmarks, such as SEN12MS by Schmitt et al.
[49], its derivative SEN12MS-CR by Meraner et al. [17]
and WHUS2-CRv by Li et al. [12], typically use previous
cloud-free acquisitions as ground truth values and do not
contain past imagery at various time intervals as feature
data, making them inapplicable to our use case. Therefore,
we created the SEN2-MSI-T benchmark dataset (referring
to Sentinel-2, the optical multi-spectral instrument used
by Sentinel-2, and the temporal aspect of the dataset) for
our experiments, inspired by the existing datasets men-
tioned above.

SEN2-MSI-T. This dataset contains co-located optical
imagery and a cloud mask for the five most common land
cover classes in the Copernicus Global Land Cover [50]
dataset: cropland, forest, herbaceous (vegetation), shrubs,
and urban/built up area. For every type of land cover,
we manually defined multiple search areas predominantly
filled with the same land cover, and automatically searched
for candidate scene locations meeting our requirements,
from which we selected 4 per land cover class, resulting
in a total of 20 scenes. Each of these scenes, which we
strove to obtain from diverse geographical locations from
Europe, Asia, Africa, the Americas and Australia, contains
a cloud-free target image sensed at time s. It also contains
a matching cloud mask, obtained from a cloudy image from
a time as close as possible to s. It furthermore contains
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four feature images at different (approximate) time inter-
vals: s−1 week, s−1 month, s−3 months, and s−6 months.
Thus, every scene consists of 6 different co-located large
images in total. Each scene was partitioned into non-
overlapping patches of 256×256 pixels, examples of which
can be seen in Figure 3. Candidate solutions were identi-
fied, visualised and manually inspected using SentinelHub,
and were downloaded as full level 2A data products using
SentinelSat. At runtime, patches were loaded using win-
dowed reading and resampled to a 10 × 10m2 resolution.
We provide the code to generate the dataset, along with
download locations for the (compressed) raw data, in the
code repository accompanying this article.

In many existing cloud removal datasets, such as
SEN12MS-CR [17], SEN12MS-CR-TS [51] and WHUS2-
CRv [11], model training supervision and performance
evaluation is performed by matching cloudy target images
with cloud-free acquisitions from one or two satellite revis-
its before the target (in the case of Sentinel-2, the revisit
time is generally 5 days). The advantage of this approach
is that real cloudy input data is used, whereas synthetic
data experiments may have poor generalisability to real-
world data, due to unrealistic cloud profiles, the common
types of clouds in real data varying based on geographic
properties, and the visual representation of the cloud itself.
However, even with small temporal distances, the pixel val-
ues of a scene may have changed substantially, potentially
reducing the reliability of this type of evaluation approach
(our results in Section 6.3 will support this intuition em-
pirically). Therefore, to allow for an accurate validation
of our cloud removal approach, the clouds used in our ex-
periments were masked from a separate image, which was
then applied to a cloud-free image, as this allowed us to
compute accurate, up-to-date performance measures. Our
evaluation approach, therefore, offers a middle ground be-
tween accurate performance metric computation, and re-
alistic cloud cover suitable for the specific geographical
location of the scenes. A similar approach was recently
successfully employed by U-TILISE [47], although unlike
in our approach, missing (cloudy) pixels were denoted us-
ing the maximal pixel value, instead of using explicitly
missing data points.

SEN12MS-CR-TS [51]. This dataset contains time-
series of multiple ROIs with Sentinel-2 Level 1C imagery.
The ROIs are split into 256 × 256 pixel patches, with 30
potentially cloudy images available for every patch. By
performing experiments on this dataset we were able to
compare our method against many state-of-the-art meth-
ods, such as STGAN [52], U-TAE [53] and UnCRtainTS
[42], while also serving as a frame of reference to com-
pare against future methods that are evaluated on this
dataset. However, we note that our method was not in-
tended to be used for time-series cloud removal, and could
therefore only run on a subset of the test dataset, as deter-
mined by the following criteria. To evaluate our proposed
method, we required i) a cloudy target image with at least
one non-cloudy pixel, ii) a cloud-free reference image, and

iii) a cloud-free ground-truth image for evaluation. We
could simulate a dataset satisfying these criteria by com-
puting cloud masks for every time step for the patches in
SEN12MS-CR-TS, and selecting the patches for which we
could identify a combination of temporally close ground
truth and target images, with a cloud-free reference image
available at some time step prior to the target.

When making use of VPint2 for cloud removal on real-
world cloudy input data, such as SEN12MS-CR-TS, users
should take care to incorporate a high quality cloud mask-
ing algorithm. In our experiments on SEN12MS-CR-TS,
we used the SEnSeI-v2 cloud detection model [26] to gen-
erate cloud masks, whereas experiments on SEN2-MSI-T
used the cloud probability band of the Sentinel-2 Level
2A data products. In general, recall should be prioritised
over precision for cloud masks for VPint2. Although high
recall may come at the cost of lower precision, needlessly
interpolating a few cloud-free pixels will not have a large
impact on the performance of the algorithm. On the other
hand, wrongly accepting cloudy pixels as true values, and
thus propagating cloudy pixel values throughout the im-
age, could have a substantial negative impact. In a similar
vein, buffering cloud masks is recommended to ensure full
masking around the edges of clouds.

5.3. Competing and alternative methods

We compared the performance of VPint2 to that of sev-
eral alternative state-of-the-art methods. We strove to
include in our selection representative methods from all
the categories listed in Section 3 (apart from interpola-
tion methods due to scalability issues of competitive meth-
ods). Therefore, we compare the performance of VPint2 to
that of temporal replacement, automated machine learning
(AutoML)-based regression ensembling, and a deep neural
network specifically designed for cloud removal. The ap-
proach most comparable to our proposed method is tem-
poral replacement, since it also requires no training and
only relies on a past cloud-free reference image. The Au-
toML regression and deep neural network methods have
more requirements, due to their reliance on training (as
well as model selection and hyperparameter tuning), but
represent advances in artificial intelligence and deep learn-
ing that may offer greater accuracy. Therefore, we consider
them to be important competitors as well. Specifically, we
selected the following methods for our comparative perfor-
mance analysis:

• Temporal pixel replacement [3]. Here we per-
form mosaicking by copying fij for all oij ∈ C:

t̂ij =

{
oij , if oij /∈ C
fij , otherwise

(8)

Temporal pixel replacement is similar to the fre-
quently used mosaicking setting ‘LeastCloudy’ in pop-
ular Earth observation data frameworks, such as
Google Earth Engine [54]. Temporal replacement is
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a method highly reliant on the availability of recent
cloud-free feature images, although in practice, such
recent feature data will often not be available. Al-
though we did explore an approach incorporating ba-
sic histogram matching [4], we found the original ver-
sion of the method to perform better numerically on
the atmospherically corrected level 2A images used in
our experiments. Moreover, other types of mosaick-
ing, such as taking the median of the most recent
cloud-free values, would require more data than other
methods have access to (a time-series of past data).
As a result, we selected the original temporal replace-
ment algorithm from Equation 8 as the representative
method for this approach.

• AutoML regression ensembling. Many machine
learning algorithms can be used for regression tasks,
and can be combined using ensembling to further
boost performance. To ensure that the best ensem-
ble model is configured in our experiments, we re-
main agnostic about the type of models in question
(for example, linear regression, support vector ma-
chines or gradient boosting) and their hyperparam-
eters, and instead automate this process using the
AutoML system auto-sklearn [55]. In AutoML, the
choice of machine learning model and the optimisation
of its hyperparameter settings are automated, result-
ing in more specific, fine-tuned models over general
models. In the case of auto-sklearn, multiple machine
learning models are optimised using Bayesian optimi-
sation [56], and subsequently combined into an ensem-
ble. The available regression models include Gaus-
sian processes, adaboost and random forests, as well
as neural networks in the form of multi-layer percep-
trons (MLPs). If we denote the ensemble found by
auto-sklearn as E , we compute t̂ij as:

t̂ij =

{
oij , if oij /∈ C
E(fij), otherwise

(9)

The Auto-sklearn model was trained on the available
data per patch to counteract generalisation problems,
as well as to ensure that this method has access to the
same amount of data as the other methods.

• Modified Neighborhood Similar Pixel Interpo-
lator (MNSPI) [34, 35]. NSPI is an interpolation
method originally created for the gap-filling of the rel-
atively small gaps of Landsat 7 ETM+ data [34]. In
this method, a variable spatial window is used around
a missing pixel, computing the target pixel value as
a weighted sum of the values of similar pixels. NSPI
combines a spectro-spatial prediction, based on the
spectral similarity between pixels in the same image,
with a spectro-temporal prediction, based on the spec-
tral difference in a cloud-free reference image. The
method was later modified to be applied to thick cloud
removal for Landsat imagery. As an interpolation

method, MNSPI may perform worse on larger gaps,
particularly if the gaps are larger than the maximal
spatial window, whereas making the window overly
large would render the algorithm computationally in-
feasible. In our experiments, we used a maximum
window size of 17 pixels, as suggested in the original
papers [34, 35].

• DSEN2-CR [17] and UnCRtain-TS [42] (deep
learning). We opted to also explore the effective-
ness of deep learning techniques specifically designed
for cloud removal tasks, since this type of method
is most commonly explored in recent publications,
boasting impressive performance. To our knowledge,
no cloud removal neural networks currently exist that
are specifically aimed at cloud removal using a past
cloud-free reference image, and our own preliminary
explorations into effectively adapting a network to
such data proved to be challenging and out of the
scope of this work. Nonetheless, since these meth-
ods represent to a large degree the state of the art
in cloud removal in recent years, we decided to com-
pare VPint2 to the performance of the popular deep
learning-based DSen2-CR [17] model, which leverages
SAR-optical data fusion, and UnCRtain-TS, which is
a multi-temporal model (also using SAR data), but
can be used for a single time step. For both methods,
we used the official code repositories made available
by the original authors, with adaptations to the data
loading procedure to load the SEN2-MSI-T dataset.
This comparison did entail extra acquisitions of SAR
data and ran on level 1C input data instead of level
2A, meaning the comparison between these models
and VPint2 could only be performed on a separate
experiment with level 1C targets, as explained in Sec-
tion 5.4. Since both DSen2-CR and UnCRtain-TS
were originally proposed for data fusion- and multi-
temporal cloud removal, respectively, this comparison
can shed light on whether such models could be suc-
cessfully applied to this problem setting as well.

5.4. Experimental setup

The general approach of our experiments was as follows.
First, for every patch in SEN2-MSI-T, we transferred the
cloud mask to the target image as missing values, allowing
us to simultaneously have access to realistic cloudy im-
ages and ground truth values, providing a middle ground
between synthetic and real-world dataset evaluation. Sec-
ond, we ran all methods on all scenes and their patches
with all available feature sets (1 week, 1 month, 3 months
and 6 months), and saved the reconstructed images as
three-dimensional arrays. Following the standard of ex-
isting work [17, 42], input values were clipped to 10 000.
For our analysis, we also dropped combinations of images
where the alignment was incorrect, and patches on the
edges of the swath where part of the patch contained no
data. To compare against DSen2-CR and UnCRtain-TS,
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we ran additional experiments with VPint2 and these neu-
ral networks on the level 1C (L1C) version of the target
image, along with recent SAR acquisitions (though this
was only used by the neural networks). In these experi-
ments, we simulated realistic clouds using Satellite Cloud
Generator [57], which the original authors found to be suit-
able for DSen2-CR, using cloud cover percentages sampled
from the real cloud cover percentages in the main dataset.
Five scenes did not have recent SAR data available and
were therefore not used in this experiment. Similarly, we
dropped scenes where the alignment between the L1C tar-
gets and level 2A (L2A) feature images was imperfect, and
patches that the SAR data product did not cover. As a
result, the dataset and sample size we used for this exper-
iment was substantially smaller than what we used for our
main experiments. The L1C and SAR data products are
included in our dataset specification, and were resampled
to a 10m2 resolution and collocated using the SNAP tool
by the European Space Agency. All data used by DSen2-
CR and UnCRtain-TS were preprocessed as described in
the respective publications [17, 42]. The feature dataset
used by VPint2 consisted of the reference image from 1
month before the target, still at a L2A processing level, but
resampled to 10m2 to match the L1C targets. We should
note, though, that this is not the ideal use case for VPint2,
as it was designed to be used with the same type of data.
Cloud probability masks were obtained from the Satellite
Cloud Generator model directly, removing cloud detection
quality as a variable, and the derived binary masks were
buffered in 5 passes (5 iterations of considering pixels next
to currently cloudy pixels in the mask as cloudy).

Additionally, we performed an experiment on
SEN12MS-CR-TS, as described in Section 5.2. For
every patch in the dataset, we loaded all 30 time steps
and computed their cloud masks using the SEnSeIv2 cloud
detection algorithm [26]. We then checked whether there
was any combination of time steps where a cloud-free
target image followed a cloudy input image, with a
cloud-free feature image available at some point in the
past. For all patches where these conditions were met,
we ran VPint2 on the input image to create a cloud-free
reconstruction, and evaluated using the cloud-free next
time step.

For our numerical evaluation, we utilised several per-
formance metrics. Firstly, we used mean absolute error
(MAE):

MAE (T̂,T) =
1

|T|
·
∑
t̂ij∈T̂

|t̂ij − tij | (10)

Secondly, we were interested in the utility of the images
produced by different cloud removal methods for down-
stream tasks. We therefore computed the MAE on a nor-
malised difference vegetation index (NDVI) computation
task:

NDVI (xij) =
x8
ij − x4

ij

x8
ij + x4

ij

(11)

Here, xij represents a one-dimensional vector containing
the band dimension of a single pixel at index ij, and the
band superscripts correspond to the near-infrared (band
8) and red (band 4) bands in Sentinel-2 images (different
sensors may require different bands). We then computed
the MAE on the NDVI as the MAE between an NDVI
derived from the reconstructed image T̂ and an NDVI de-
rived from the ground truth image T:

MAE V (T̂,T) =
1

|T|
∑
t̂ij∈T̂

|NDV I(t̂ij)−NDV I(tij)|

(12)
Thirdly, we included mean absolute percentage error

(MAPE), as this gives an indication of errors regardless
of the range of the underlying data, which varied between
patches and between the bands within a patch:

MAPE (T̂,T) =
1

|T|
·
∑
t̂ij∈T̂

|t̂ij − tij |
tij

(13)

Finally, we included the structural similarity index mea-
sure (SSIM) [58] as an indication of the quality of the pro-
duced images in terms of human perception:

SSIM (T̂,T) =
(2 · µT̂ · µT) · (2 · σT̂T + c2)

(µ2
T̂
+ µ2

T + c1) · (σ2
T̂
+ σ2

T + c2)
(14)

Here, µ and σ represent the mean and standard deviation
of the pixel values of the given image, respectively, and c1
and c2 are constants, for which we used the default values
c1 = (0.01 · L)2, c2 = (0.03 · L)2 (where L = max(T) −
min(T)).

Additionally, our experiments on SEN12MS-CR-TS in-
cluded the peak signal-to-noise ratio (PSNR), root mean
squared error (RMSE) and spectral angle mapper (SAM)
performance metrics, as these are the metrics methods are
compared to in the original UnCRtain-TS paper [42]. We
computed the metrics using the implementation provided
with the code of UnCRtain-TS.

6. Results and discussion

A visual example of a SEN2-MSI-T patch, with its fea-
ture image, cloudy version and example reconstructions
by the different methods, can be found in Figure 4. The
bottom row contains results for VPint2 for a full scene re-
construction that was not split into patches, showing that
VPint2 can be applied to larger images as well. In the
figure, the reconstruction by temporal replacement con-
tains outdated information for the vegetation in the tar-
get image. AutoML regression, due to conflicting rela-
tionships between pixels in the old image and the new,
where some contain more vegetation in the target image
while other pixels remained similar, ended up predicting
mainly a mean value somewhere in between. MNSPI cre-
ated blurry and occasionally outdated (similar to temporal
replacement) visually plausible results within its spatial
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(a) Input (b) Feature (c) Target

(d) Replacement (e) AutoML regression (f) MNSPI (g) VPint2

(h) Input (full scene) (i) VPint2 (full scene)

Figure 4: Example reconstruction visualisations for VPint2, temporal replacement, AutoML regression and MNSPI. The visualised patch
originated from a scene in Iowa, USA, with a cropland land cover class. The top row shows the feature-, target- and input images, the middle
row shows the reconstructions by the different methods, and the bottom row shows the input and reconstruction of a full-sized scene.
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(a) Cloudy input image (b) SEnSeIv2 cloud mask (c) VPint2 reconstruction (d) Target

(e) Cloudy input image (f) SEnSeIv2 cloud mask (g) VPint2 reconstruction (h) Target

Figure 5: Two example reconstructions with an average performance by VPint2 on the SEN12MS-CR-TS dataset (5c, 5g), along with the
input images (5a, 5e), cloud mask (5b, 5f; white pixels denote clouds or cloud shadow) and the temporally close target image (5d, 5h). The
cloud-free regions of the input images are dark in the visualisation due to the relatively high reflectance values of the clouds.

window, but failed to make a prediction for pixels out-
side of its window (while increasing this window further
would render it computationally infeasible). The recon-
struction by VPint2, seems the most visually plausible and
seems to contain the most up-to-date information out of
these methods on this example patch, with its greatest vi-
sual weakness appearing to be the propagation of incorrect
colours in small parts of the image. Two visual examples
of SEN12MS-CR-TS patches, with cloudy inputs and their
cloud masks, VPint2 reconstructions, and the cloud-free
target images of the next time step, can be found in Fig-
ure 5. In this figure, the reconstructions appeared visually
plausible, although the hue of the images were different
between the VPint2 reconstruction and the target image.
This was likely caused by a difference in atmospheric con-
ditions between the Level 1C feature- and target images,
and supports our intuition that a use case on atmospheri-
cally corrected Level 2A images would be preferred.

In the following, we report the results for specific ques-
tions in detail.

6.1. Q1: Identity priority and elastic band resistance

To answer Q1, we investigated the effect of the exten-
sions we made to the VPint2 algorithm as described in
Section 4.3. These extensions were identity priority, aimed
at reducing the impact of artefacts appearing on the edges
of objects due to temporal heterogeneity, and elastic band

resistance, aimed at preventing an explosion of extremely
high values caused by, for example, quality issues in the
data. To gauge the impact of these extensions, we per-
formed an ablation experiment by running the main ex-
periments for VPint2 three times: once with all features
enabled, once with identity priority disabled (denoted as
‘no ID’), and once with elastic band resistance disabled
(denoted as ‘no EB’). These results can be found in Table
1 and show that the added value of our extensions depends
on the land cover type.

Identity priority appears to be particularly effective at
improving performance on the urban- and cropland scenes.
This is in line with expectations, since urban areas con-
tain many smaller objects for which the between-object
spatial relationship may change (such as bright reflections
on roofs), resulting in temporal heterogeneity that can be
alleviated using identity priority. Similarly, on cropland,
the growth and harvest cycles may not have been applied
uniformly to all fields, resulting in temporally heteroge-
nous between-object spatial relationships. Elastic band
resistance appears to be important on the cropland scenes,
but not significantly different from the normal VPint2 re-
sults on other land covers. This further underlines that
exploding values are rare, but if the phenomenon does oc-
cur, performance can be significantly improved by enabling
this enhancement. Therefore, elastic band resistance can
be an important tool for cloud removal on certain scenes,

14



Table 1: Numerical results of our experiments. The best performing method per metric, where ↓ indicates a measure to be minimised and
↑ indicates a measure to be maximised, was computed using a one-sided Wilcoxon signed-rank test at a significance level α = 0.05, and has
been marked bold (ties allowed).

VPint2
VPint2
(no IP)

VPint2
(no EB)

Replacement
AutoML
regression

MNSPI

Cropland
↓ MAE 357.00±291.72 367.65±303.88 370.11±310.79 614.23±450.28 460.19±293.43 363.15±331.40
↓ MAEV 0.0918±0.0787 0.0929±0.0799 0.0921±0.0809 0.1563±0.1145 0.1239±0.0765 0.0995±0.0983
↓ MAPE 24.398±58.405 25.028±58.235 25.511±59.640 27.258±29.552 28.979±61.704 27.277±63.188
↑ SSIM 0.8378±0.1907 0.8317±0.1936 0.8332±0.1954 0.7028±0.2562 0.7994±0.1889 0.8021±0.2368

Forest
↓ MAE 199.29±227.73 206.64±253.55 199.19±223.86 421.39±473.35 402.28±620.58 214.35±341.47
↓ MAEV 0.0374±0.0274 0.0377±0.0282 0.0368±0.0256 0.0758±0.0691 0.0857±0.0971 0.0494±0.0520
↓ MAPE 6.442±4.508 6.620±5.422 6.469±4.676 14.683±14.343 12.183±9.188 7.003±8.109
↑ SSIM 0.9445±0.0705 0.9404±0.0855 0.9448±0.0712 0.8756±0.1586 0.8731±0.1599 0.8662±0.2172

Herbaceous
↓ MAE 192.91±125.64 191.18±128.91 193.45±127.75 549.80±1392.8 264.27±145.17 222.86±201.32
↓ MAEV 0.0361±0.0451 0.0359±0.0463 0.0354±0.0450 0.0476±0.0552 0.0394±0.0273 0.0426±0.0477
↓ MAPE 7.624±6.015 7.543±6.080 7.621±6.093 22.021±54.523 10.280±6.510 9.271±8.738
↑ SSIM 0.9400±0.0881 0.9397±0.0947 0.9404±0.0896 0.8718±0.2988 0.9321±0.0705 0.8397±0.1873

Shrubs
↓ MAE 162.40±153.25 160.95±150.84 163.03±155.49 315.76±202.21 286.42±235.04 209.88±229.97
↓ MAEV 0.0229±0.0273 0.0233±0.0290 0.0226±0.0271 0.0379±0.0452 0.0293±0.0308 0.0312±0.0477
↓ MAPE 8.780±81.345 9.680±108.487 9.595±100.018 12.647±22.941 10.977±9.593 12.064±117.163
↑ SSIM 0.9661±0.0599 0.9646±0.0632 0.9663±0.0602 0.9466±0.0658 0.9427±0.0819 0.8357±0.1873

Urban
↓ MAE 314.58±183.26 335.39±201.86 318.48±199.24 553.24±494.50 590.15±390.03 388.52±231.95
↓ MAEV 0.1057±0.0782 0.1166±0.0903 0.1054±0.0784 0.1465±0.1415 0.1487±0.0546 0.1244±0.1301
↓ MAPE 18.421±18.116 21.635±30.842 19.106±21.157 46.597±99.988 32.683±36.395 22.264±28.840
↑ SSIM 0.7857±0.1575 0.7695±0.1692 0.7755±0.1772 0.7180±0.2386 0.6674±0.1660 0.6563±0.2764

but will not be necessary for most other problem settings.
In conclusion, the enhancements of VPint2, appear to

improve the performance of VPint2 when enabled, al-
though they are mainly necessary on specific land cover
classes. Since VPint2 performed significantly better than
the versions without our extensions in these cases, while
the results for VPint2 on other land cover classes was gen-
erally not significantly worse than those without the extra
functionalities, we will report the results for VPint2 with
both enhancements enabled in subsequent experiments.

6.2. Q2: Comparative analysis

The numerical results of our empirical performance com-
parison on SEN2-MSI-T can be found in Table 1, and the
distribution of the performance of the different methods
has been visualised per land cover class in Figure 6. As
the table and figure show, VPint2 achieved an improve-
ment in performance over temporal replacement, AutoML
regression and NSPI in all cases, which was statistically
significant in all cases but the comparison with NSPI on
cropland and forest land cover classes. The relatively sim-
ilar performance of NSPI on these two land cover classes
may indicate that the use of local spatial information in
the input image, which both VPint2 and MNSPI exploit,
is especially important for land cover with more vegeta-

tion. The spread of the performance by VPint2, as seen
in Figure 6, tended to be smaller as well.

All methods performed worse on the cropland and ur-
ban scenes compared to other land covers, reflecting their
challenge as dynamic land cover types (both in terms of
values and spatial structure). AutoML regression often
ended up predicting close to the target mean value, as can
be seen in Figure 4e. This was likely caused by conflicting
relationships between feature and target pixels in their re-
spective images. For example, in Figures 4b and 4c, almost
all feature pixels are a similar brown, whereas the target
pixels for some fields were deep green, and some were light
brown. As a result, in these cases, the algorithm appears
to have converged to models predicting the mean, since the
pixel-wise feature-to-target relationships were inconsistent
and conflicting.

We conclude that VPint2 would be a better cloud re-
moval method than temporal replacement, AutoML re-
gression and MNSPI in the majority of cases.

The results for the experiment comparing against
DSen2-CR and UnCRtain-TS on L1C targets can be found
in Table 2. In this experiment, VPint2 performed bet-
ter than UnCRtain-TS, and better than DSen2-CR on al-
most all land cover classes, with the exception of MAEV

on cropland and urban land covers, and a non-significant
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Table 2: Numerical results of our experiments on L1C data for the
subset of SEN2-MSI-T for which additional Sentinel-1 SAR data was
available. The best performing method per metric, based on a one-
sided Wilcoxon signed-rank test at significance level α = 0.05, has
been marked in boldface.

VPint2 DSen2-CR
UnCRtain-TS
(single time step)

Cropland
↓ MAE 189.88±60.90 218.95±60.58 734.71±364.02
↓ MAEV 0.0650±0.0271 0.0445±0.0275 0.1260±0.1429
↓ MAPE 20.254±9.273 51.780±49.219 28.338±17.161
↑ SSIM 0.9182±0.0704 0.9133±0.0548 0.3180±0.4199

Forest
↓ MAE 163.67±43.35 939.84±68.69 1109.16±342.80
↓ MAEV 0.0357±0.0126 0.1424±0.0225 0.2875±0.0634
↓ MAPE 6.257±1.923 41.174±2.808 53.265±7.515
↑ SSIM 0.9760±0.0169 0.8145±0.0506 0.5667±0.3323

Herbaceous
↓ MAE 182.07±64.27 757.43±116.02 1147.27±342.80
↓ MAEV 0.0142±0.0070 0.0634±0.0221 0.1241±0.1106
↓ MAPE 7.106±3.107 31.502±3.303 47.309±12.217
↑ SSIM 0.9650±0.0308 0.8484±0.0500 0.7254±0.1210

Shrubs
↓ MAE 159.29±60.51 684.01±343.74 1016.05±521.61
↓ MAEV 0.0225±0.0194 0.0332±0.0361 0.1171±0.1086
↓ MAPE 7.182±3.592 30.066±11.997 39.309±14.875
↑ SSIM 0.9704±0.0263 0.8877±0.0573 0.8026±0.1238

Urban
↓ MAE 182.22±53.50 327.81±95.03 512.64±318.79
↓ MAEV 0.0379±0.0211 0.0282±0.0222 0.0784±0.0832
↓ MAPE 12.756±5.370 36.782±32.532 23.576±13.883
↑ SSIM 0.9628±0.0234 0.9272±0.0414 0.8817±0.1030

Table 3: Comparison of the results of VPint2 on a subset of
SEN12MS-CR-TS, against the multi-temporal performance of meth-
ods on the full dataset reported by Ebel et al. [42] Since this
comparison is only for reference, and the methods were evaluated on
different parts of the dataset, we do not mark the best performance.

Method ↓ RMSE ↑ PSNR ↑ SSIM ↓ SAM
DSen2-CR 0.079 26.04 0.810 12.147
STGAN 0.060 25.42 0.818 12.548
CR-TS Net 0.057 26.68 0.836 10.657
U-TAE 0.051 27.05 0.849 11.649
UnCRtainTS 0.051 27.84 0.866 10.160

VPint2 (suitable subset of data) 0.042 30.38 0.928 6.541

improvement on SSIM for cropland. The performance of
VPint2 was stronger in this experiment for SSIM on urban
and cropland scenes, in particular, compared to the main
experiments from Table 1. This was likely caused by the
use of 1 month-old feature images boosting performance,
although the relatively low contrast on L1C targets com-
pared to L2A products may have also played a role.

The comparison to DSen2-CR is generally favourable
for VPint2, despite being used outside of its intended ap-
plication of using the exact same type of feature data,
and the mean absolute error for DSen2-CR was higher
than expected given the performance reported in Meraner
et al. [17] for the forest, herbaceous and shrubs scenes.
However, the (value-independent) SSIM was on par, or
sometimes better than, what was reported in this paper.
As a result, the higher MAE may have been caused by
the range of the values themselves in different land cover
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Figure 6: Box plots of the distributions of error rates (MAE) of the
different methods for the five land cover classes. The visualisation
has been limited to error rates of 3000, due to the outliers of the
different methods reducing the legibility of the plots.

classes, rather than a truly worse performance, especially
considering the relatively similar MAPE for all the land
cover classes. UnCRtain-TS, a method intended for multi-
temporal cloud removal, had the highest error rates and
greatest variation in performance. A possible cause for
this behaviour may lie in differences between the dataset
it was trained on and our benchmark dataset.

Addressing this type of concern, the results for our ex-
periment on SEN12MS-CR-TS, shown in Table 3, demon-
strate that VPint2 performs very well on this dataset, in
comparison with existing methods on a task they were
designed for. We stress that this comparison is mainly
included to put the results of our proposed method in per-
spective compared to a majority of recent state-of-the-art
methods; since our method is only suitable for a subset of
problem instances in the dataset, these results cannot be
used to conclude that one method performs better than an-
other, as competing methods might have also performed
better on this subset. However, the results do indicate
that, on a subset of suitable instances, there can be nu-
merical advantages to using VPint2 over existing methods.

6.3. Q3 and Q4: Patch properties and computational effi-
ciency

To answer Q3, we plotted the relationship between the
temporal distance of the feature image and the percentage
of cloud cover in the target image, with the performance
achieved by the different methods, while for Q4, we also
plotted the average (out of 20 randomly selected patches
per level) end-to-end running time in seconds for the dif-
ferent methods for different levels of cloud cover. We show
these visualisations in Figure 7.

In the case of temporal distance, the results are as ex-
pected: Temporal replacement performs very well for tem-
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Figure 7: The sensitivity of different methods to the temporal distance of the feature image (7a), the cloud cover percentage of the input image
(7b), based on mean absolute error (MAE), and the average running time in seconds out of 20 random patches per cloud cover percentage
(7c). For Figure 7b, the figure was created by computing the average error for whole percentages and smoothing the resulting curve using
splines interpolation. We added error bars for the standard deviation, to maintain an indication of the variability of results. The peak in
errors for temporal replacement, which is a pixel-based method and should not be affected by the cloud cover percentage, was likely caused
by the exceptionally large errors on particular problem instances (such as snowed-over herbaceous scenes at a distance of 6 months), that
happened to contain a relatively large cloud cover percentage.

poral distances of 1 week, but quickly loses its effectiveness
as the temporal distance increases. VPint2 and MNSPI are
also affected by the temporal distance, presumably due to
cases where the spatial structure of a scene was altered
over time, but the effect is fairly mild. AutoML regres-
sion appears to not be affected by this variable, though
slightly lower errors can be observed for larger temporal
distances. However, this effect is small enough (386.27 at
1 week, 363.36 at 6 months), that this was likely caused
by chance, rather than a true pattern. The temporal dis-
tance was especially important for herbaceous land cover
scenes, which were exceptionally static on shorter tempo-
ral distances, but also changed exceptionally strongly for
longer temporal distances due to seasonal effects (mainly
snow cover).

The results in Figure 7a carry implications for the eval-
uation approach of cloud removal methods. In our exper-
iments, we transferred cloud masks from a cloudy image
at the same location as the target image, giving us ac-
cess to realistic cloud cover as well as real ground truth
values. On the other hand, many of the popular real-
world cloud removal datasets used in high-profile work,
such as SEN12MS-CR [17] and SEN12MS-CR-TS [51],
rely on evaluating (and training) models by treating a
co-located recent cloud-free acquisition as ground truth
(with the closest possible time interval for Sentinel-2 be-
ing one 5-day revisit). Similarly, the feature image with
a temporal distance of 1 week in our dataset consisted of
1 (preferred) or 2 (if necessary) revisits, which temporal
replacement mosaicked into the target image as a cloud
removal method. Therefore, the results for temporal re-
placement at 1 week in Figure 7a are an indication of the
reliability that could be expected of real-world datasets.
Although temporal replacement performed better at this
temporal distance than other methods, its MAE at 1 week
(140.97) reached levels comparable to the magnitude of the

errors of VPint2 for all tested temporal distances (195.64
to 291.82).

These results suggest that, when using a purely real-
world evaluation approach, the magnitude of the aleotoric
uncertainty of the dataset would be comparable to the
magnitude of the performance of cloud removal methods
themselves, resulting in noisy and potentially unreliable
evaluation. We therefore recommend further research to
consider using a cloud mask transfer-based approach, as
we have employed in SEN2-MSI-T, to evaluate cloud re-
moval methods more reliably. Although this may not have
been possible for neural networks, which do not use explicit
cloud masks, and must therefore represent clouds realisti-
cally in the input image, recent advances in cloud simula-
tion [57] may allow even neural networks to be trained on
data with true ground-truth values available.

In the case of cloud cover percentage, a few observations
can be made. First, VPint2 was not as heavily affected
by larger percentages as might be expected from interpo-
lation methods based on previous work [15]. Although
there is an increase in errors (and variability) from 60%
to 100%, there is no point where VPint2 clearly performs
worse than the alternative methods apart from 100% cloud
coverage. Second, temporal replacement was not affected
by this variable, with the exception of a spike between 60%
and 80%. Since this method is purely pixel-based, it is un-
likely that a property of these particular clouds caused the
spike. Instead, it is more likely that the performance on
a specific challenging condition (for example, herbaceous
land cover at 6 months) simply contained more patches
with large clouds. Third, VPint2 and AutoML regression
contain similar spikes in error rates, implying that simi-
lar patches are more challenging for both methods. How-
ever, VPint2 had lower error rates than AutoML regres-
sion, except for the highest cloud cover percentages, where
performance was highly similar. Finally, MNSPI achieved
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(a) Cropland (b) Forest (c) Herbaceous (d) Shrubs (e) Urban

Figure 8: Visualisation of reconstruction errors (normalised and scaled to a 0-1 range) by VPint2 (red) and AutoML regression (blue) for an
example patch from every land cover class, with a purple colour indicating overlapping errors. The existence of areas with mostly blue or red
colours, as opposed to a constant purple colour, indicates complementary strengths between the two methods.

results comparable to VPint2 for low cloud cover percent-
ages, but its MAE increased steeply for higher cloud cover
percentages. Overall, it appears that VPint2 is effective
at addressing this weakness of interpolation methods, with
the caveat that its competitive advantage over competing
(non-interpolation) methods does slightly decrease for very
high percentages, where it performs on par with the most
competitive alternative method.

In terms of running time, Figure 7c shows that tem-
poral replacement was by far the fastest method, with a
running time on the order of magnitude of 0.01 through-
out. VPint2 was the second fastest method, with its par-
allelised version reducing the average running times from
about 100 seconds to between about 30 to 40 seconds. A
mild increase in running time can be observed as the cloud
cover percentage increases. MNSPI had a running time
comparable to the serial version of VPint2 for low cloud
cover, but rose to a running time exceeding 1000 seconds
after about 20% cloud cover, likely caused by the need for
larger window sizes. AutoML regression had a running
time slightly above 1000 seconds; however, this includes
training as well as algorithm selection and hyperparame-
ter optimisation time, which was limited by a user-supplied
parameter. Therefore, since its inference impact is negli-
gible, its running time depends mainly on how long a user
will allow it to search for good configurations (but a lower
budget may result in worse numerical performance).

6.4. Q5: Complementary strengths and ensembling

Although VPint2 achieved strong performances in our
experiments, as seen in Table 1, a method that performs
best on average is not necessarily the strongest on all in-
stances. This is especially the case for Earth observation
data, which is inherently diverse in terms of sensors, spec-
tral bands, landscape, atmospheric conditions and more.
As a result, when evaluating new algorithms applicable to
this type of data, it is potentially problematic to merely
consider average performance over a diverse collection of
datasets. Instead, we believe that it is preferable to as-
sess the relative strength of new approaches on individual
datasets, and in particular, to focus algorithm develop-

ment on scenarios where currently available methods ap-
pear to perform relatively poorly.

From this perspective, when comparing the performance
of different methods, it is important to assess the comple-
mentarity of the strengths of the methods. We therefore
visualised the reconstruction errors for VPint2 vs AutoML
regression in Figure 8. In this figure, VPint2 errors were
visualised in the red band, and AutoML regression errors
were visualised in the blue band, meaning that only re-
gions with a purple colour would show a strong overlap
in performance. Since Figure 8 shows many regions with
either red or blue colours, it is clear that both methods
have strengths that the other does not.

We explored this idea further by probing the potential
of ensembling approaches. Although a fully functional
ensembling approach would entail addressing non-trivial
challenges, such as finding informative features for auto-
mated algorithm selection, and is therefore beyond the
scope of this work, we wish to show the potential of this
type of approach using an “oracle”-based experiment. We
show the results in terms of MAE that can be achieved in
this way in Table 4; we only considered MAE, since the
ranking of the methods we studied was consistent across
all performance metrics.

The experiments whose results are reported in the ta-
ble were carried out as follows. First, we ran preliminary
experiments using an “oracle” ensemble on a pixel level,
selecting the most accurate predicted value out of VPint2,
AutoML regression and temporal replacement, for every
pixel. This produces a lower bound of the error rates
achievable by a perfect ensemble. As shown in Table 4, this
approach consistently significantly outperforms the best
individual method for every scene, which demonstrates
that in principle, an ensemble (when accurately selecting
methods) could achieve substantially better results than
any single method. We also ran this oracle setup without
including VPint2 and observed a significantly reduced per-
formance, further underlining the degree to which VPint2
contributes to the state of the art in cloud removal. Fi-
nally, we included a setup selecting methods per patch in-
stead of per pixel, which could be used to assess whether
the complementary strengths of methods occurred at the
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Table 4: Numerical results of our ensembling explorations (MAE only). The oracle approaches could not be used in practice, and serve as a
lower bound of what a perfect ensemble could achieve with these methods. The best individual method is shown for every land cover class as
reference, and corresponds to the strongest method for that land cover class in Table 1.

Cropland Forest Herbaceous Shrubs Urban

Oracle pixel 295.19±342.45 152.36±246.99 180.44±161.64 178.14±240.31 277.34±210.43
Oracle pixel (no VPint) 308.36±326.58 169.70±253.35 182.67±151.80 189.76±230.23 312.70±211.84
Oracle patch 344.10±310.40 208.26±268.57 164.42±132.12 182.22±192.00 317.78±208.48
Oracle patch (no VPint) 406.90±298.48 259.37±270.76 183.82±136.31 244.56±183.21 344.47±219.70

Best individual method 357.00±291.27 199.19±223.86 191.18±128.91 160.95±150.84 314.58±183.26

patch- or pixel-level. The results for patch-level ensem-
bling were much closer to the best individual method. This
suggests that a perfect ensemble nearly always selects the
same method for every patch as the overall best method
for the land cover class, and that properties of the patch
do not contribute strongly toward which method performs
best. Moreover, we observe that complementary strengths
occur at pixel- rather than at patch-level.

7. Concluding remarks and future directions

In this work, we have extended the spatial interpola-
tion algorithm VPint [5] to create VPint2, which is aimed
at addressing optical remote sensing cloud removal prob-
lems. We made four key technical contributions to the
original VPint algorithm, namely the use of exact weights
computed directly from co-located past imagery, a running
time speedup using parallel computing over bands, identity
priority and elastic band resistance, addressing the tempo-
ral heterogeneity and exploding values problems in remote
sensing data and allowing VPint2 to perform well on op-
tical Earth observation data. Our proposed method does
not use any additional data compared to temporal replace-
ment, and requires no training procedure. It also automat-
ically adapts its parameters to the best values based on the
available data, which is necessary, because the appropri-
ate settings can vary greatly even within a single image.
We created an evaluation benchmark dataset called SEN2-
MSI-T, consisting of 20 geographically diverse scenes for
the five most common land cover classes, enabling us to
evaluate cloud removal methods on a diverse set of envi-
ronmental conditions and spatial patterns that also pro-
vides users with true ground truth values. The results
from our experiments indicate that this method of evalua-
tion is more reliable than common approaches using fully
real-world datasets. Additionally, we performed an experi-
ment on a subset of the popular SEN12MS-CR-TS dataset
to better place our work in the context of recent work.
Our empirical results show that VPint2 significantly out-
performs alternative methods on all land cover classes on
average. We have also found that VPint2 is only mildly
affected by the temporal distance of its reference image,
which algorithms should be robust to as it may take sev-
eral months to acquire cloud-free imagery during a rainy
season, and to the percentage of cloud cover in a patch,
allowing it to be applied to a wide range of cloud cover

conditions. Our experiments found that VPint2 is more
computationally efficient than existing cloud removal in-
terpolation methods such as MNSPI, and our newly in-
troduced parallelisation further cut the running time for
VPint2 by about 60% to 70%. Our findings also encour-
age the adoption of an approach where new cloud removal
methods are evaluated based on their specialist utility in a
certain subset of use cases, as general methods tend to per-
form worse in inherently diverse domains, such as Earth
observation data. Our “oracle”-based experimental results
show that ensembling approaches using the strengths of
multiple methods, especially on a pixel level, hold great
potential for further performance improvements. We be-
lieve that identifying useful instance features for practi-
cally applicable ensembling approaches would be a fruitful
endeavour in future work.

Other future work could explore the potential efficacy
of VPint2 for time-series cloud removal, deriving weights
from the cloud-free regions of the images in the time-series
and combining these into one set of weights, or explor-
ing the impact of adding feature data of different sensor
modalities, such as SAR.

In conclusion, VPint2, as an easy-to-apply and effective
cloud removal method, has shown its potential in terms of
performance, as well as its complementarity with existing
methods.
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