
Prof.dr. Holger H. Hoos

Beyond programming:
The quest for machine intelligence

Bij ons leer je de wereld kennen

PROF.DR. HOLGER H. HOOS (FRANKFURT/MAIN, 1969)

since 2017 Professor of Machine Learning, Universiteit Leiden
since 2015 Fellow of the Association for the Advancement of Artificial

Intelligence (AAAI)
since 2015 Collaborateur scientifique at Institut de Recherches

Interdisciplinaires et de Développements en Intelligence
Artificielle (IRIDIA), Université Libre de Bruxelles, Belgium

2015 Chaire internationale at Université Libre de Bruxelles, Belgium
since 2010 Professor of Computer Science, University of British

Columbia, Canada
2010 Distinguished Scholar in Residence at the Peter Wall Institute

for Advanced Studies, University of British Columbia, Canada
2009-2014 President of the Canadian Artificial Intelligence Association
2005-2010 Associate Professor of Computer Science, University of British

Columbia, Canada
since 2001 Faculty Associate of the Peter Wall Institute for Advanced

Studies, University of British Columbia, Canada
2000-2005 Assistant Professor of Computer Science, University of British

Columbia, Canada
1998-2000 Postdoctoral Fellow, Department of Computer Science,

University of British Columbia, Canada
1998 Dr. rer. nat (Ph.D.), TU Darmstadt, Germany
1996 Diplom in Informatik (M.Sc.), TU Darmstadt, Germany
1992 Vordiplom in Informatik (B.Sc.), TU Darmstadt, Germany
1989 Abitur, Gymnasium Philippinum Weilburg, Germany

Computers and the algorithms running on them have transformed
the way we work, learn, interact, discover and create. In this inaugural
lecture, Holger Hoos draws a wide arc, starting from some of the
earliest forms of computation, dating back more than 2000 years, into
a possible future, in which we have learned to create machines that
reach, and quite likely surpass, human intelligence in its broadest sense.
Particular emphasis is placed on the key role of heuristic methods for
solving computationally challenging search problems and on the rise of
machine learning techniques that permit the automated construction
of high-performance algorithms. Adopting a generalised notion of
machine learning, not only can we automate the construction of
effective machine learning procedures, but indeed, substantial parts
of the design process for high-performance algorithms for arbitrary
computational problems. Thus, by adopting a paradigm known as
programming by optimisation (PbO), we can boldly move beyond
programming, towards artificial intelligence (AI) that helps us
compensate for our own cognitive biases and shortcomings - AI that
augments, rather than replaces, human intelligence.

Holger’s research interests span the areas of artificial intelligence,
empirical algorithmics, bioinformatics and computer music. He is
known for his work on machine learning and optimisation methods
for the automated design of high-performance algorithms and for his
work on stochastic local search. Based on a broad view of machine
learning, he has developed - and vigorously pursues - the paradigm of
programming by optimisation (PbO); he is also one of the originators
of the concept of automated machine learning (AutoML). Holger has
a penchant for work at the boundaries between computing science
and other disciplines, and much of his work is inspired by real-world
applications.

Beyond programming:

The quest for machine intelligence

Inaugural lecture by

Prof.dr. Holger H. Hoos

on the acceptance of his position as professor of

Machine Learning

at Universiteit Leiden

on Friday, 27 October 2017.

2

Prof.dr. Holger H. Hoos

3

Beyond programming ...

Mijnheer de Rector Magnificus, beste collega’s, dear colleagues
and friends, liebe Freunde und Familienmitglieder,

As we sit in this magnificent hall, I invite you to lean back and
look up. Send your gaze towards the ceiling, then through and
beyond, past the rooms and attics above, through the roof of
this venerable building, through layers of clouds, straight to
the stars. Now, as you contemplate the constellations, let your
mind drift back in time.

The sky as we see it now is nearly the same as that observed
in October 1620 by one Christopher Jones, master of a ship
carrying 102 passengers across the Atlantic ocean.28 This ship
was the Mayflower, and about half of her passengers were
members of a Puritan congregation from this very city of
Leiden, about to settle on the New England shore and to play a
pivotal role in the early history of the United States of America.4

The stars by which the officers of the Mayflower navigated, as
many ships before and after, have fascinated humankind from
its early days. Astronomical observations were undoubtedly
among the first scientific endeavours. There is, in fact, much
evidence that the regularity of celestial mechanics and the
desire to predict astronomical events, such as lunar eclipses,
inspired some of the earliest instances of computational
thinking, as well as computational devices, such as the
astrolabe26, the Antikythera mechanism11 (both 200 BCE) and
al-Jazari’s castle clock (1206 CE).1

The age of computation
The notion of computation underlying these early examples
evolved and solidified through the centuries. It connects 13th-
century Majorcan writer and philosopher Raymundus Lullius,
who designed and realised a device for calculating answers
to philosophical questions using logical combinatorics, to
Gottfried Wilhelm Leibniz, who, in the 17th century, not only
worked on the binary number system underlying modern
digital computers, but also devised several highly sophisticated

and versatile mechanical calculators.I Still, it would take until
the middle of the 19th century for the idea of what we now
know as a universal computer to emerge - a device that can be
freely programmed to perform arbitrary sequences of logical
and arithmetic operations.

It was Charles Babbage, an eminent English scientist,
philosopher and engineer, who originated the concept of a
general-purpose, digital computer - a complex and ingenious
mechanical device he called the analytical engine.24 In
Babbage’s time, the term ‘computer’ was in common use, but
it referred to a person performing mathematical calculations
manually (and had been used in this sense since the early 17th
century, when Leibniz designed his mechanical calculators).
Inspired by the mechanisation of industrial processes that
disrupted society at the time, Babbage wanted to automate the
work of these human computers, in order to perform complex
calculations faster and more accurately.

The concept of computation pursued by Babbage and Leibniz
before him, foreshadowed by Lullius and the originators of
the Antikythera mechanism, was that of precise instructions,
flawlessly executed. This, along with the specifications of
inputs (i.e., data given at the beginning of the sequence
of instructions) and outputs (i.e., data produced by the
computation), and with the requirement that the sequence
of instructions eventually terminates, characterises the key
concept of an algorithm, which lies at the core of computation
(see, e.g., ref. 21).

The word algorithm, derived from the name of 9th-century
Persian mathematician, astronomer and geographer al-
Khwarizmi, can be found in English literature dating back to
the 14th century.II Intriguingly, there is no single, universally
accepted mathematical definition of an algorithm; instead, it
has been shown that a large range of different definitions are
equivalent, in that any algorithm formalised according to one
can be faithfully translated into all others.III

4

Prof.dr. Holger H. Hoos

Algorithms are neither restricted to processing numbers,
nor to being executed by a machine. The human computers
whose work was instrumental to a broad range of military
and scientific applications, as well as to early human space
flight in the 1960s, executed algorithms manually. At the same
time, the series of punched cards that determined weaving
patterns for the automated loom invented by Joseph Marie
Jacquard in 1804 are algorithms, as are the precise sequences
of instructions for synthesising chemical compounds and, in a
slightly relaxed sense, musical scores and cooking recipes.

When Charles Babbage elaborated the plans for the analytical
engine, his general-purpose mechanical computer, his mind
was firmly set on using it to perform complex numerical
calculations. It fell to his collaborator and friend, Ada,
Countess of Lovelace, to realise that the machine and the
algorithms running on it could work on data other than
numbers - a vision that foreshadowed developments that would
only start in earnest 100 years later, in the middle of the 20th
century (see, e.g., ref. 24, note A).I7

Babbage never completed his analytical engine, mostly because
he could not secure the requisite funding. However, it is now
generally believed that the machine could have been built
using the technology and materials available at the time, and
that it would have worked as intended. Many of the principles
underlying the design and use of the analytical engine were
to provide a solid foundation for the development of the first
general-purpose computers in the 1940s, and indeed, for the
field of computing science.

This field has two distinct roots, one in engineering and one in
mathematics. The engineering aspect of computing science is
aimed at designing and building practical computing devices;
the mathematical aspect is concerned with abstract models of
computation. The work of Charles Babbage was, for the most
part, a complex and challenging engineering endeavour - likely
the most ambitious such endeavour of his century. Ada’s vision
to use such devices for computing on data other than numbers,

on the other hand, is much more closely aligned to what was
to become the mathematical foundation of computing, laid by
several mathematicians during the first half of the 20th century,
most notably, Alan Turing. Later, as computing machinery and
the algorithms running on it approached levels of complexity
otherwise seen only in living organisms, a third foundation
was laid in empirical science.

At this point, let me briefly comment on the nature of my
field. It is commonly thought that computer science is, indeed,
a science of computers - that is, of computing devices. This
is a serious misperception; in the words of Edsger Dijkstra,
arguably the most influential Dutch computer scientist and an
alumnus of this university:

Computer science is no more about computers than astronomy is
about telescopes.30

So what then is it that computer scientists like me study? It is
primarily computation - systems and processes that operate, in
clearly and precisely defined ways, on data, on information. This
is why, in most European languages other than English, the name
of our field does not reference computers, but rather information
- as in the Dutch and Italian informatica, German Informatik
and French informatique. It is merely a small step in the right
direction to use the term computing science for this field that is
focussed on computation rather than computing devices.

Computation not only takes place in the engineered devices
we call computers, but also in practically all biological systems,
from cells to complex vertebrate brains. As mentioned
earlier, deliberate, manual computations are also performed
by humans, individually and in groups. Computation
occurs wherever information is being processed by means
of algorithms, and computing science is the study of these
processes. Designing and analysing such processes requires
a mind- and skill-set often referred to as computational
thinking, which involves formalisation, abstraction and

5

Beyond programming ...

modelling, along with a large dose of general problem-solving
skills. That said, of course, it is the availability and use of
computing machinery that truly gives wings to computational
thinking, and thus brings about one of the most profound
changes in human history.

Over the last 40 years, as computers became ever cheaper,
smaller and faster, algorithms have begun to affect almost
all aspects of our lives, industry, society and culture.
Our phones, cars, TV sets and washing machines are all
running increasingly sophisticated algorithms. Banks,
insurance companies and stock markets completely rely on
algorithms. Artistic production and scientific discovery are
increasingly enabled by algorithms. We have entered an age of
computation, and - in the words of an excellent article on the
subject published just a few months ago in the Economist -
“algorithms are everywhere”.7

The power of heuristic search
As we think about algorithms - clear and precise instructions
that, flawlessly executed, solve a specific problem - it is not
hard to see that most problems can be solved by many different
algorithms. Consider, for example, the task of finding a name
in a long list of names. This could be done by checking every
entry in the list, starting from the first and working forward
towards the end. Or we could start at the end and work
backwards. Or we could split our list in the middle and search
both parts, concurrently or one after the other. One problem,
many algorithms for solving it - but which of those should we
use?

150 years ago, Ada Lovelace was keenly aware of this question
when she wrote:

One essential object is to choose that arrangement which shall
tend to reduce to a minimum the time necessary for completing
the calculation. (ref. 24, note D)

This desire to solve given problems as fast as possible lies at the
heart of much work in computing science and its applications.
It is often thought that the major improvements in our ability
to solve large-scale, challenging problems computationally are
primarily due to advances in computer hardware, which have
been following an exponential trajectory for the last 50 years,
with the complexity of the integrated circuits that make up
computers and the performance of microprocessors doubling
roughly every 2 years. Since 1996, when I started my Ph.D.
research, computer performance thus increased by a factor
of 1 400, and since 1985, when I first began programming
computers, by a factor of over 65 000. This means that a task
that took 1 year of computing time in 1985 could be completed
in 8 days in 1996, and in 8 minutes today.V

However, it is important to realise that far greater performance
gains are achieved by improving not computer hardware,
but the algorithms running on it (ref. 27, p. 71). This is
especially true for a broad range of particularly challenging
problems known as NP-hard problems. How fast these
problems can be solved is one of the biggest open problems
in computing science, but most experts strongly believe that
the time required for solving them increases exponentially
with problem size. As an example, consider the problem of
finding the shortest (or fastest) round trip visiting a given
number of places - say, wall poems in the city of Leiden.
(Interestingly, the shortest route between two places can be
found much more efficiently, using a clever algorithm due to
the previously mentioned Edsger Dijkstra.) NP-hard problems
arise prominently in many computing applications, from
logistics and transportation to conservation biology, from
drug discovery to theoretical physics. Solving these problems
essentially requires searching for feasible or optimal solutions
within astronomically large spaces.

While it is generally believed that the computationally costly
search process cannot be avoided, it can be greatly accelerated
using so-called heuristics - “rules of thumb” that guide the

6

Prof.dr. Holger H. Hoos

search towards the desired solutions to a given problem.
Unfortunately, good heuristics are difficult to find, and their
efficacy can usually be only established empirically, using
computational experiments and statistics.

Heuristics can be amazingly efficient. There are over 5.7
× 10169 different round-trips visiting all 107 wall poems of
Leiden - considerably more than the 1080 elementary particles
estimated to make up our universe. Even if every one of
the 1080 particles were in fact a computer running as fast as
theoretically possible, it would take billions of years to check
the length of all these round-trips in order to find the shortest.
Yet, using state-of-the-art, extremely powerful heuristics, the
shortest round-trip can be determined in about a second on an
ordinary laptop computer - such is the power of heuristics.VI

It is important to realise that most challenging computational
problems are fundamentally search problems, whose
practically efficient solution critically hinges on heuristics.
This is particularly the case for many problems in artificial
intelligence - the area of computing science dedicated to
automating tasks that traditionally require human intelligence,
such as planning and reasoning.

I started studying heuristic search methods for solving such
problems as efficiently as possible when I was a Master
student in the group of prof. Wolfgang Bibel in Darmstadt,
Germany.3,14 I was fortunate to be able to make a series of
contributions that substantially improved the state of the art
in solving several prominent NP-hard problems, including
the so-called propositional satisfiability (short: SAT) problem
- an intriguingly easy-looking logical reasoning problem that
not only lies at the heart of computational complexity theory,
but also has important applications in ensuring the correct
operation of computer hard- and software (see, e.g., ref. 17).

Without going into detail, my contributions in this area were
made possible by two key elements: Highly stochastic search

techniques (i.e., techniques that heavily use randomised
heuristic decisions) and advanced empirical methodology
for studying algorithms whose behaviour is inaccessible to
traditional mathematical analysis. I became quickly convinced
that effective, heuristic algorithms for solving challenging
computational problems could and should be studied using
the scientific method, and specifically, by means of carefully
designed experiments and statistical analysis of the data
obtained from these. I thus embraced this third pillar of our
field, and dedicated myself to helping build the empirical
foundation of computing science.16

The machine learning revolution
Programming computers is hard, mainly because of the
difficulty of designing correct and effective algorithms. Take,
for example, the task of determining whether a patient has
breast cancer based on visual characteristics of the cells from
a FNA biopsy. This classification task is challenging even for
human experts, and manually constructing an algorithm
whose predictions are as accurate would be impossible for
most (if not all) computing scientists. Intriguingly, it is possible
to construct such an algorithm automatically, essentially by
searching within a large space of algorithms one that produces
a minimal number of misclassifications on a given set of cases
for which correct diagnoses are available.

The automatic construction of algorithms that perform well on
given data conceptually resembles the way in which humans
develop a broad range of skills: by means of learning. The
idea to program computers through a learning process can
be traced back to a seminal article written by Alan Turing in
1950,32 and has since given rise to one of the richest and most
impactful research areas in computing science: the area of
machine learning. The key idea behind machine learning is
to program computers such that they can essentially program
themselves - to design algorithms that do not merely solve a
given problem, but rather produce a good algorithm for the
problem at hand (such as detecting cancer from an image

7

Beyond programming ...

of a cell sample). This idea is not only intriguing, but also
very powerful; its broad adoption, currently well underway,
fundamentally transforms the way we program and use
computers.

Technically, most forms of machine learning are based on
concepts from statistics and optimisation. As a simple example,
consider a technique known as decision tree learning (see, e.g.,
refs. 5,29). Imagine we have a number of characteristics that
describe a cell sample, such as the uniformity of cell sizes and
shapes. A decision tree essentially is a sequence of rules that
examine one such feature at a time; based on the observation
of this feature, the rule to be applied next is selected. Each rule
is a simple yes/no question, such as: “Does the distribution of
cell sizes have standard deviation larger than 2?” The last rule
in the sequence decides whether the sample is classified as
cancer. This corresponds to a hierarchical decision procedure
that can be drawn in the shape of a tree, with the first rule to be
applied at the trunk (or root) of the tree, and each subsequent
rule corresponding to smaller and smaller branches, all the
way to the leaves, which are labelled with the final cancer
diagnosis, ‘yes’ or ‘no’.

Good decision trees can be constructed automatically. While
the details are somewhat involved, the key idea is to grow
the tree from the root, one branch (or rule) at a time. At
any stage of this process, the training cases (i.e., cell sample
characteristics with confirmed diagnosis) are assigned to
the current leaves of the tree, strictly according to the rules
in the tree. Thus, our first tree has no rules and all training
cases in its single leaf. This means that regardless of whether
we label this leaf ‘yes’ (cancer) or ‘no’ (cancer-free), many
cases are misclassified. Now, in each step, we add the rule that
essentially gives the maximum reduction in misclassifications.
The decision trees (i.e., systems of rules) thus obtained can
solve our problem reasonably well; however, the procedure
can be much improved by constructing multiple trees, each
on a randomly sampled subset of the training cases and grown

using a randomised and restricted rule selection mechanism.
This way, we obtain a set of trees - a so-called random forest.

Random forests and other state-of-the-art machine learning
techniques have achieved astounding success in many
applications, ranging from diagnosis of diseases, such as cancer
and Parkinson’s, to drug design; from detecting credit card
fraud to recommending books and movies. Over the last five
years, an approach known as deep learning, which uses neural
network models directly inspired by the physiology of our
brain, has rapidly gained prominence and achieved impressive
performance on complex learning tasks involving large data
sets (see, e.g., ref. 2). State-of-the-art applications in computer
vision, such as face recognition, and natural language
processing, such as automatic translation, summarisation
and categorisation of text, are based on deep learning, and
self-driving car technology, currently under development by
several companies, heavily relies on it.

Automated machine learning
Machine learning provides powerful tools and techniques for
extracting information from data, and more importantly, for
automatically constructing algorithms, such as decision trees,
random forests or neural networks, that can solve challenging
classification, prediction and modelling tasks. However,
effective use of those techniques demands considerable human
expertise, and typically, many non-obvious choices must be
made in order to achieve the performance levels required
in challenging real-world applications. The reason for this
is the same as discussed earlier in the context of solving
computationally challenging, NP-hard problems: the need to
rely on expert-designed and -calibrated, empirically optimised
heuristics.

As data science transforms the way we analyse and leverage
large amounts of data, the adoption and use of machine
learning outpaces the availability of the expertise required
for the effective use of these techniques. In addition, there is

8

Prof.dr. Holger H. Hoos

evidence that human experts are usually unable to make the
truly best design choices (see, e.g., refs. 18,22). This should not
be too surprising, since optimising over many design choices
that interact in complex ways essentially requires searching
within a high-dimensional, vast space - precisely the kind of
challenge encountered when solving NP-hard problems, for
which we know that human experts are no match for good
heuristic algorithms running on blindingly fast computers.

This observation gives rise to the idea of automating the
selection and calibration of machine learning algorithms,
by means of powerful, heuristic search and optimisation
techniques. The pursuit of this idea defines an area of machine
learning known as automated machine learning (short:
AutoML), and my group at the University of British Columbia
- in close collaboration with my colleague, Prof. Kevin Leyton-
Brown - was one of the first to work on the topic.31 While other
work on AutoML focussed on specialised techniques for the
challenging problem of selecting and configuring machine
learning procedures, we were interested in a general-purpose
approach that could make performance-optimising design
choices not just for machine learning procedures, but for
arbitrary algorithms.

The key idea behind our approach is that of sequential
model-based optimisation. It is based on the observation that
evaluating a specific combination of design choices is usually
quite expensive in terms of computing time, since it requires,
in the case of AutoML, training a machine learning procedure,
such as a random forest classifier, and then evaluating it on
test data. To save some of this work, we use machine learning
to predict the performance obtained for any combination
of design choices, and we then make the choices that are
predicted to be best. The problem with this approach is, of
course, how to obtain sufficiently accurate predictions. We
overcome this by starting with a cheaply constructed, usually
inaccurate prediction model. We then alternate between using
the model for making design choices, evaluating the resulting

machine learning procedure and improving the model based
on the observed performance.19 This really is learning to search
effectively, and since in this case, the aim of the search is to
find a good machine learning procedure, we effectively learn
how to learn.
Of course, much remains to be done in the automation of
machine learning. With colleagues in Eindhoven, we have
started working on automating the construction of entire
machine learning workflows. Here in Leiden, my group is
working on automated semi-supervised learning, an approach
that can leverage large amounts of unlabelled data. Meanwhile,
researchers at Google have begun a major effort to apply
automated machine learning to deep neural networks.

Programming by optimisation
This much broader view of machine learning leads us to what
I consider one of the most exciting ideas I have been working
on: the concept of programming by optimisation (PbO).15
PbO is a rather radical departure from the traditional way
we think about programming computers, which requires
clear and precise instructions - instructions that can be
unambiguously executed with precisely predictable results.
In PbO, we deliberately leave open design decisions that we
cannot make in a compellingly justified way during the design
of an algorithm, and the result of this design process is not
an algorithm or program, but a space of programs. Within
this potentially vast space, we then find specific programs that
perform well on the kind of data characteristic for a given
application situation, using powerful search, optimisation and
machine learning techniques, such as the previously outlined
sequential model-based optimisation process.

My group and I have leveraged programming by optimisation
to build better solvers for a broad range of widely studied
problems, from propositional satisfiability and its important
applications in hard- and software verification to AI planning;
from protein structure prediction to supervised machine
learning and wildlife conservation (see, e.g., ref. 15). With

9

Beyond programming ...

partners from industry, we have also worked on real-world
applications in forestry resource management, decision support
for the oil and gas industry, and effective use of clean energy.

Once we adopt the PbO paradigm, software design
changes quite radically. Rather than locking in choices
during the design phase, based on limited data and ad-hoc
experimentation, algorithm designers and software developers
can now focus on the creative task of devising a range of
design options, of proactively seeking design alternatives -
and let the machine figure out what works best under various
circumstances. Thus, PbO leverages expert intuition and
algorithmic efficiency, human creativity and computational
power to build better software, to find better solutions for a
broad range of challenging problems. At the core of PbO lies
a fundamental departure from traditional thinking about
algorithm design, a shift in paradigm made possible by a
generalised notion of machine learning that boldly moves us
beyond programming.

The future of computation
In 1973, science-fiction author Arthur C. Clarke famously
wrote:

Any sufficiently advanced technology is indistinguishable from
magic. (ref. 6, p. 21)

Indeed, many of the capabilities information technology gives
us these days would have appeared magical only a few decades
ago. Smart home technology lets us control lights, turn up
the heat and unlock doors with voice commands. Advanced
computer graphics produces believable appearances of actors
long dead. And computer programs can trick at least some
people for some time into believing they are chatting with
another person in on-line fora.

Which brings me to the second part of my title: The quest
for machine intelligence. Whether and how we can construct

machines that are as intelligent as we are is arguably one of the
great questions of humanity, along with questions about life
(or intelligence) beyond Earth, the origins and destiny of the
universe, and the origin and creation of life. In his article titled
“Computing machinery and intelligence”, published in 1950,
Alan Turing provided a visionary and enlightened view on the
subject.32 In it, he discusses the question “Can machines think?”
and proposes what amounts to an operational definition of
intelligence. This definition is based on a concept now known
as the Turing test, in which a person communicates with a test
subject by exchanging free-form text messages on arbitrary
topics, with the purpose of finding out whether the test subject
is another person or an algorithm running on a machine. When
this decision cannot be made with a reasonably low margin
of error (i.e., error probability significantly below 50%), the
machine should be considered intelligent.

Although Turing’s article is now almost 70 years old, it is very
much worth reading, as it contains some timely thoughts
on artificial intelligence (AI). Notably, investigating how
human-level AI could be achieved, he draws a strong analogy
to the way human intelligence develops in children and lays
the foundation for the field that is now known as machine
learning. For Turing, machine learning is “a departure from
the completely disciplined behaviour involved in computation”
(ref. 32, p. 459), and he notes that “processes that are learnt do
not produce a hundred per cent. certainty of result; if they did
they could not be unlearnt” (ref. 32, p. 459).

Like Turing and most contemporary AI researchers, I believe
that human-level AI can be achieved, and that machine
learning is an essential ingredient. It is important to note that
machine learning alone is insufficient; indeed, in most current
demonstrations of human- level performance in games like
chess, go, poker, Jeopardy, and in AI applications such as cancer
detection, machine learning techniques work in concert with
other computational methods, including heuristic search,
natural language analysis and image processing (see, e.g., ref. 8).

10

Prof.dr. Holger H. Hoos

Of course, even just in the area of machine learning, there
are many open challenges. These include the design of more
effective methods for generalising to data that qualitatively
differs from given training examples; the development of frugal
techniques that can learn from less data, on less powerful
hardware, with less complicated algorithms; and work on
methods that are more understandable and free from unfair
bias. In all this, leveraging my research on automated machine
learning and programming by optimisation, I aim to make
major contributions. More generally, my group and I will strive
towards predictable, robust and performant techniques in
machine learning and artificial intelligence - techniques that
permit us to build trustworthy, high-performance systems that
make responsible use of potentially sensitive data.

As awareness of artificial intelligence has broadened - fuelled
by impressive successes in limited domains - of late, there has
been increasing debate on the risks associated with human-
level AI. I note that this debate is useful and necessary, but not
new. In a lecture in 1951, Alan Turing already noted:

[...] it seems probable that once the machine thinking method
had started, it would not take long to outstrip our feeble powers.
[...] they would be able to converse with each other to sharpen
their wits. At some stage therefore, we should have to expect the
machines to take control [...] (ref. 33, p. 10).VII

Does this sound disturbing to you? It most definitely should.
Within the AI research community, there are radically different
opinions on the issue. I decisively side with Turing (and many
of my colleagues) by believing that human-level AI, once
achieved, will necessarily evolve into super-human AI, since
it is not subject to the limited resources of our biological
hardware. This crucial step from human-level to super-human
intelligence will likely occur very quickly. Like renowned
physicist, Steven Hawking, I believe that, once this happens,

Every aspect of our lives will be transformed. In short, success
in creating AI could be the biggest event in the history of our
civilisation.12

Many of my colleagues are starting to think very seriously
about the risks and implications of creating human-level
general AI. This timely and important conversation should
not be limited to AI researchers, but involve experts from
other disciplines, politicians and the general public. In my
view, AI researchers have a responsibility for engaging in this
conversation. It is beyond the scope of this lecture to discuss
this topic in any depth, but I will briefly touch on three points.

First, it may well be that, even assuming a committed and
sustained push for it, human-level general AI will take at least
50 years to achieve, and this leads some to believe that it is far
too early to worry about it. I believe this is somewhat naÕve,
since crucial advances towards this goal are impossible to
predict, and we may well have far less time than 50 years to
think through the ramifications of this transformative event.

Second, there are likely no easy solutions to the question of
how to deal with the risks and opportunities of AI. Take, for
example, the seemingly simple solution of making sure that
any intelligent system has an off-switch - a way to cut off its
power, or to disconnect it from its communication channels,
sensors and actuators. Aside from the ethical question whether
and under which circumstances it is justifiable to take this
drastic action on an intelligent, self-aware entity capable
of fear and suffering (as any general, human-level AI must
be by definition), the off-switch would likely be useless: As
argued previously, human-level general AI, once achieved,
should be expected to very quickly exceed human intellectual
capabilities. This type of intelligence would likely be able to
influence and manipulate us in subtle ways - and thus make
sure that we would never want to switch it off.

11

Beyond programming ...

Third, an argument can be made that we may well depend on
machine intelligence to help us cope with the consequences
of our severely limited ability to responsibly manage our
environment and the crucial resources it provides to
us. Evolution has us well equipped for living in a world
predominantly governed by local, short-term phenomena and
interactions, where the consequences of our actions are limited
in their reach and scope. But over just a few centuries, we have
brought about profound change. Our world is now densely
interconnected, and much of what we do as societies has long-
term, global effects. Evolution is far too slow to help us adapt
to this new situation; therefore, we must utilise technology to
help us overcome our cognitive limitations.

However, I strongly believe that general, human-level (or
super-human) AI is neither required nor best suited to meet
this need. Of course, we should use advanced computational
methods to enhance our ability to see and manage the long-
term, long-range consequences of our actions, but for this,
we do not need to replicate human intelligence - we need
to augment it, to help us compensate for our biases and
shortcomings. Hence, our quest for machine intelligence
should have this goal: to augment, not to replace human
intelligence.

Coda
Let us briefly return to the group of Puritan separatists who left
Europe for the New World in the autumn of 1620. Those so-
called pilgrims, whose colony and culture was to gain central
importance to US American identity up to the present day,
came from Leiden, where they had led a quiet and modestly
comfortable life. In fact, most of them lived in small houses
a mere stone’s throw from this building. They had come to
Leiden (via Amsterdam) to escape religious oppression and
persecution in their native England. In the words of their
chronicler, William Bradford:

For these & other reasons they removed to Leyden, a fair &
bewtifull citie, and of a sweete situation, but made more famous
by ye universitie wherwith it is adorned, in which of late had
been so many learned man. (ref. 4, p. 17)

And yet, despite this much-improved situation, they decided to
move once again - as documented by Bradford:

So they lefte [that] goodly & pleasante citie, which had been ther
resting place, nere 12 years; but they knew they were pilgrimes,
& looked not much on these things; but lift up their eyes to ye
heavens, their dearest cuntrie, and quieted their spirits. (ref. 4,
p. 57)

So why did they embark on what must have been an uncertain
and perilous journey? In part, they were looking for a chance
for economic betterment; however, there appears to have been
another reason. Back then (as is still the case today), the Dutch
were well-known for their tolerance. As much as the pilgrims
benefitted from this, they did not share the attitude, but were
quite concerned about the ‘libertine’ morals of the Dutch and
about dilution of their own culture (ref. 4, p. 24).

This rings strangely, and perhaps disturbingly, familiar. It is
worth recalling that the motto of this university is libertatis
praesidium (bastion of freedom). The stained-glass windows
in the wall behind me serve as another powerful reminder
how precious and important that concept is and always will
be. Things get truly complicated when liberties collide. It
is then, when neither logic nor learning can provide easy
solutions, that human bias and short-sightedness become truly
problematic. But it is also then that humility, compassion,
measured tolerance and understanding shine. It is my view and
aim that advanced computation and machine intelligence can
(and should) help us recognise and overcome shortsightedness
and bias, and I am optimistic that this goal can be achieved,
if we commit to it and pursue it vigorously. And what better
place to do it than in

12

Prof.dr. Holger H. Hoos

[...] a fair & bewtifull citie, and of a sweete situation, but made
more famous by ye universitie wherwith it is adorned, in which
of late had been so many learned man. (ref. 4, p. 17).

- an institution committed and known to uphold libertatis
praesidium.

Acknowledgements
This brings me to the final part of this lecture. Precisely 97
years ago (and 300 years after the Mayflower approached the
American coast), on the 27th of October 1920, Albert Einstein
gave a lecture titled “Ether and the theory of relativity”10 - his
inaugural lecture here, at Universiteit Leiden.VIII Back then, in
many ways, physics was what computing science is now: a field
that shapes the world and our thinking, a discipline that excites
and inspires, unifies and connects. I consider myself very
fortunate to be working in this field, and especially in the area
of artificial intelligence.

Standing before you today, I am humbled and deeply honoured
to become part of a succession of scholars reaching back 442
years to the beginning of this venerable institution. While
I cannot hope to match the contributions made by many
of them, I will certainly do my best to fulfil and exceed the
expectations associated with my position here.

I thank the Executive Board (College van Bestuur), the Board of
the Faculty of Science, and all others who have contributed to
my appointment as Professor of Machine Learning for the trust
they have placed in me.

I also thank my colleagues at LIACS, who have welcomed me
with open arms and open minds, notably Jaap van den Herik,
Joost Kok, Wessel Kraaij, Grzegorz Rozenberg and Harry
Wijshoff. Furthermore, I am deeply grateful to our exceptional
staff, notably Vianney, Marloes, Annemart, Tjitske, Mariska
and Abdel: Without your help and guidance, I would have
been lost and stranded. My thanks also go to Bert van Polen

and his staff at the ISSC, whose support in setting up my
computational infrastructure I greatly value.

Hooggeleerde Plaat, beste Aske, since I met you barely two
years ago, you have become a role model and an inspiration
to me. I am certain that under your exemplary leadership,
LIACS will reach new heights, and I am very excited to have
the opportunity to work with you and your management team
towards this goal.

Zeergeleerde van Duijn, beste Max, our conversations and
nascent projects truly broaden my horizon, and I look forward
to see our vision take shape.

Hooggeleerde Verbeek, beste Fons, our twinned gowns have
created an unexpected and delightful connection that I hope
will last for many years.

Hooggeleerde Bäck, lieber Thomas, I am fortunate to count you
among my colleagues and my friends. Without your vision and
support, I may have never discovered the joys of working at
this university and at LIACS.

Dear Chuan, Marie and Jesper, as one of my favourite poets
wrote: “Und jedem Anfang wohnt ein Zauber inne” - something
magic dwells in every beginning (ref. 13, Band 2, p. 257). I am
very happy to have you as my companions, as we discover the
magic in the beginning of our ADA research group.

I would also like to acknowledge my students at UBC - Chris
Fawcett, Sam Bayless, Julieta Martinez, Chris Cameron and
Yasha Pushak, as well as my former students and postdocs,
interacting with whom has been and is a joy and a privilege.

I am deeply grateful to my UBC colleagues, Anne Condon and
Alan Mackworth, whose mentorship has made me a better
scientist and a better person. Furthermore, my heartfelt thanks
go to my collaborators at UBC, notably Kevin Leyton-Brown,

13

Beyond programming ...

with whom I share a long and very productive history of
intellectually stimulating exchange.

Reaching further back in time: Dear Bart, your research
excellence and enthusiasm has inspired me for over 20 years,
and without your kind and generous support, I would not be
here today.

Lieber Wolfgang, I am truly delighted that you are here today.
As my Ph.D. advisor, role model and mentor, your impact on
my intellectual development and academic career could hardly
be overstated.

Lieber Professor Walter, I thank you for illuminating my path at
a critical junction, and for giving me unique opportunities and
freedoms during my time in Darmstadt.

Dear friends, thank you all for being here. Tobias, Meret,
Thomas, Jàrgen, Morten, Florissa, Claire and Steve, I cherish
the many moments and memories we share, the levity and
hilarity, the conviviality and companionship that connects us.

Liebe Eltern, liebe Geschwister, it means much to me to share
this moment with you. We can choose our friends, but not our
family; still, given the choice, I would gladly choose you. To a
large extent, my being here today is a result of all that you gave
me at the beginning of my journey, throughout the years and at
every step of my way.

Liebe Heike, lieber Robin, lieber Till, in many ways it was you
who brought me here. You enrich my life in ways I could not
have imagined, and that which we share completes me.

You all have been, and - I hope - continue to be part of
my journey, a journey that has taken me there and back
again: From my native Germany to Canada, a place that
has profoundly changed me, personally and in terms of my
academic endeavours, then back to my European roots. It was

during my 20 years in Canada that I learned what I now know
about taming the dragon of computational complexity and that
I discovered what I consider my academic calling. I cannot
know what lies ahead on this next leg of my journey, but I am
certain to embark on it with an open mind and in excellent
company.

Ik heb gezegd.

14

Prof.dr. Holger H. Hoos

Additional acknowledgements. I gratefully acknowledge
useful comments on earlier drafts of this document by Thomas
Bäck, Aske Plaat, Simon Portegies Zwart, Grzegorz Rozenberg
and Harry Wijshoff.

Notes
I In fact, Leibniz also believed that, to a large extent, human

reasoning could be reduced to computation and worked
towards a formalism, the calculus ratiocinator, to describe
such computations. In Leibniz’s words: Quando orientur
controversiae, non magis disputatione opus erit inter
duos philosophus, quam inter duos computistas. Sufficiet
enim calamos in manus sumere sedereque ad abacos, et
sibi mutuo (accito si placet amico) dicere: calculemus. If
controversies were to arise, there would be no more need
of disputation between two philosophers than between
two calculators. For it would suffice for them to take their
pencils in their hands and to sit down at the abacus, and
say to each other (and if they so wish also to a friend
called to help): Let us calculate.

II Geoffrey Chaucer uses the early form augrym in his
Canterbury Tales (The Miller’s Tale, Line 3210).

III In theoretical computing science, this has led to an
important hypothesis known as the Church-Turing thesis.

*7 To appreciate this fully, it is useful to contemplate the
following statement from Ada’s Note A: “The operating
mechanism can even be thrown into action independently
of any object to operate upon (although of course no result
could then be developed). Again, it might act upon other
things besides number, were objects found whose mutual
fundamental relations could be expressed by those of the
abstract science of operations, and which should be also
susceptible of adaptations to the action of the operating
notation and mechanism of the engine. Supposing, for
instance, that the fundamental relations of pitched sounds

in the science of harmony and of musical composition
were susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of
music of any degree of complexity or extent.”

V The doubling rate for circuit complexity is due to Gordon
E. Moore.25 While the rate of performance doubling
is often cited as 18 months, likely in reference to a
statement attributed to Intel executive David House,
the true hardware speed-up between 1980 and 2010 has
been around 50 000-fold, on an exponential curve with
a doubling rate of 24 months (ref. 23, Figure 2.2). In my
illustrative example, I assume near-perfect parallelisation
speed-ups, as can be achieved quite easily, e.g., for state-
of-the-art stochastic local search algorithms.

VI In fact, if we were content with a slightly sub-optimal
solution to our shortest round-trip problem, the
computation would be even faster, as is the case for many
NP-hard optimisation problems.

VII From the context in which he made this statement, it is
unclear how serious Turing took the concern he raised;
he did foresee opposition against the realisation of
human-level general AI, but dismissed it without deeper
discussion. Interestingly, earlier in the same lecture, he
covered machine learning (to be precise: reinforcement
learning) and the need for randomisation, in order to
achieve non-deterministic and unpredictable behaviour.

VIII The date in the printed version, 5 May 1920, is incorrect,
as Einstein’s inaugural lecture had to be postponed for
rather interesting reasons (ref. 9, p. 61).

15

Beyond programming ...

References
1 Ibn al-Razzaz al Jazarı. The Book of Knowledge of Ingenious

Mechanical Devices. Translated and annotated by Donald
R. Hill. D. Reidel Publishing Company, Dordrecht, The
Netherlands, 1974.

2 Yoshua Bengio, Yann LeCun, and Geoffrey Hinton. Deep
learning. Nature, 521: 436-444, 2015.

3 Antje Beringer, Gerd Aschemann, Holger Hoos, Michael
Metzger, and Andreas Weiß. GSAT versus Simulated
Annealing. Proceedings of the 11th European Conference
on Artificial Intelligence, pages 130-134.

4 William Bradford. History of Plymouth Plantation. Boston:
Privately printed, 1856. https://archive.org/details/
historyplymouth00bradgoog.

5 Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone. Classification and regression trees.
Wadsworth International Group, Belmont (CA), USA,
1984.

6 Arthur C. Clarke. Profiles of the Future: An Inquiry into the
Limits of the Possible (revised edition). Harper & Row, New
York (NY), USA, 1973.

7 Tim Cross. The Economist explains: What are algorithms?
The Economist, 30 August 2017, https://www.economist.
com/blogs/economist-explains/2017/08/economist-
explains-24. Last visited 1 October 2017.

8 David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya A. Kalyanpur, Adam Lally,
J. William Murdock, Eric Nyberg, John Prager, Nico
Schlaefer, and Chris Welty. Building Watson: An overview
of the DeepQA project. AI Magazine, 31(3): 59-79, 2010.

9 Dirk van Delft. Albert Einstein in Leiden. Physics Today,
59(4): 57-62, 2006. http://physicstoday.scitation.org/
doi/10.1063/1.2207039.

10 Albert Einstein. Äther und Relativitätstheorie. Julius
Springer, Berlin, Germany, 1920. http://alberteinstein.info/
vufind1/images/einstein/ear01/view/3/CP7Doc38_pp305-
309_321_000016788.pdf.

11 Tony Freeth, Y. Bitsakis, X. Moussas, J.H. Seiradakis, A.
Tselikas, E. Magkou, M. Zafeiropoulou, R. Hadland, D.
Bate, A. Ramsay, A. Crawley, P. Hockley, T. Malzbender,
D. Gelb, W. Ambrisco, and M.G. Edmunds. Decoding
the ancient Greek astronomical calculator known as the
Antikythera mechanism. Nature, 444(7119): 587-591, 2006.

12 Alex Hern. Stephen Hawking: AI will be ‘either best or
worst thing’ for humanity. The Guardian, 19 October
2016, https://www.theguardian.com/science/2016/oct/19/
stephen-hawking-ai-best-or-worst-thing-for-humanity-
cambridge. Last visited 1 October 2017.

13 Hermann Hesse. Das Glasperlenspiel. Fretz & Wasmuth
Verlag, Zürich, Switzerland, 1943.

14 Holger H. Hoos. Aussagenlogische SAT Verfahren und ihre
Anwendung bei der Lösung des HC- Problems in gerichteten
Graphen. Diplomarbeit, Fachbereich Informatik,
Technische Universität Darmstadt, Germany, 1996.

15 Holger H. Hoos. Programming by optimization.
Communications of the ACM, 55:70–80, February 2012.

16 Holger H. Hoos. Empirical Algorithmics. Cambridge
University Press, Cambridge, UK, in preparation.

17 Holger H. Hoos and Thomas Stützle. Stochastic Local
Search – Foundations and Applications. Morgan Kaufmann
Publishers, San Francisco (CA), USA, 2005.

18 Frank Hutter, Domagoj Babic, Holger H. Hoos, and
Alan J. Hu. Boosting verification by automatic tuning of
decision procedures. Proceedings of the 7th International
Conference on Formal Methods in Computer-Aided
Design (FMCAD’07), pages 27-34, 2007.

19 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general algorithm
configuration. Proceedings of the 5th International
Conference on Learn- ing and Intelligent Optimization
(LION 5), volume 6683 of LNCS, pages 507–523. Springer-
Verlag, Berlin/Heidelberg, Germany, 2011.

20 Stephen C. Kleene. Introduction to Metamathematics.
North-Holland Publishing Company, Amsterdam, The
Netherlands, 1952.

¯ ¯

´

https://archive.org/details/historyplymouth00bradgoog
https://archive.org/details/historyplymouth00bradgoog
https://archive.org/details/historyplymouth00bradgoog
https://www.economist.com/blogs/economist-explains/2017/08/economist-explains-24
https://www.economist.com/blogs/economist-explains/2017/08/economist-explains-24
https://www.economist.com/blogs/economist-explains/2017/08/economist-explains-24
https://www.economist.com/blogs/economist-explains/2017/08/economist-explains-24
http://physicstoday.scitation.org/doi/10.1063/1.2207039
http://physicstoday.scitation.org/doi/10.1063/1.2207039
http://physicstoday.scitation.org/doi/10.1063/1.2207039
http://alberteinstein.info/vufind1/images/einstein/ear01/view/3/CP7Doc38_pp305-309_321_000016788.pdf
http://alberteinstein.info/vufind1/images/einstein/ear01/view/3/CP7Doc38_pp305-309_321_000016788.pdf
http://alberteinstein.info/vufind1/images/einstein/ear01/view/3/CP7Doc38_pp305-309_321_000016788.pdf
http://alberteinstein.info/vufind1/images/einstein/ear01/view/3/CP7Doc38_pp305-309_321_000016788.pdf
https://www.theguardian.com/science/2016/oct/19/stephen-hawking-ai-best-or-worst-thing-for-humanity-cambridge
https://www.theguardian.com/science/2016/oct/19/stephen-hawking-ai-best-or-worst-thing-for-humanity-cambridge
https://www.theguardian.com/science/2016/oct/19/stephen-hawking-ai-best-or-worst-thing-for-humanity-cambridge

16

Prof.dr. Holger H. Hoos

21 Donald E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms (3rd edition). Addison-
Wesley, Boston (MA), USA, 1997.

22 Donald E. Knuth. The Art of Computer Programming,
Volume 4, Fascicle 6: Satisfiability. Addison-Wesley, Boston
(MA), USA, 2015.

23 Paul E. McKenney, editor. Is parallel programming hard,
and, if so, what can you do about it? Freely available on-
line, 2017. https://www.kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.2017.01.02a.pdf.

24 Luigi Federico Menabrea and Augusta Ada King, Countess
of Lovelace. Sketch of the analytical engine invented
by Charles Babbage, Esq., with notes by the translator.
Scientific memoirs, selected from the transactions of
foreign academies of science and learned societies and
from foreign journals, 3: 666-731, 1843. http://www.
fourmilab.ch/babbage/sketch.html.

25 Gordon E. Moore. Progress in digital integrated electronics.
Technical Digest, 1975 International Electron Devices
Meeting, pages 11-13, 1975.

26 John D. North. The astrolabe. Scientific American, 230(1):
96-107, 1974.

27 President’s Council of Advisors on Science and Technology
(PCAST). Designing a digital future: Federally funded
research and development in networking and information
technology. https://obamawhitehouse.archives.gov/sites/
default/files/ microsites/ostp/pcast-nitrd-report-2010.pdf.
Last visited 1 October 2017.

28 Patricia Scott Deetz and James F. Deetz. Passengers on the
Mayflower: Ages & occupations, origins & connections. The
Plymouth Colony Archive Project, http://www.histarch.
illinois. edu/plymouth/Maysource.html. Last visited 1
October 2017.

29 J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1: 81-106, 1986.

30 Hamilton Richards. Edsger Wybe Dijkstra, 2012. A.M.
Turing Award Winners, http://amturing.acm.org/award_
winners/dijkstra_1053701.cfm. Last visited 1 October 2017.

31 Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms.
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD-13), pages 847-855, 2013.

32 Alan M. Turing. Computing machinery and intelligence.
Mind, 59(236):433–460, 1950. https://academic.oup.com/
mind/article-lookup/doi/10.1093/mind/LIX.236.433.

33 Alan M. Turing. Intelligent machinery, a heretical theory,
1951. The Turing Digital Archive, AMT/B/4, http://www.
turingarchive.org/browse.php/B/4.

https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2017.01.02a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2017.01.02a.pdf
http://www.fourmilab.ch/babbage/sketch.html
http://www.fourmilab.ch/babbage/sketch.html
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf
http://www.histarch.illinois.edu/plymouth/Maysource.html
http://www.histarch.illinois.edu/plymouth/Maysource.html
http://www.histarch.illinois.edu/plymouth/Maysource.html
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://academic.oup.com/mind/article-lookup/doi/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-lookup/doi/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-lookup/doi/10.1093/mind/LIX.236.433
http://www.turingarchive.org/browse.php/B/4
http://www.turingarchive.org/browse.php/B/4

Prof.dr. Holger H. Hoos

Beyond programming:
The quest for machine intelligence

Bij ons leer je de wereld kennen

PROF.DR. HOLGER H. HOOS (FRANKFURT/MAIN, 1969)

since 2017 Professor of Machine Learning, Universiteit Leiden
since 2015 Fellow of the Association for the Advancement of Artificial

Intelligence (AAAI)
since 2015 Collaborateur scientifique at Institut de Recherches

Interdisciplinaires et de Développements en Intelligence
Artificielle (IRIDIA), Université Libre de Bruxelles, Belgium

2015 Chaire internationale at Université Libre de Bruxelles, Belgium
since 2010 Professor of Computer Science, University of British

Columbia, Canada
2010 Distinguished Scholar in Residence at the Peter Wall Institute

for Advanced Studies, University of British Columbia, Canada
2009-2014 President of the Canadian Artificial Intelligence Association
2005-2010 Associate Professor of Computer Science, University of British

Columbia, Canada
since 2001 Faculty Associate of the Peter Wall Institute for Advanced

Studies, University of British Columbia, Canada
2000-2005 Assistant Professor of Computer Science, University of British

Columbia, Canada
1998-2000 Postdoctoral Fellow, Department of Computer Science,

University of British Columbia, Canada
1998 Dr. rer. nat (Ph.D.), TU Darmstadt, Germany
1996 Diplom in Informatik (M.Sc.), TU Darmstadt, Germany
1992 Vordiplom in Informatik (B.Sc.), TU Darmstadt, Germany
1989 Abitur, Gymnasium Philippinum Weilburg, Germany

Computers and the algorithms running on them have transformed
the way we work, learn, interact, discover and create. In this inaugural
lecture, Holger Hoos draws a wide arc, starting from some of the
earliest forms of computation, dating back more than 2000 years, into
a possible future, in which we have learned to create machines that
reach, and quite likely surpass, human intelligence in its broadest sense.
Particular emphasis is placed on the key role of heuristic methods for
solving computationally challenging search problems and on the rise of
machine learning techniques that permit the automated construction
of high-performance algorithms. Adopting a generalised notion of
machine learning, not only can we automate the construction of
effective machine learning procedures, but indeed, substantial parts
of the design process for high-performance algorithms for arbitrary
computational problems. Thus, by adopting a paradigm known as
programming by optimisation (PbO), we can boldly move beyond
programming, towards artificial intelligence (AI) that helps us
compensate for our own cognitive biases and shortcomings - AI that
augments, rather than replaces, human intelligence.

Holger’s research interests span the areas of artificial intelligence,
empirical algorithmics, bioinformatics and computer music. He is
known for his work on machine learning and optimisation methods
for the automated design of high-performance algorithms and for his
work on stochastic local search. Based on a broad view of machine
learning, he has developed - and vigorously pursues - the paradigm of
programming by optimisation (PbO); he is also one of the originators
of the concept of automated machine learning (AutoML). Holger has
a penchant for work at the boundaries between computing science
and other disciplines, and much of his work is inspired by real-world
applications.

