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Computers and the algorithms running on them have transformed 
the way we work, learn, interact, discover and create. In this inaugural 
lecture, Holger Hoos draws a wide arc, starting from some of the 
earliest forms of computation, dating back more than 2000 years, into 
a possible future, in which we have learned to create machines that 
reach, and quite likely surpass, human intelligence in its broadest sense. 
Particular emphasis is placed on the key role of heuristic methods for 
solving computationally challenging search problems and on the rise of 
machine learning techniques that permit the automated construction 
of high-performance algorithms. Adopting a generalised notion of 
machine learning, not only can we automate the construction of 
effective machine learning procedures, but indeed, substantial parts 
of the design process for high-performance algorithms for arbitrary 
computational problems. Thus, by adopting a paradigm known as 
programming by optimisation (PbO), we can boldly move beyond 
programming, towards artificial intelligence (AI) that helps us 
compensate for our own cognitive biases and shortcomings - AI that 
augments, rather than replaces, human intelligence.

Holger’s research interests span the areas of artificial intelligence, 
empirical algorithmics, bioinformatics and computer music. He is 
known for his work on machine learning and optimisation methods 
for the automated design of high-performance algorithms and for his 
work on stochastic local search. Based on a broad view of machine 
learning, he has developed - and vigorously pursues - the paradigm of 
programming by optimisation (PbO); he is also one of the originators 
of the concept of automated machine learning (AutoML). Holger has 
a penchant for work at the boundaries between computing science 
and other disciplines, and much of his work is inspired by real-world 
applications.



Beyond programming:

The quest for machine intelligence

Inaugural lecture by

Prof.dr. Holger H. Hoos 

on the acceptance of his position as professor of

Machine Learning

at Universiteit Leiden

on Friday, 27 October 2017.



2

Prof.dr. Holger H. Hoos 



3

Beyond programming ...

Mijnheer de Rector Magnificus, beste collega’s, dear colleagues 
and friends, liebe Freunde und Familienmitglieder,

As we sit in this magnificent hall, I invite you to lean back and 
look up. Send your gaze towards the ceiling, then through and 
beyond, past the rooms and attics above, through the roof of 
this venerable building, through layers of clouds, straight to 
the stars. Now, as you contemplate the constellations, let your 
mind drift back in time.

The sky as we see it now is nearly the same as that observed 
in October 1620 by one Christopher Jones, master of a ship 
carrying 102 passengers across the Atlantic ocean.28 This ship 
was the Mayflower, and about half of her passengers were 
members of a Puritan congregation from this very city of 
Leiden, about to settle on the New England shore and to play a 
pivotal role in the early history of the United States of America.4

The stars by which the officers of the Mayflower navigated, as 
many ships before and after, have fascinated humankind from 
its early days. Astronomical observations were undoubtedly 
among the first scientific endeavours. There is, in fact, much 
evidence that the regularity of celestial mechanics and the 
desire to predict astronomical events, such as lunar eclipses, 
inspired some of the earliest instances of computational 
thinking, as well as computational devices, such as the 
astrolabe26, the Antikythera mechanism11 (both 200 BCE) and 
al-Jazari’s castle clock (1206 CE).1

The age of computation
The notion of computation underlying these early examples 
evolved and solidified through the centuries. It connects 13th-
century Majorcan writer and philosopher Raymundus Lullius, 
who designed and realised a device for calculating answers 
to philosophical questions using logical combinatorics, to 
Gottfried Wilhelm Leibniz, who, in the 17th century, not only 
worked on the binary number system underlying modern 
digital computers, but also devised several highly sophisticated 

and versatile mechanical calculators.I Still, it would take until 
the middle of the 19th century for the idea of what we now 
know as a universal computer to emerge - a device that can be 
freely programmed to perform arbitrary sequences of logical 
and arithmetic operations.

It was Charles Babbage, an eminent English scientist, 
philosopher and engineer, who originated the concept of a 
general-purpose, digital computer - a complex and ingenious 
mechanical device he called the analytical engine.24 In 
Babbage’s time, the term ‘computer’ was in common use, but 
it referred to a person performing mathematical calculations 
manually (and had been used in this sense since the early 17th 
century, when Leibniz designed his mechanical calculators). 
Inspired by the mechanisation of industrial processes that 
disrupted society at the time, Babbage wanted to automate the 
work of these human computers, in order to perform complex 
calculations faster and more accurately.

The concept of computation pursued by Babbage and Leibniz 
before him, foreshadowed by Lullius and the originators of 
the Antikythera mechanism, was that of precise instructions, 
flawlessly executed. This, along with the specifications of 
inputs (i.e., data given at the beginning of the sequence 
of instructions) and outputs (i.e., data produced by the 
computation), and with the requirement that the sequence 
of instructions eventually terminates, characterises the key 
concept of an algorithm, which lies at the core of computation 
(see, e.g., ref. 21).

The word algorithm, derived from the name of 9th-century 
Persian mathematician, astronomer and geographer al-
Khwarizmi, can be found in English literature dating back to 
the 14th century.II Intriguingly, there is no single, universally 
accepted mathematical definition of an algorithm; instead, it 
has been shown that a large range of different definitions are 
equivalent, in that any algorithm formalised according to one 
can be faithfully translated into all others.III
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Algorithms are neither restricted to processing numbers, 
nor to being executed by a machine. The human computers 
whose work was instrumental to a broad range of military 
and scientific applications, as well as to early human space 
flight in the 1960s, executed algorithms manually. At the same 
time, the series of punched cards that determined weaving 
patterns for the automated loom invented by Joseph Marie 
Jacquard in 1804 are algorithms, as are the precise sequences 
of instructions for synthesising chemical compounds and, in a 
slightly relaxed sense, musical scores and cooking recipes.

When Charles Babbage elaborated the plans for the analytical 
engine, his general-purpose mechanical computer, his mind 
was firmly set on using it to perform complex numerical 
calculations. It fell to his collaborator and friend, Ada, 
Countess of Lovelace, to realise that the machine and the 
algorithms running on it could work on data other than 
numbers - a vision that foreshadowed developments that would 
only start in earnest 100 years later, in the middle of the 20th 
century (see, e.g., ref. 24, note A).I7

Babbage never completed his analytical engine, mostly because 
he could not secure the requisite funding. However, it is now 
generally believed that the machine could have been built 
using the technology and materials available at the time, and 
that it would have worked as intended. Many of the principles 
underlying the design and use of the analytical engine were 
to provide a solid foundation for the development of the first 
general-purpose computers in the 1940s, and indeed, for the 
field of computing science.

This field has two distinct roots, one in engineering and one in 
mathematics. The engineering aspect of computing science is 
aimed at designing and building practical computing devices; 
the mathematical aspect is concerned with abstract models of 
computation. The work of Charles Babbage was, for the most 
part, a complex and challenging engineering endeavour - likely 
the most ambitious such endeavour of his century. Ada’s vision 
to use such devices for computing on data other than numbers, 

on the other hand, is much more closely aligned to what was 
to become the mathematical foundation of computing, laid by 
several mathematicians during the first half of the 20th century, 
most notably, Alan Turing. Later, as computing machinery and 
the algorithms running on it approached levels of complexity 
otherwise seen only in living organisms, a third foundation 
was laid in empirical science.

At this point, let me briefly comment on the nature of my 
field. It is commonly thought that computer science is, indeed, 
a science of computers - that is, of computing devices. This 
is a serious misperception; in the words of Edsger Dijkstra, 
arguably the most influential Dutch computer scientist and an 
alumnus of this university:

Computer science is no more about computers than astronomy is 
about telescopes.30

So what then is it that computer scientists like me study? It is 
primarily computation - systems and processes that operate, in 
clearly and precisely defined ways, on data, on information. This 
is why, in most European languages other than English, the name 
of our field does not reference computers, but rather information 
- as in the Dutch and Italian informatica, German Informatik 
and French informatique. It is merely a small step in the right 
direction to use the term computing science for this field that is 
focussed on computation rather than computing devices.

Computation not only takes place in the engineered devices 
we call computers, but also in practically all biological systems, 
from cells to complex vertebrate brains. As mentioned 
earlier, deliberate, manual computations are also performed 
by humans, individually and in groups. Computation 
occurs wherever information is being processed by means 
of algorithms, and computing science is the study of these 
processes. Designing and analysing such processes requires 
a mind- and skill-set often referred to as computational 
thinking, which involves formalisation, abstraction and 
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modelling, along with a large dose of general problem-solving 
skills. That said, of course, it is the availability and use of 
computing machinery that truly gives wings to computational 
thinking, and thus brings about one of the most profound 
changes in human history.

Over the last 40 years, as computers became ever cheaper, 
smaller and faster, algorithms have begun to affect almost 
all aspects of our lives, industry, society and culture. 
Our phones, cars, TV sets and washing machines are all 
running increasingly sophisticated algorithms. Banks, 
insurance companies and stock markets completely rely on 
algorithms. Artistic production and scientific discovery are 
increasingly enabled by algorithms. We have entered an age of 
computation, and - in the words of an excellent article on the 
subject published just a few months ago in the Economist - 
“algorithms are everywhere”.7 

The power of heuristic search
As we think about algorithms - clear and precise instructions 
that, flawlessly executed, solve a specific problem - it is not 
hard to see that most problems can be solved by many different 
algorithms. Consider, for example, the task of finding a name 
in a long list of names. This could be done by checking every 
entry in the list, starting from the first and working forward 
towards the end. Or we could start at the end and work 
backwards. Or we could split our list in the middle and search 
both parts, concurrently or one after the other. One problem, 
many algorithms for solving it - but which of those should we 
use?

150 years ago, Ada Lovelace was keenly aware of this question 
when she wrote:

One essential object is to choose that arrangement which shall 
tend to reduce to a minimum the time necessary for completing 
the calculation. (ref. 24, note D)

This desire to solve given problems as fast as possible lies at the 
heart of much work in computing science and its applications. 
It is often thought that the major improvements in our ability 
to solve large-scale, challenging problems computationally are 
primarily due to advances in computer hardware, which have 
been following an exponential trajectory for the last 50 years, 
with the complexity of the integrated circuits that make up 
computers and the performance of microprocessors doubling 
roughly every 2 years. Since 1996, when I started my Ph.D. 
research, computer performance thus increased by a factor 
of 1 400, and since 1985, when I first began programming 
computers, by a factor of over 65 000. This means that a task 
that took 1 year of computing time in 1985 could be completed 
in 8 days in 1996, and in 8 minutes today.V

However, it is important to realise that far greater performance 
gains are achieved by improving not computer hardware, 
but the algorithms running on it (ref. 27, p. 71). This is 
especially true for a broad range of particularly challenging 
problems known as NP-hard problems. How fast these 
problems can be solved is one of the biggest open problems 
in computing science, but most experts strongly believe that 
the time required for solving them increases exponentially 
with problem size. As an example, consider the problem of 
finding the shortest (or fastest) round trip visiting a given 
number of places - say, wall poems in the city of Leiden. 
(Interestingly, the shortest route between two places can be 
found much more efficiently, using a clever algorithm due to 
the previously mentioned Edsger Dijkstra.) NP-hard problems 
arise prominently in many computing applications, from 
logistics and transportation to conservation biology, from 
drug discovery to theoretical physics. Solving these problems 
essentially requires searching for feasible or optimal solutions 
within astronomically large spaces.

While it is generally believed that the computationally costly 
search process cannot be avoided, it can be greatly accelerated 
using so-called heuristics - “rules of thumb” that guide the 
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search towards the desired solutions to a given problem. 
Unfortunately, good heuristics are difficult to find, and their 
efficacy can usually be only established empirically, using 
computational experiments and statistics.

Heuristics can be amazingly efficient. There are over 5.7 
× 10169 different round-trips visiting all 107 wall poems of 
Leiden - considerably more than the 1080 elementary particles 
estimated to make up our universe. Even if every one of 
the 1080 particles were in fact a computer running as fast as 
theoretically possible, it would take billions of years to check 
the length of all these round-trips in order to find the shortest. 
Yet, using state-of-the-art, extremely powerful heuristics, the 
shortest round-trip can be determined in about a second on an 
ordinary laptop computer - such is the power of heuristics.VI

It is important to realise that most challenging computational 
problems are fundamentally search problems, whose 
practically efficient solution critically hinges on heuristics. 
This is particularly the case for many problems in artificial 
intelligence - the area of computing science dedicated to 
automating tasks that traditionally require human intelligence, 
such as planning and reasoning.

I started studying heuristic search methods for solving such 
problems as efficiently as possible when I was a Master 
student in the group of prof. Wolfgang Bibel in Darmstadt, 
Germany.3,14 I was fortunate to be able to make a series of 
contributions that substantially improved the state of the art 
in solving several prominent NP-hard problems, including 
the so-called propositional satisfiability (short: SAT) problem 
- an intriguingly easy-looking logical reasoning problem that 
not only lies at the heart of computational complexity theory, 
but also has important applications in ensuring the correct 
operation of computer hard- and software (see, e.g., ref. 17).

Without going into detail, my contributions in this area were 
made possible by two key elements: Highly stochastic search 

techniques (i.e., techniques that heavily use randomised 
heuristic decisions) and advanced empirical methodology 
for studying algorithms whose behaviour is inaccessible to 
traditional mathematical analysis. I became quickly convinced 
that effective, heuristic algorithms for solving challenging 
computational problems could and should be studied using 
the scientific method, and specifically, by means of carefully 
designed experiments and statistical analysis of the data 
obtained from these. I thus embraced this third pillar of our 
field, and dedicated myself to helping build the empirical 
foundation of computing science.16

The machine learning revolution
Programming computers is hard, mainly because of the 
difficulty of designing correct and effective algorithms. Take, 
for example, the task of determining whether a patient has 
breast cancer based on visual characteristics of the cells from 
a FNA biopsy. This classification task is challenging even for 
human experts, and manually constructing an algorithm 
whose predictions are as accurate would be impossible for 
most (if not all) computing scientists. Intriguingly, it is possible 
to construct such an algorithm automatically, essentially by 
searching within a large space of algorithms one that produces 
a minimal number of misclassifications on a given set of cases 
for which correct diagnoses are available.

The automatic construction of algorithms that perform well on 
given data conceptually resembles the way in which humans 
develop a broad range of skills: by means of learning. The 
idea to program computers through a learning process can 
be traced back to a seminal article written by Alan Turing in 
1950,32 and has since given rise to one of the richest and most 
impactful research areas in computing science: the area of 
machine learning. The key idea behind machine learning is 
to program computers such that they can essentially program 
themselves - to design algorithms that do not merely solve a 
given problem, but rather produce a good algorithm for the 
problem at hand (such as detecting cancer from an image 
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of a cell sample). This idea is not only intriguing, but also 
very powerful; its broad adoption, currently well underway, 
fundamentally transforms the way we program and use 
computers.

Technically, most forms of machine learning are based on 
concepts from statistics and optimisation. As a simple example, 
consider a technique known as decision tree learning (see, e.g., 
refs. 5,29). Imagine we have a number of characteristics that 
describe a cell sample, such as the uniformity of cell sizes and 
shapes. A decision tree essentially is a sequence of rules that 
examine one such feature at a time; based on the observation 
of this feature, the rule to be applied next is selected. Each rule 
is a simple yes/no question, such as: “Does the distribution of 
cell sizes have standard deviation larger than 2?” The last rule 
in the sequence decides whether the sample is classified as 
cancer. This corresponds to a hierarchical decision procedure 
that can be drawn in the shape of a tree, with the first rule to be 
applied at the trunk (or root) of the tree, and each subsequent 
rule corresponding to smaller and smaller branches, all the 
way to the leaves, which are labelled with the final cancer 
diagnosis, ‘yes’ or ‘no’.

Good decision trees can be constructed automatically. While 
the details are somewhat involved, the key idea is to grow 
the tree from the root, one branch (or rule) at a time. At 
any stage of this process, the training cases (i.e., cell sample 
characteristics with confirmed diagnosis) are assigned to 
the current leaves of the tree, strictly according to the rules 
in the tree. Thus, our first tree has no rules and all training 
cases in its single leaf. This means that regardless of whether 
we label this leaf ‘yes’ (cancer) or ‘no’ (cancer-free), many 
cases are misclassified. Now, in each step, we add the rule that 
essentially gives the maximum reduction in misclassifications. 
The decision trees (i.e., systems of rules) thus obtained can 
solve our problem reasonably well; however, the procedure 
can be much improved by constructing multiple trees, each 
on a randomly sampled subset of the training cases and grown 

using a randomised and restricted rule selection mechanism. 
This way, we obtain a set of trees - a so-called random forest.

Random forests and other state-of-the-art machine learning 
techniques have achieved astounding success in many 
applications, ranging from diagnosis of diseases, such as cancer 
and Parkinson’s, to drug design; from detecting credit card 
fraud to recommending books and movies. Over the last five 
years, an approach known as deep learning, which uses neural 
network models directly inspired by the physiology of our 
brain, has rapidly gained prominence and achieved impressive 
performance on complex learning tasks involving large data  
sets (see, e.g., ref. 2). State-of-the-art applications in computer 
vision, such as face recognition, and natural language 
processing, such as automatic translation, summarisation 
and categorisation of text, are based on deep learning, and 
self-driving car technology, currently under development by 
several companies, heavily relies on it.

Automated machine learning
Machine learning provides powerful tools and techniques for 
extracting information from data, and more importantly, for 
automatically constructing algorithms, such as decision trees, 
random forests or neural networks, that can solve challenging 
classification, prediction and modelling tasks. However, 
effective use of those techniques demands considerable human 
expertise, and typically, many non-obvious choices must be 
made in order to achieve the performance levels required 
in challenging real-world applications. The reason for this 
is the same as discussed earlier in the context of solving 
computationally challenging, NP-hard problems: the need to 
rely on expert-designed and -calibrated, empirically optimised 
heuristics.

As data science transforms the way we analyse and leverage 
large amounts of data, the adoption and use of machine 
learning outpaces the availability of the expertise required 
for the effective use of these techniques. In addition, there is 
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evidence that human experts are usually unable to make the 
truly best design  choices (see, e.g., refs. 18,22). This should not 
be too surprising, since optimising over many design choices 
that interact in complex ways essentially requires searching 
within a high-dimensional, vast space - precisely the kind of 
challenge encountered when solving NP-hard problems, for 
which we know that human experts are no match for good 
heuristic algorithms running on blindingly fast computers.

This observation gives rise to the idea of automating the 
selection and calibration of machine learning algorithms, 
by means of powerful, heuristic search and optimisation 
techniques. The pursuit of this idea defines an area of machine 
learning known as automated machine learning (short: 
AutoML), and my group at the University of British Columbia 
- in close collaboration with my colleague, Prof. Kevin Leyton-
Brown - was one of the first to work on the topic.31 While other 
work on AutoML focussed on specialised techniques for the 
challenging problem of selecting and configuring machine 
learning procedures, we were interested in a general-purpose 
approach that could make performance-optimising design 
choices not just for machine learning procedures, but for 
arbitrary algorithms.

The key idea behind our approach is that of sequential 
model-based optimisation. It is based on the observation that 
evaluating a specific combination of design choices is usually 
quite expensive in terms of computing time, since it requires, 
in the case of AutoML, training a machine learning procedure, 
such as a random forest classifier, and then evaluating it on 
test data. To save some of this work, we use machine learning 
to predict the performance obtained for any combination 
of design choices, and we then make the choices that are 
predicted to be best. The problem with this approach is, of 
course, how to obtain sufficiently accurate predictions. We 
overcome this by starting with a cheaply constructed, usually 
inaccurate prediction model. We then alternate between using 
the model for making design choices, evaluating the resulting 

machine learning procedure and improving the model based 
on the observed performance.19 This really is learning to search 
effectively, and since in this case, the aim of the search is to 
find a good machine learning procedure, we effectively learn 
how to learn.
Of course, much remains to be done in the automation of 
machine learning. With colleagues in Eindhoven, we have 
started working on automating the construction of entire 
machine learning workflows. Here in Leiden, my group is 
working on automated semi-supervised learning, an approach 
that can leverage large amounts of unlabelled data. Meanwhile, 
researchers at Google have begun a major effort to apply 
automated machine learning to deep neural networks.

Programming by optimisation
This much broader view of machine learning leads us to what 
I consider one of the most exciting ideas I have been working 
on: the concept of programming by optimisation (PbO).15 
PbO is a rather radical departure from the traditional way 
we think about programming computers, which requires 
clear and precise instructions - instructions that can be 
unambiguously executed with precisely predictable results. 
In PbO, we deliberately leave open design decisions that we 
cannot make in a compellingly justified way during the design 
of an algorithm, and the result of this design process is not 
an algorithm or program, but a space of programs. Within 
this potentially vast space, we then find specific programs that 
perform well on the kind of data characteristic for a given 
application situation, using powerful search, optimisation and 
machine learning techniques, such as the previously outlined 
sequential model-based optimisation process.

My group and I have leveraged programming by optimisation 
to build better solvers for a broad range of widely studied 
problems, from propositional satisfiability and its important 
applications in hard- and software verification to AI planning; 
from protein structure prediction to supervised machine 
learning and wildlife conservation (see, e.g., ref. 15). With 
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partners from industry, we have also worked on real-world 
applications in forestry resource management, decision support 
for the oil and gas industry, and effective use of clean energy.

Once we adopt the PbO paradigm, software design 
changes quite radically. Rather than locking in choices 
during the design phase, based on limited data and ad-hoc 
experimentation, algorithm designers and software developers 
can now focus on the creative task of devising a range of 
design options, of proactively seeking design alternatives - 
and let the machine figure out what works best under various 
circumstances. Thus, PbO leverages expert intuition and 
algorithmic efficiency, human creativity and computational 
power to build better software, to find better solutions for a 
broad range of challenging problems. At the core of PbO lies 
a fundamental departure from traditional thinking about 
algorithm design, a shift in paradigm made possible by a 
generalised notion of machine learning that boldly moves us 
beyond programming. 

The future of computation
In 1973, science-fiction author Arthur C. Clarke famously 
wrote:

Any sufficiently advanced technology is indistinguishable from 
magic. (ref. 6, p. 21)

Indeed, many of the capabilities information technology gives 
us these days would have appeared magical only a few decades 
ago. Smart home technology lets us control lights, turn up 
the heat and unlock doors with voice commands. Advanced 
computer graphics produces believable appearances of actors 
long dead. And computer programs can trick at least some 
people for some time into believing they are chatting with 
another person in on-line fora.

Which brings me to the second part of my title: The quest 
for machine intelligence. Whether and how we can construct 

machines that are as intelligent as we are is arguably one of the 
great questions of humanity, along with questions about life 
(or intelligence) beyond Earth, the origins and destiny of the 
universe, and the origin and creation of life. In his article titled 
“Computing machinery and intelligence”, published in 1950, 
Alan Turing provided a visionary and enlightened view on the 
subject.32 In it, he discusses the question “Can machines think?” 
and proposes what amounts to an operational definition of 
intelligence. This definition is based on a concept now known 
as the Turing test, in which a person communicates with a test 
subject by exchanging free-form text messages on arbitrary 
topics, with the purpose of finding out whether the test subject 
is another person or an algorithm running on a machine. When 
this decision cannot be made with a reasonably low margin 
of error (i.e., error probability significantly below 50%), the 
machine should be considered intelligent.

Although Turing’s article is now almost 70 years old, it is very 
much worth reading, as it contains some timely thoughts 
on artificial intelligence (AI). Notably, investigating how 
human-level AI could be achieved, he draws a strong analogy 
to the way human intelligence develops in children and lays 
the foundation for the field that is now known as machine 
learning. For Turing, machine learning is “a departure from 
the completely disciplined behaviour involved in computation” 
(ref. 32, p. 459), and he notes that “processes that are learnt do 
not produce a hundred per cent. certainty of result; if they did 
they could not be unlearnt” (ref. 32, p. 459).

Like Turing and most contemporary AI researchers, I believe 
that human-level AI can be achieved, and that machine 
learning is an essential ingredient. It is important to note that 
machine learning alone is insufficient; indeed, in most current 
demonstrations of human- level performance in games like 
chess, go, poker, Jeopardy, and in AI applications such as cancer 
detection, machine learning techniques work in concert with 
other computational methods, including heuristic search, 
natural language analysis and image processing  (see, e.g., ref. 8).
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Of course, even just in the area of machine learning, there 
are many open challenges. These include the design of more 
effective methods for generalising to data that qualitatively 
differs from given training examples; the development of frugal 
techniques that can learn from less data, on less powerful 
hardware, with less complicated algorithms; and work on 
methods that are more understandable and free from unfair 
bias. In all this, leveraging my research on automated machine 
learning and programming by optimisation, I aim to make 
major contributions. More generally, my group and I will strive 
towards predictable, robust and performant techniques in 
machine learning and artificial intelligence - techniques that 
permit us to build trustworthy, high-performance systems that 
make responsible use of potentially sensitive data.

As awareness of artificial intelligence has broadened - fuelled 
by impressive successes in limited domains - of late, there has 
been increasing debate on the risks associated with human-
level AI. I note that this debate is useful and necessary, but not 
new. In a lecture in 1951, Alan Turing already noted:

[...] it seems probable that once the machine thinking method 
had started, it would not take long to outstrip our feeble powers. 
[...] they would be able to converse with each other to sharpen 
their wits. At some stage therefore, we should have to expect the 
machines to take control [...] (ref. 33, p. 10).VII

Does this sound disturbing to you? It most definitely should. 
Within the AI research community, there are radically different 
opinions on the issue. I decisively side with Turing (and many 
of my colleagues) by believing that human-level AI, once 
achieved, will necessarily evolve into super-human AI, since 
it is not subject to the limited resources of our biological 
hardware. This crucial step from human-level to super-human 
intelligence will likely occur very quickly. Like renowned 
physicist, Steven Hawking, I believe that, once this happens,

Every aspect of our lives will be transformed. In short, success 
in creating AI could be the biggest event in the history of our 
civilisation.12

Many of my colleagues are starting to think very seriously 
about the risks and implications of creating human-level 
general AI. This timely and important conversation should 
not be limited to AI researchers, but involve experts from 
other disciplines, politicians and the general public. In my 
view, AI researchers have a responsibility for engaging in this 
conversation. It is beyond the scope of this lecture to discuss 
this topic in any depth, but I will briefly touch on three points.

First, it may well be that, even assuming a committed and 
sustained push for it, human-level general AI will take at least 
50 years to achieve, and this leads some to believe that it is far 
too early to worry about it. I believe this is somewhat naÕve, 
since crucial advances towards this goal are impossible to 
predict, and we may well have far less time than 50 years to 
think through the ramifications of this transformative event.

Second, there are likely no easy solutions to the question of 
how to deal with the risks and opportunities of AI. Take, for 
example, the seemingly simple solution of making sure that 
any intelligent system has an off-switch - a way to cut off its 
power, or to disconnect it from its communication channels, 
sensors and actuators. Aside from the ethical question whether 
and under which circumstances it is justifiable to take this 
drastic action on an intelligent, self-aware entity capable 
of fear and suffering (as any general, human-level AI must 
be by definition), the off-switch would likely be useless: As 
argued previously, human-level general AI, once achieved, 
should be expected to very quickly exceed human intellectual 
capabilities. This type of intelligence would likely be able to 
influence and manipulate us in subtle ways - and thus make 
sure that we would never want to switch it off.
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Third, an argument can be made that we may well depend on 
machine intelligence to help us cope with the consequences 
of our severely limited ability to responsibly manage our 
environment and the crucial resources it provides to 
us. Evolution has us well equipped for living in a world 
predominantly governed by local, short-term phenomena and 
interactions, where the consequences of our actions are limited 
in their reach and scope. But over just a few centuries, we have 
brought about profound change. Our world is now densely 
interconnected, and much of what we do as societies has long-
term, global effects. Evolution is far too slow to help us adapt 
to this new situation; therefore, we must utilise technology to 
help us overcome our cognitive limitations.

However, I strongly believe that general, human-level (or 
super-human) AI is neither required nor best suited to meet 
this need. Of course, we should use advanced computational 
methods to enhance our ability to see and manage the long-
term, long-range consequences of our actions, but for this, 
we do not need to replicate human intelligence - we need 
to augment it, to help us compensate for our biases and 
shortcomings. Hence, our quest for machine intelligence 
should have this goal: to augment, not to replace human 
intelligence.

Coda
Let us briefly return to the group of Puritan separatists who left 
Europe for the New World in the autumn of 1620. Those so-
called pilgrims, whose colony and culture was to gain central 
importance to US American identity up to the present day, 
came from Leiden, where they had led a quiet and modestly 
comfortable life. In fact, most of them lived in small houses 
a mere stone’s throw from this building. They had come to 
Leiden (via Amsterdam) to escape religious oppression and 
persecution in their native England. In the words of their 
chronicler, William Bradford:

For these & other reasons they removed to Leyden, a fair & 
bewtifull citie, and of a sweete situation, but made more famous 
by ye universitie wherwith it is adorned, in which of late had 
been so many learned man. (ref. 4, p. 17)

And yet, despite this much-improved situation, they decided to 
move once again - as documented by Bradford:

So they lefte [that] goodly & pleasante citie, which had been ther 
resting place, nere 12 years; but they knew they were pilgrimes, 
& looked not much on these things; but lift up their eyes to ye 
heavens, their dearest cuntrie, and quieted their spirits. (ref. 4, 
p. 57)

So why did they embark on what must have been an uncertain 
and perilous journey? In part, they were looking for a chance 
for economic betterment; however, there appears to have been 
another reason. Back then (as is still the case today), the Dutch 
were well-known for their tolerance. As much as the pilgrims 
benefitted from this, they did not share the attitude, but were 
quite concerned about the ‘libertine’ morals of the Dutch and 
about dilution of their own culture (ref. 4, p. 24).

This rings strangely, and perhaps disturbingly, familiar. It is 
worth recalling that the motto of this university is libertatis 
praesidium (bastion of freedom). The stained-glass windows 
in the wall behind me serve as another powerful reminder 
how precious and important that concept is and always will 
be. Things get truly complicated when liberties collide. It 
is then, when neither logic nor learning can provide easy 
solutions, that human bias and short-sightedness become truly 
problematic. But it is also then that humility, compassion, 
measured tolerance and understanding shine. It is my view and 
aim that advanced computation and machine intelligence can 
(and should) help us recognise and overcome shortsightedness 
and bias, and I am optimistic that this goal can be achieved, 
if we commit to it and pursue it vigorously. And what better 
place to do it than in
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[...] a fair & bewtifull citie, and of a sweete situation, but made 
more famous by ye universitie wherwith it is adorned, in which 
of late had been so many learned man. (ref. 4, p. 17).

- an institution committed and known to uphold libertatis 
praesidium.
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Notes
I In fact, Leibniz also believed that, to a large extent, human 

reasoning could be reduced to computation and worked 
towards a formalism, the calculus ratiocinator, to describe 
such computations. In Leibniz’s words: Quando orientur 
controversiae, non magis disputatione opus erit inter 
duos philosophus, quam inter duos computistas. Sufficiet 
enim calamos in manus sumere sedereque ad abacos, et 
sibi mutuo (accito si placet amico) dicere: calculemus. If 
controversies were to arise, there would be no more need 
of disputation between two philosophers than between 
two calculators. For it would suffice for them to take their 
pencils in their hands and to sit down at the abacus, and 
say to each other (and if they so wish also to a friend 
called to help): Let us calculate.

II Geoffrey Chaucer uses the early form augrym in his 
Canterbury Tales (The Miller’s Tale, Line 3210).

III In theoretical computing science, this has led to an 
important hypothesis known as the Church-Turing thesis.

*7 To appreciate this fully, it is useful to contemplate the 
following statement from Ada’s Note A: “The operating 
mechanism can even be thrown into action independently 
of any object to operate upon (although of course no result 
could then be developed). Again, it might act upon other 
things besides number, were objects found whose mutual 
fundamental relations could be expressed by those of the 
abstract science of operations, and which should be also 
susceptible of adaptations to the action of the operating 
notation and mechanism of the engine. Supposing, for 
instance, that the fundamental relations of pitched sounds 

in the science of harmony and of musical composition 
were susceptible of such expression and adaptations, the 
engine might compose elaborate and scientific pieces of 
music of any degree of complexity or extent.”

V The doubling rate for circuit complexity is due to Gordon 
E. Moore.25 While the rate of performance doubling 
is often cited as 18 months, likely in reference to a 
statement attributed to Intel executive David House, 
the true hardware speed-up between 1980 and 2010 has 
been around 50 000-fold, on an exponential curve with 
a doubling rate of 24 months (ref. 23, Figure 2.2). In my 
illustrative example, I assume near-perfect parallelisation 
speed-ups, as can be achieved quite easily, e.g., for state-
of-the-art stochastic local search algorithms.

VI In fact, if we were content with a slightly sub-optimal 
solution to our shortest round-trip problem, the 
computation would be even faster, as is the case for many 
NP-hard optimisation problems.

VII From the context in which he made this statement, it is 
unclear how serious Turing took the concern he raised; 
he did foresee opposition against the realisation of 
human-level general AI, but dismissed it without deeper 
discussion. Interestingly, earlier in the same lecture, he 
covered machine learning (to be precise: reinforcement 
learning) and the need for randomisation, in order to 
achieve non-deterministic and unpredictable behaviour.

VIII The date in the printed version, 5 May 1920, is incorrect, 
as Einstein’s inaugural lecture had to be postponed for 
rather interesting reasons (ref. 9, p. 61).
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