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Mijnheer de Rector Magnificus, beste collega’s,
dear colleagues and friends,
liebe Freunde und Familienmitglieder,

as we sit in this magnificent hall, I invite you to lean back and look up. Send your gaze
towards the ceiling, then through and beyond, past the rooms and attics above, through
the roof of this venerable building, through layers of clouds, straight to the stars. Now, as
you contemplate the constellations, let your mind drift back in time.

The sky as we see it now is nearly the same as that observed in October 1620 by one
Christopher Jones, master of a ship carrying 102 passengers across the Atlantic ocean
[28]. This ship was the Mayflower, and about half of her passengers were members of a
Puritan congregation from this very city of Leiden, about to settle on the New England
shore and to play a pivotal role in the early history of the United States of America [4].

The stars by which the officers of the Mayflower navigated, as many ships before and
after, have fascinated humankind from its early days. Astronomical observations were
undoubtedly among the first scientific endeavours. There is, in fact, much evidence that
the regularity of celestial mechanics and the desire to predict astronomical events, such as
lunar eclipses, inspired some of the earliest instances of computational thinking, as well as
computational devices, such as the astrolabe [26], the Antikythera mechanism [11] (both
200 BCE) and al-Jazari’s castle clock (1206 CE) [1].

1 The age of computation

The notion of computation underlying these early examples evolved and solidified through
the centuries. It connects 13th-century Majorcan writer and philosopher Raymundus Lul-
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lius, who designed and realised a device for calculating answers to philosophical ques-
tions using logical combinatorics, to Gottfried Wilhelm Leibniz, who, in the 17th century,
not only worked on the binary number system underlying modern digital computers, but
also devised several highly sophisticated and versatile mechanical calculators.1 Still, it
would take until the middle of the 19th century for the idea of what we now know as
a universal computer to emerge – a device that can be freely programmed to perform
arbitrary sequences of logical and arithmetic operations.

It was Charles Babbage, an eminent English scientist, philosopher and engineer, who
originated the concept of a general-purpose, digital computer – a complex and ingenious
mechanical device he called the analytical engine [24]. In Babbage’s time, the term ‘com-
puter’ was in common use, but it referred to a person performing mathematical calcula-
tions manually (and had been used in this sense since the early 17th century, when Leibniz
designed his mechanical calculators). Inspired by the mechanisation of industrial pro-
cesses that disrupted society at the time, Babbage wanted to automate the work of these
human computers, in order to perform complex calculations faster and more accurately.

The concept of computation pursued by Babbage and Leibniz before him, foreshadowed
by Lullius and the originators of the Antikythera mechanism, was that of precise instruc-
tions, flawlessly executed. This, along with the specifications of inputs (i.e., data given
at the beginning of the sequence of instructions) and outputs (i.e., data produced by the
computation), and with the requirement that the sequence of instructions eventually ter-
minates, characterises the key concept of an algorithm, which lies at the core of compu-
tation (see, e.g., [21]).

The word algorithm, derived from the name of 9th-century Persian mathematician, as-
tronomer and geographer al-Khwarizmi, can be found in English literature dating back
to the 14th century.2 Intriguingly, there is no single, universally accepted mathematical
definition of an algorithm; instead, it has been shown that a large range of different defi-
nitions are equivalent, in that any algorithm formalised according to one can be faithfully
translated into all others.3

Algorithms are neither restricted to processing numbers, nor to being executed by a ma-
chine. The human computers whose work was instrumental to a broad range of military
and scientific applications, as well as to early human space flight in the 1960s, executed
algorithms manually. At the same time, the series of punched cards that determined weav-

1In fact, Leibniz also believed that, to a large extent, human reasoning could be reduced to computation
and worked towards a formalism, the calculus ratiocinator, to describe such computations. In Leibniz’s
words: Quando orientur controversiae, non magis disputatione opus erit inter duos philosophus, quam
inter duos computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito
si placet amico) dicere: calculemus. – If controversies were to arise, there would be no more need of
disputation between two philosophers than between two calculators. For it would suffice for them to take
their pencils in their hands and to sit down at the abacus, and say to each other (and if they so wish also to
a friend called to help): Let us calculate.

2Geoffrey Chaucer uses the early form augrym in his Canterbury Tales (The Miller’s Tale, Line 3210).
3In theoretical computing science, this has lead to an important hypothesis known as the Church-Turing

thesis [20].
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ing patterns for the automated loom invented by Joseph Marie Jacquard in 1804 are algo-
rithms, as are the precise sequences of instructions for synthesising chemical compounds
and, in a slightly relaxed sense, musical scores and cooking recipes.

When Charles Babbage elaborated the plans for the analytical engine, his general-purpose
mechanical computer, his mind was firmly set on using it to perform complex numerical
calculations. It fell to his collaborator and friend, Ada, Countess of Lovelace, to realise
that the machine and the algorithms running on it could work on data other than numbers
– a vision that foreshadowed developments that would only start in earnest 100 years later,
in the middle of the 20th century [24, Note A].4

Babbage never completed his analytical engine, mostly because he could not secure the
requisite funding. However, it is now generally believed that the machine could have
been built using the technology and materials available at the time, and that it would have
worked as intended. Many of the principles underlying the design and use of the analytical
engine were to provide a solid foundation for the development of the first general-purpose
computers in the 1940s, and indeed, for the field of computing science.

This field has two distinct roots, one in engineering and one in mathematics. The engi-
neering aspect of computing science is aimed at designing and building practical comput-
ing devices; the mathematical aspect is concerned with abstract models of computation.
The work of Charles Babbage was, for the most part, a complex and challenging engineer-
ing endeavour – likely the most ambitious such endeavour of his century. Ada’s vision to
use such devices for computing on data other than numbers, on the other hand, is much
more closely aligned to what was to become the mathematical foundation of computing,
laid by several mathematicians during the first half of the 20th century, most notably, Alan
Turing. Later, as computing machinery and the algorithms running on it approached lev-
els of complexity otherwise seen only in living organisms, a third foundation was laid in
empirical science.

At this point, let me briefly comment on the nature of my field. It is commonly thought
that computer science is, indeed, a science of computers – that is, of computing devices.
This is a serious misperception; in the words of Edsger Dijkstra, arguably the most influ-
ential Dutch computer scientist and an alumnus of this university:

Computer science is no more about computers than astronomy is about tele-
scopes. [30]

So what then is it that computer scientists like me study? It is primarily computation
4To appreciate this fully, it is useful to contemplate the following statement from Ada’s Note A: “The

operating mechanism can even be thrown into action independently of any object to operate upon (although
of course no result could then be developed). Again, it might act upon other things besides number, were
objects found whose mutual fundamental relations could be expressed by those of the abstract science of
operations, and which should be also susceptible of adaptations to the action of the operating notation and
mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the
science of harmony and of musical composition were susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.”
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– systems and processes that operate, in clearly and precisely defined ways, on data, on
information. This is why, in most European languages other than English, the name of our
field does not reference computers, but rather information – as in the Dutch and Italian
informatica, German Informatik and French informatique. It is merely a small step in
the right direction to use the term computing science for this field that is focussed on
computation rather than computing devices.

Computation not only takes place in the engineered devices we call computers, but also in
practically all biological systems, from cells to complex vertebrate brains. As mentioned
earlier, deliberate, manual computations are also performed by humans, individually and
in groups. Computation occurs wherever information is being processed by means of al-
gorithms, and computing science is the study of these processes. Designing and analysing
such processes requires a mind- and skill-set often referred to as computational thinking,
which involves formalisation, abstraction and modelling, along with a large dose of gen-
eral problem-solving skills. That said, of course, it is the availability and use of computing
machinery that truly gives wings to computational thinking, and thus brings about one of
the most profound changes in human history.

Over the last 40 years, as computers became ever cheaper, smaller and faster, algorithms
have begun to affect almost all aspects of our lives, industry, society and culture. Our
phones, cars, TV sets and washing machines are all running increasingly sophisticated al-
gorithms. Banks, insurance companies and stock markets completely rely on algorithms.
Artistic production and scientific discovery are increasingly enabled by algorithms. We
have entered an age of computation, and – in the words of an excellent article on the
subject published just a few months ago in the Economist – “algorithms are everywhere”
[7].

2 The power of heuristic search

As we think about algorithms – clear and precise instructions that, flawlessly executed,
solve a specific problem – it is not hard to see that most problems can be solved by many
different algorithms. Consider, for example, the task of finding a name in a long list of
names. This could be done by checking every entry in the list, starting from the first and
working forward towards the end. Or we could start at the end and work backwards. Or
we could split our list in the middle and search both parts, concurrently or one after the
other. One problem, many algorithms for solving it – but which of those should we use?

150 years ago, Ada Lovelace was keenly aware of this question when she wrote:

One essential object is to choose that arrangement which shall tend to reduce
to a minimum the time necessary for completing the calculation. [24, Note
D]

This desire to solve given problems as fast as possible lies at the heart of much work in
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computing science and its applications. It is often thought that the major improvements in
our ability to solve large-scale, challenging problems computationally are primarily due to
advances in computer hardware, which have been following an exponential trajectory for
the last 50 years, with the complexity of the integrated circuits that make up computers
and the performance of microprocessors doubling roughly every 2 years. Since 1996,
when I started my Ph.D. research, computer performance thus increased by a factor of
1 400, and since 1985, when I first began programming computers, by a factor of over
65 000. This means that a task that took 1 year of computing time in 1985 could be
completed in 8 days in 1996, and in 8 minutes today. 5

However, it is important to realise that far greater performance gains are achieved by im-
proving not computer hardware, but the algorithms running on it (see, e.g., [27], p. 71).
This is especially true for a broad range of particularly challenging problems known as
NP-hard problems. How fast these problems can be solved is one of the biggest open
problems in computing science, but most experts strongly believe that the time required
for solving them increases exponentially with problem size. As an example, consider the
problem of finding the shortest (or fastest) round trip visiting a given number of places
– say, wall poems in the city of Leiden. (Interestingly, the shortest route between two
places can be found much more efficiently, using a clever algorithm due to the previously
mentioned Edsger Dijkstra.) NP-hard problems arise prominently in many computing ap-
plications, from logistics and transportation to conservation biology, from drug discovery
to theoretical physics. Solving these problems essentially requires searching for feasible
or optimal solutions within astronomically large spaces.

While it is generally believed that the computationally costly search process cannot be
avoided, it can be greatly accelerated using so-called heuristics – “rules of thumb” that
guide the search towards the desired solutions to a given problem. Unfortunately, good
heuristics are difficult to find, and their efficacy can usually be only established empiri-
cally, using computational experiments and statistics.

Heuristics can be amazingly efficient. There are over 5.7×10169 different round-trips vis-
iting all 107 wall poems of Leiden – considerably more than the 1080 elementary particles
estimated to make up our universe. Even if every one of the 1080 particles were in fact a
computer running as fast as theoretically possible, it would take billions of years to check
the length of all these round-trips in order to find the shortest. Yet, using state-of-the-art,
extremely powerful heuristics, the shortest round-trip can be determined in about a second
on an ordinary laptop computer – such is the power of heuristics.6

It is important to realise that most challenging computational problems are fundamentally

5The doubling rate for circuit complexity is due to Gordon E. Moore [25]. While the rate of performance
doubling is often cited as 18 months, likely in reference to a statement attributed to Intel executive David
House, the true hardware speed-up between 1980 and 2010 has been around 50 000-fold, on an exponential
curve with a doubling rate of 24 months [23, Figure 2.2]. In my illustrative example, I assume near-perfect
parallelisation speed-ups, as can be achieved quite easily, e.g., for state-of-the-art stochastic local search
algorithms.

6In fact, if we were content with a slightly sub-optimal solution to our shortest round-trip problem, the
computation would be even faster, as is the case for many NP-hard optimisation problems.
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search problems, whose practically efficient solution critically hinges on heuristics. This
is particularly the case for many problems in artificial intelligence – the area of computing
science dedicated to automating tasks that traditionally require human intelligence, such
as planning and reasoning.

I started studying heuristic search methods for solving such problems as efficiently as
possible when I was a Master student in the group of Prof. Wolfgang Bibel in Darmstadt,
Germany [3, 14]. I was fortunate to be able to make a series of contributions that sub-
stantially improved the state of the art in solving several prominent NP-hard problems,
including the so-called propositional satisfiability (short: SAT) problem – an intriguingly
easy-looking logical reasoning problem that not only lies at the heart of computational
complexity theory, but also has important applications in ensuring the correct operation
of computer hard- and software (see, e.g., [17]).

Without going into detail, my contributions in this area were made possible by two key el-
ements: Highly stochastic search techniques (i.e., techniques that heavily use randomised
heuristic decisions) and advanced empirical methodology for studying algorithms whose
behaviour is inaccessible to traditional mathematical analysis. I became quickly con-
vinced that effective, heuristic algorithms for solving challenging computational prob-
lems could and should be studied using the scientific method, and specifically, by means
of carefully designed experiments and statistical analysis of the data obtained from these.
I thus embraced this third pillar of our field, and dedicated myself to helping build the
empirical foundation of computing science [16].

3 The machine learning revolution

Programming computers is hard, mainly because of the difficulty of designing correct
and effective algorithms. Take, for example, the task of determining whether a patient
has breast cancer based on visual characteristics of the cells from a FNA biopsy. This
classification task is challenging even for human experts, and manually constructing an
algorithm whose predictions are as accurate would be impossible for most (if not all)
computing scientists. Intriguingly, it is possible to construct such an algorithm automat-
ically, essentially by searching within a large space of algorithms one that produces a
minimal number of misclassifications on a given set of cases for which correct diagnoses
are available.

The automatic construction of algorithms that perform well on given data conceptually
resembles the way in which humans develop a broad range of skills: by means of learn-
ing. The idea to program computers through a learning process can be traced back to
a seminal article written by Alan Turing in 1950 [32], and has since given rise to one
of the richest and most impactful research areas in computing science: the area of ma-
chine learning. The key idea behind machine learning is to program computers such that
they can essentially program themselves – to design algorithms that do not merely solve
a given problem, but rather produce a good algorithm for the problem at hand (such as
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detecting cancer from an image of a cell sample). This idea is not only intriguing, but also
very powerful; its broad adoption, currently well underway, fundamentally transforms the
way we program and use computers.

Technically, most forms of machine learning are based on concepts from statistics and
optimisation. As a simple example, consider a technique known as decision tree learn-
ing (see, e.g., [5, 29]). Imagine we have a number of characteristics that describe a cell
sample, such as the uniformity of cell sizes and shapes. A decision tree essentially is a
sequence of rules that examine one such feature at a time and then, based on the obser-
vation of this feature, selects the next rule to be applied. Each rule is a simple yes/no
question, such as: “Does the distribution of cell sizes have standard deviation larger than
2?” The last rule in the sequence decides whether the sample is classified as cancer. This
corresponds to a hierarchical decision procedure that can be drawn in the shape of a tree,
with the first rule to be applied at the trunk (or root) of the tree, and each subsequent
rule corresponding to smaller and smaller branches, all the way to the leaves, which are
labelled with the final cancer diagnosis, ‘yes’ or ‘no’.

Good decision trees can be constructed automatically. While the details are somewhat
involved, the key idea is to grow the tree from the root, one branch (or rule) at a time.
At any stage of this process, the training cases (i.e., cell sample characteristics with con-
firmed diagnosis) are assigned to the current leaves of the tree, strictly according to the
rules in the tree. Thus, our first tree has no rules and all training cases in its single leaf.
This means that regardless of whether we label this leaf ‘yes’ (cancer) or ‘no’ (cancer-
free), many cases are misclassified. Now, in each step we add the rule that essentially
gives the maximum reduction in misclassifications. The decision trees (i.e., systems of
rules) thus obtained can solve our problem reasonably well; however, the procedure can
be much improved by constructing multiple trees, each on a randomly sampled subset of
the training cases and grown using a randomised and restricted rule selection mechanism.
This way, we obtain a set of trees – a so-called random forest.

Random forests and other state-of-the-art machine learning techniques have achieved as-
tounding success in many applications, ranging from diagnosis of diseases, such as can-
cer and Parkinson’s, to drug design; from detecting credit card fraud to recommending
books and movies. Over the last five years, an approach known as deep learning, which
uses neural network models directly inspired by the physiology of our brain, has rapidly
gained prominence and achieved impressive performance on complex learning tasks in-
volving large data sets (see, e.g., [2]). State-of-the-art applications in computer vision,
such as face recognition, and natural language processing, such as automatic translation,
summarisation and categorisation of text, are based on deep learning, and self-driving car
technology, currently under development by several companies, heavily relies on it.
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4 Automated machine learning

Machine learning provides powerful tools and techniques for extracting information from
data, and more importantly, for automatically constructing algorithms, such as decision
trees, random forests or neural networks, that can solve challenging classification, pre-
diction and modelling tasks. However, effective use of those techniques demands consid-
erable human expertise, and typically, many non-obvious choices must be made in order
to achieve the performance levels required in challenging real-world applications. The
reason for this is the same as discussed earlier in the context of solving computation-
ally challenging, NP-hard problems: the need to rely on expert-designed and -calibrated,
empirically optimised heuristics.

As data science transforms the way we analyse and leverage large amounts of data, the
adoption and use of machine learning outpaces the availability of the expertise required
for the effective use of these techniques. In addition, there is evidence that human experts
are usually unable to make the truly best design choices (see, e.g., [18, 22]). This should
not be too surprising, since optimising over many design choices that interact in complex
ways essentially requires searching within a high-dimensional, vast space – precisely the
kind of challenge encountered when solving NP-hard problems, for which we know that
human experts are no match for good heuristic algorithms running on blindingly fast
computers.

This observation gives rise to the idea of automating the selection and calibration of
machine learning algorithms, by means of powerful, heuristic search and optimisation
techniques. The pursuit of this idea defines an area of machine learning known as au-
tomated machine learning (short: AutoML), and my group at the University of British
Columbia – in close collaboration with my colleague, Prof. Kevin Leyton-Brown – was
one of the first to work on the topic [31]. While other work on AutoML focussed on
specialised techniques for the challenging problem of selecting and configuring machine
learning procedures, we were interested in a general-purpose approach that could make
performance-optimising design choices not just for machine learning procedures, but for
arbitrary algorithms.

The key idea behind our approach is that of sequential model-based optimisation. It is
based on the observation that evaluating a specific combination of design choices is usu-
ally quite expensive in terms of computing time, since it requires, in the case of AutoML,
training a machine learning procedure, such as a random forest classifier, and then eval-
uating it on test data. To save some of this work, we use machine learning to predict
the performance obtained for any combination of design choices, and we then make the
choices that are predicted to be best. The problem with this approach is, of course, how
to obtain sufficiently accurate predictions. We overcome this by starting with a cheaply
obtained, usually inaccurate prediction model. We then alternate between using the model
for making design choices, evaluating the resulting machine learning procedure and im-
proving the model based on the observed performance [19]. This really is learning to
search effectively, and since in this case, the aim of the search is to find a good machine
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learning procedure, we effectively learn how to learn.

Of course, much remains to be done in the automation of machine learning. With col-
leagues in Eindhoven, we have started working on automating the construction of en-
tire machine learning workflows. Here in Leiden, my group is working on automated
semi-supervised learning, an approach that can leverage large amounts of unlabelled data.
Meanwhile, researchers at Google have begun a major effort to apply automated machine
learning to deep neural networks.

5 Programming by optimisation

This much broader view of machine learning leads us to what I consider one of the most
exciting ideas I have been working on: the concept of programming by optimisation (PbO)
[15]. PbO is a rather radical departure from the traditional way we think about program-
ming computers, which requires clear and precise instructions – instructions that can be
unambiguously executed with precisely predictable results. In PbO, we deliberately leave
open design decisions that we cannot make in a compellingly justified way during the de-
sign of an algorithm, and the result of this design process is not an algorithm or program,
but a space of programs. Within this potentially vast space, we then find specific programs
that perform well on the kind of data characteristic for a given application situation, using
powerful search, optimisation and machine learning techniques, such as the previously
outlined sequential model-based optimisation process.

My group and I have leveraged programming by optimisation to build better solvers for a
broad range of widely studied problems, from propositional satisfiability and its important
applications in hard- and software verification to AI planning; from protein structure pre-
diction to supervised machine learning and wildlife conservation (see, e.g., [15]). With
partners from industry, we have also worked on real-world applications in forestry re-
source management, decision support for the oil and gas industry, and effective use of
clean energy.

Once we adopt the PbO paradigm, software design changes quite radically. Rather than
locking in choices during the design phase, based on limited data and ad-hoc experimen-
tation, algorithm designers and software developers can now focus on the creative task of
devising a range of design options, of proactively seeking design alternatives – and let the
machine figure out what works best under various circumstances. Thus, PbO leverages
expert intuition and algorithmic efficiency, human creativity and computational power to
build better software, to find better solutions for a broad range of challenging problems.
At the core of PbO lies a fundamental departure from traditional thinking about algorithm
design, a shift in paradigm made possible by a generalised notion of machine learning
that boldly moves us beyond programming.
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6 The future of computation

In 1973, science-fiction author Arthur C. Clarke famously wrote:

Any sufficiently advanced technology is indistinguishable from magic.
[6, p. 21]

Indeed, many of the capabilities information technology gives us these days would have
appeared magical only a few decades ago. Smart home technology lets us control lights,
turn up the heat and unlock doors with voice commands. Advanced computer graphics
produces believable appearances of actors long dead. And computer programs can trick
at least some people for some time into believing they are chatting with another person in
on-line fora.

Which brings me to the second part of my title: The quest for machine intelligence.
Whether and how we can construct machines that are as intelligent as we are is arguably
one of the great questions of humanity, along with questions about life (or intelligence)
beyond Earth, the origins and destiny of the universe, and the origin and creation of life. In
his article titled “Computing machinery and intelligence”, published in 1950, Alan Turing
provided a visionary and enlightened view on the subject [32]. In it, he discusses the
question “Can machines think?” and proposes what amounts to an operational definition
of intelligence. This definition is based on a concept now known as the Turing test, in
which a person communicates with a test subject by exchanging free-form text messages
on arbitrary topics, with the purpose of finding out whether the test subject is another
person or an algorithm running on a machine. When this decision cannot be made with
a reasonably low margin of error (i.e., error probability significantly below 50%), the
machine should be considered intelligent.

Although Turing’s article is now almost 70 years old, it is very much worth reading,
as it contains some timely thoughts on artificial intelligence (AI). Notably, investigating
how human-level AI could be achieved, he draws a strong analogy to the way human
intelligence develops in children and lays the foundation for the field that is now known
as machine learning. For Turing, machine learning is “a departure from the completely
disciplined behaviour involved in computation” [32, p. 459], and he notes that “processes
that are learnt do not produce a hundred per cent. certainty of result; if they did they could
not be unlearnt” [32, p. 459].

Like Turing and most contemporary AI researchers, I believe that human-level AI can be
achieved, and that machine learning is an essential ingredient. It is important to note that
machine learning alone is insufficient; indeed, in most current demonstrations of human-
level performance in games like chess, go, poker, Jeopardy, and in AI applications such as
cancer detection, machine learning techniques work in concert with other computational
methods, including heuristic search, natural language analysis and image processing (see,
e.g., [8]).
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Of course, even just in the area of machine learning, there are many open challenges.
These include the design of more effective methods for generalising to data that quali-
tatively differs from given training examples; the development of frugal techniques that
can learn from less data, on less powerful hardware, with less complicated algorithms;
and work on methods that are more understandable and free from unfair bias. In all
this, leveraging my research on automated machine learning and programming by opti-
misation, I aim to make major contributions. More generally, my group and I will strive
towards predictable, robust and performant techniques in machine learning and artificial
intelligence – techniques that permit us to build trustworthy, high-performance systems
that make responsible use of potentially sensitive data.

As awareness of artificial intelligence has broadened – fuelled by impressive successes in
limited domains – of late, there has been increasing debate on the risks associated with
human-level AI. I note that this debate is useful and necessary, but not new. In a lecture
in 1951, Alan Turing already noted:

[...] it seems probable that once the machine thinking method had started, it
would not take long to outstrip our feeble powers. [...] they would be able to
converse with each other to sharpen their wits. At some stage therefore, we
should have to expect the machines to take control [...] [33, p. 10]7

Does this sound disturbing to you? It most definitely should. Within the AI research
community, there are radically different opinions on the issue. I decisively side with
Turing (and many of my colleagues) by believing that human-level AI, once achieved, will
necessarily evolve into super-human AI, since it is not subject to the limited resources of
our biological hardware. This crucial step from human-level to super-human intelligence
will likely occur very quickly. Like renowned physicist, Steven Hawking, I believe that,
once this happens,

Every aspect of our lives will be transformed. In short, success in creating AI
could be the biggest event in the history of our civilisation. [12]

Many of my colleagues are starting to think very seriously about the risks and implications
of creating human-level AI. This timely and important conversation should not be limited
to AI researchers, but involve experts from other disciplines, politicians and the general
public. In my view, AI researchers have a responsibility for engaging in this conversation.
It is beyond the scope of this lecture to discuss this topic in any depth, but I will briefly
touch on three points.

7From the context in which he made this statement, it is unclear how serious Turing took the concern
he raised; he did foresee opposition against the realisation of human-level general AI, but dismissed it
without deeper discussion. Interestingly, earlier in the same lecture, he covered machine learning (to be
precise: reinforcement learning) and the need for randomisation, in order to achieve non-deterministic and
unpredictable behaviour.
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First, it may well be that, even assuming a committed and sustained push for it, general
human-level AI will take at least 50 years to achieve, and this leads some to believe that it
is far too early to worry about it. I believe this is somewhat naı̈ve, since crucial advances
towards this goal are impossible to predict, and we may well have far less time than 50
years to think through the ramifications of this transformative event.

Second, there are likely no easy solutions to the question of how to deal with the risks and
opportunities of AI. Take, for example, the seemingly simple solution of making sure that
any intelligent system has an off-switch – a way to cut off its power, or to disconnect it
from its communication channels, sensors and actuators. Aside from the ethical question
whether and under which circumstances it is justifiable to take this drastic action on an
intelligent, self-aware entity capable of fear and suffering (as any general, human-level
AI must be by definition), the off-switch would likely be useless: As argued previously,
general-human level AI, once achieved, should be expected to very quickly exceed human
intellectual capabilities. This type of intelligence would likely be able to influence and
manipulate us in subtle ways – and thus make sure that we would never want to switch it
off.

Third, an argument can be made that we may well depend on machine intelligence to help
us cope with the consequences of our severely limited ability to responsibly manage our
environment and the crucial resources it provides to us. Evolution has us well equipped
for living in a world predominantly governed by local, short-term phenomena and inter-
actions, where the consequences of our actions are limited in their reach and scope. But
over just a few centuries, we have brought about profound change. Our world is now
densely interconnected, and much of what we do as societies has long-term, global ef-
fects. Evolution is far too slow to help us adapt to this new situation; therefore, we must
utilise technology to help us overcome our cognitive limitations.

However, I strongly believe that general, human-level (or super-human) AI is neither
required nor best suited to meet this need. Of course, we should use advanced com-
putational methods to enhance our ability to see and manage the long-term, long-range
consequences of our actions, but for this, we do not need to replicate human intelligence –
we need to augment it, to help us compensate for our biases and shortcomings. Hence, our
quest for machine intelligence should have this goal: to augment, not to replace human
intelligence.

7 Coda

Let us briefly return to the group of Puritan separatists who left Europe for the New World
in the autumn of 1620. Those so-called pilgrims, whose colony and culture was to gain
central importance to US American identity up to the present day, came from Leiden,
where they had led a quiet and modestly comfortable life. In fact, most of them lived
in small houses a mere stone’s throw from this building. They had come to Leiden (via
Amsterdam) to escape religious oppression and persecution in their native England. In
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the words of their chronicler, William Bradford:

For these & other reasons they removed to Leyden, a fair & bewtifull citie,
and of a sweete situation, but made more famous by ye universitie wherwith
it is adorned, in which of late had been so many learned man. [4, p. 17]

And yet, despite this much improved situation, they decided to move once again – as
documented by Bradford:

So they lefte [that] goodly & pleasante citie, which had been ther resting
place, nere 12 years; but they knew they were pilgrimes, & looked not much
on these things; but lift up their eyes to ye heavens, their dearest cuntrie, and
quieted their spirits. [4, p. 57]

So why did they embark on what must have been an uncertain and perilous journey? In
part, they were looking for a chance for economic betterment; however, there appears
to have been another reason. Back then (as is still the case today), the Dutch were well-
known for their tolerance. As much as the pilgrims benefitted from this, they did not share
the attitude, but were quite concerned about the ‘libertine’ morals of the Dutch and about
dilution of their own culture [4, p. 24].

This rings strangely, and perhaps disturbingly, familiar. It is worth recalling that the
motto of this university is libertatis praesidium (bastion of freedom). The stained glass
windows in the wall behind me serve as another powerful reminder how precious and
important that concept is and always will be. Things get truly complicated when liberties
collide. It is then, when neither logic nor learning can provide easy solutions, that human
bias and short-sightedness become truly problematic. But it is also then that humility,
compassion, measured tolerance and understanding shine. It is my view and aim that
advanced computation and machine intelligence can (and should) help us recognise and
overcome shortsightedness and bias, and I am optimistic that this goal can be achieved, if
we commit to it and pursue it vigorously. And what better place to do it than in

[...] a fair & bewtifull citie, and of a sweete situation, but made more famous
by ye universitie wherwith it is adorned, in which of late had been so many
learned man. [4, p. 17]

an institution committed and known to uphold libertatis praesidium.
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[10] Albert Einstein. Äther und Relativitätstheory. Julius Springer, Berlin, Germany,
1920. http://alberteinstein.info/vufind1/images/einstein/ear01/view/
3/CP7Doc38_pp305-309_321_000016788.pdf.

[11] Tony Freeth, Y. Bitsakis, X. Moussas, J.H. Seiradakis, A. Tselikas, E. Magkou, M. Zafeiropoulou,
R. Hadland, D. Bate, A. Ramsay, A. Crawley, P. Hockley, T. Malzbender, D. Gelb, W. Ambrisco,
and M.G. Edmunds. Decoding the ancient Greek astronomical calculator known as the Antikythera
mechanism. Nature, 444(7119):587–591, 2006.

[12] Alex Hern. Stephen Hawking: AI will be ‘either best or worst thing’ for humanity. The
Guardian, 19 October 2016, https://www.theguardian.com/science/2016/oct/19/
stephen-hawking-ai-best-or-worst-thing-for-humanity-cambridge. Last
visited 1 October 2017.

[13] Hermann Hesse. Das Glasperlenspiel. Fretz & Wasmuth Verlag, Zürich, Switzerland, 1943.
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