ADA Research Group
Technical Report TR-2018-1

Automated Artificial Intelligence (AutoAl)

Holger H. Hoos
Leiden Institute of Advanced Computer Science (LIACS)
Universiteit Leiden
The Netherlands

24 December 2018

Abstract

While there has been research on artificial intelligence (Al) for at least 50 years, we are now standing on
the threshold of an Al revolution — a transformational change whose effects may surpass that of the indus-
trial revolution in the first half of the 19th century. There are multiple reasons why Al is rapidly gaining
traction now. Firstly, much of our infrastructure is already controlled by computers; so deploying Al
systems is technologically quite straightforward. Secondly, in many situations, there is now easy access
to large amounts of data, which can be used as a basis for customising Al systems using machine learn-
ing. Thirdly, due to tremendous improvements not only in computer hardware, but also in Al algorithms,
advanced Al systems can now be deployed broadly and at low cost.

As aresult, Al systems are poised to fundamentally change the way we live and work. Al is quickly
becoming a major driver of innovation, growth and competitiveness, and is bound to play a crucial role
in addressing the challenges we face individually and as societies. However, high-quality Al systems
require considerable expertise to build, maintain and operate. For the foreseeable future, Al expertise
will be a limiting factor in the broad deployment of Al systems, and — unless managed very carefully —
this will lead to uneven access and increasing inequality. It is also likely to cause the wide-spread use of
low-quality Al systems, developed without the proper expertise.

Here, we propose to address this problem using Al methods — specifically, automated algorithm de-
sign, machine learning and optimisation techniques — to help build and deploy the next generation of Al
systems. This gives rise to an approach we refer to as automated artificial intelligence (AutoAl). Ulti-
mately, research on AutoAl aims to make it possible for people who benefit from Al to develop, deploy
and maintain Al systems that are performant, robust and predictable, without requiring deep and highly
specialised Al expertise. AutoAl will thus dramatically broaden access to high-quality Al systems.

1 Introduction

Effective Al algorithms and systems are difficult to design, implement and maintain. They also require a
high level of expertise to deploy successfully in practice, and more stringent requirements on performance,
robustness, predictability and safety will make this even harder in the future. A marked shortness of Al
experts already causes a considerable bottleneck, and in the near future, this will make it hard to develop and
deploy Al in small and medium-size companies, in public service and in nonprofit organisations. Because
of the game-changing nature of Al this causes serious problems. Firstly, competition for Al expertise



observations
measurements

- - Custom
Application Context actions
Al System
observations information
actions advice
observations preferences assembles
measurements constraints optimises
information monitors
AutoAl System
design
improve
evaluate

Figure 1: Overview of the AutoAl approach. Rather than directly producing specialised Al systems for
specific application situations, Al experts design and maintain an AutoAl system that enables users to
develop and deploy customised Al systems tailed to their needs and preferences.

as a limiting resource increases inequity; successful Al deployment can greatly improve the profitability
of businesses, and hence their ability to attract more Al expertise, leading to further increases in their
competitive advantage. At the level of entire nations and societies, a similar effect occurs, as increased
productivity due to effective use of Al-enabled automation boosts the ability to invest in Al education and
training, which then brings about further increases in productivity. Secondly, in the face of limited expertise
in the area, Al systems will be developed and deployed by non-experts; such systems can be expected to
suffer from major shortcomings, not only in terms of performance, but more problematically, in terms of
robustness, predictability and safety — highly desirable properties that even today’s Al experts find difficult
to achieve.

To alleviate this Al complexity problem, we propose a radical, yet logical solution: Use Al methods to help
build and deploy the next generation of Al systems. We refer to this idea as automated Al (short: AutoAl)
and aim to realise it as a system of assistants that help people develop, deploy and maintain Al systems
that are performant, robust and predictable, without requiring deep and highly specialised Al expertise.
Ultimately, research on AutoAl aims to make it possible for those who benefit from their use to build,
calibrate and maintain effective, robust and safe Al systems, entirely without the need for Al experts or
software developers.

To reach this goal will require a very substantial research effort, but — leveraging several existing lines of
work — it should be possible to realise limited prototypes quite swiftly, and thus to clearly demonstrate
the potential of the approach and lay the foundation for advanced AutoAl systems. The overall AutoAl
approach is illustrated in Figure 1; notice how the AutoAl system, in interaction with the user, takes over
some of the tasks currently carried out by Al experts. By encapsulating and fully formalising expert knowl-
edge in Al the AutoAl system operationalises that knowledge on a much broader scale than achievable by
human experts alone.



2 Anillustrative example: AutoAl for smart agriculture

To see how AutoAl could change the way we develop, deploy and maintain Al systems, consider the
following example. Imagine a collective of farmers who want to maximise sustainable production of their
fields. These farmers would like to use an Al agricultural consultant — i.e., an Al system that can provide
timely and relevant advice that complements their own expertise — to help them reach their goal. While
they regularly use smart phones, tablets and computers to check weather forecasts and crop prices, and
even to coordinate the use of shared equipment, none of them can write software or has any experience
with building, using or maintaining Al systems, nor can they afford to hire experts who can do it for them.
However, they have access to an advanced AutoAl system and off-the-shelf devices and services to collect
data on their fields and use of equipment. Using an AutoAl data collection and integration assistant, they
first realise a software platform that allows them to monitor their fields and equipment, using natural-
language dialogue to provide the information needed by the assistant to synthesise the platform.

Next, they expand this platform with machine learning capabilities that allow them to forecast yield under
various conditions, which helps them decide on types of crops, fertiliser use, planting and harvesting pat-
terns. To do this, they make use of an AutoAl machine learning assistant that guides them in selecting and
calibrating suitable machine learning methods, in preparing training data, and in interpreting predictions.
The machine learning system synthesised by the assistant is tailored specifically to the situation and needs
of this specific group of farmers, while drawing on generic information collected from similar use contexts
(e.g., farming applications elsewhere). It does not merely produce predictions, but also clearly indicates the
confidence it has in these predictions, generates warnings when that confidence is too low, provides sus-
pected reasons for its low performance and suggests remedies (e.g., collect more or different types of data;
allow more time for selecting and calibrating learning procedures; or give access to greater computational
resources).

Finally, our farmers use an AutoAl optimisation and planning assistant to extend their system with the
capability to guide them in maximising their production, subject to the resources at their disposal, individ-
ual and collective preferences, as well as anticipated environmental conditions. Again, the assistant uses
natural-language dialogue to elicit the required information, and selects, adapts and integrates system com-
ponents based on the specific needs and preferences of our farmers. The resulting, custom Al system does
not replace the farmers, but rather provides them with effective guidance towards realising their goal of
maximising sustainable production. It combines learning, planning and constraint solving components; it
interacts on a regular basis with its users — reactively and proactively — to adjust to changing conditions
and unexpected developments; and it self-monitors and warns about limited confidence, also suggesting
remedies.

3 Background and related work

Al systems are currently constructed by highly skilled experts, in a process that critically relies on their
experience and intuition. There are several broad areas of work aimed at automating some aspects of the
underlying algorithm design process.

Automated algorithm configuration, selection and portfolio construction has been gaining traction within
the AI community over the last decade, but is restricted to performance optimisation when solving a single,
precisely defined problem, such as propositional satisfiability, a particular flavour of Al planning or mixed
integer programming [see, e.g., 19, 62, 21, 61, 57, 24, 51]. Some recent work on algorithm configuration
draws from collections of semantically equivalent, interchangeable components [see, e.g., 27].

Hyperparameter optimisation, model selection and neural architecture search also optimise performance
for a given class of learning tasks (e.g., supervised classification) and form part of a fast-moving research
direction known as automated machine learning (AutoML) [see, e.g., 56, 12, 33, 9]. Recently, Google



released their Cloud AutoML services [15], which produce custom deep learning models for computer
vision, text categorisation and translation, using neural architecture search (NAS). While details are propri-
etary, highly related publicly accessible research suggests that the design space is rather small and can be
explored quite effectively with random search, although reinforcement learning achieves better results for
larger time budgets [64]. There are clear indications that by moving to NAS methods based on sequential
model-based optimisation, as used in our own work on AutoML [56, 33], substantial further improvements
can be achieved [40]. While clearly motivated similarly to AutoAl, Google’s Cloud AutoML is restricted
to specific learning tasks and to using deep neural networks; to broaden the scope to that of AutoAl, as
envisioned here, challenges similar to those outlined in the following would have to be overcome.

Automatic Statistician aims to automate data analysis using statistical and machine learning techniques
[54, 41, 28]. Like AutoAl, it is motivated by making these techniques accessible to non-experts, but is
focussed more narrowly on data science, and specifically, regression problems. Interestingly, this line of
work includes the generation of natural-language, technical reports (similar to more specialised work on
automated scaling analysis [44]).

Another very interesting line of research, aimed at automating key processes in data science, deals with
automated data preprocessing and cleaning techniques [see, e.g., 60] and with automatically learning con-
straints from structured data [see, e.g., 7, 31, 48]. This work forms an important basis for AutoAl, which
will make use of automated data preprocessing and benefit from the ability to infer constraints or other
structured models from examples.

Genetic programming aims to synthesise software with given functionality, using techniques from evolu-
tionary computation, such as genetic algorithms or evolution strategies. Work in this area has achieved
some impressive results [see, e.g., 46, 47, 32, 63] and given rise to the active area of search-based software
engineering [see, e.g., 16, 5, 49], which aims to automated key tasks of software engineering. However, so
far, this line of work has not achieved the ability to synthesise performant solvers for any widely studied Al
problem, let alone a broad range of Al problems, as encountered in the context of AutoAl. Nevertheless,
techniques from search-based software engineering will likely contribute to achieving a practical AutoAl
system.

There is limited work on the synthesis of effective algorithms for classes of Al problems that show sig-
nificant semantic differences, such as scheduling problems with different constraints and objectives. The
Aeon system by Monette et al. [42] synthesises algorithms for a broad range of scheduling problems from
high-level specifications, using a combination of an expert-designed classification system for scheduling
problems and a carefully crafted mapping of problem classes and user-selected solving approaches to fully
instantiated scheduling algorithms. While Aeon starts from user-specified high-level formalisations, it is
limited to scheduling problems and does not carry out automatic performance optimisation. Still, it gives a
first glimpse of some of the capabilities we aim for with AutoAl. It is also closely related to other work in
constraint programming (CP) aimed at producing a general-purpose modelling and solving system, some-
times referred to as “the holy grail of CP” [see, e.g., 13].

Finally, as we will explain in the following, our vision of AutoAl prominently includes the ability to assess
the performance of Al algorithms and systems before, during and after running them. This aspect extends
several lines of work in automated performance prediction [see, e.g., 25, 12, 37, 46].

4 Research challenges in AutoAl

The overall goal of AutoAl is to make it possible for those who benefit from using Al systems to be able
to build, calibrate and maintain effective, robust and safe Al systems, without the need for Al experts
or software developers. To reach this goal, a major leap beyond the current state of the art in artificial
intelligence is needed, and specifically, the following challenges have to be addressed:



e How to automatically construct a performant, trustworthy Al system for a specific use case based on
high-level information provided by the user?

e How to assess the performance of an Al algorithm or system, as it used in a specific situation (data,
hardware/software platform), especially if that situation differs from those available while it was built
and calibrated? How to automatically build this assessment ability into an Al system?

e How to make sure that Al systems, especially ones that are automatically constructed, are as simple
as possible, while still working well for their intended use?

e How to make sure that AutoAl can be applied to a broad range of problem domains and situations,
especially ones that require combinations of techniques from different areas of AI?

To meet these challenges, several methodological advances are required. Notably, methods are needed for

e automatically assessing and monitoring the performance of Al systems and their components, so that
assessment and monitoring mechanisms can be automatically generated and added to a broad range
of Al systems;

e automatically configuring Al systems for performance and robustness in a given use case, taking
into account not only the kind of data likely to be encountered after deployment, but also resources
availability and user preferences;

e assisting designers, maintainers and users of AutoAl systems in trading off software complexity
against performance, to achieve simpler systems that are easier to maintain, cheaper to run and less
likely to contain bugs;

e automatically assembling high-quality Al systems for a given use case from components, i.e., systems
that perform well even when processing data deviating from that used for initial configuration, and
that can monitor and assess their own performance.

In the following, we discuss these in some more detail, sketching out plausible paths towards developing
such methods, drawing on several lines of existing work.

4.1 From performance prediction to ‘“self-aware” Al techniques

For Al systems to be trustworthy, they need to signal clearly when they “get out of their depth”, i.e., when
their output (information, advice, actions) should be treated with caution or becomes entirely unreliable.
This is especially important for automatically constructed Al systems, where there is no trusted expert to
inspire confidence. To realise this “self-assessment” capability, techniques are needed that can gauge the
degree of confidence we should have in the output produced by a given Al algorithm when applied to a
specific situation (data) — before, during or after running the algorithm. The design of such techniques
can draw from existing work in automated performance prediction [see, e.g., 25], which already forms the
basis for automated algorithm selection, configuration and, in particular, state-of-the-art automated machine
learning techniques.

Specifically, this would require the development of next-generation empirical performance models (EPMs)
that provide more accurate performance predictions as well as better estimates for the uncertainty associated
with these predictions, leveraging automated machine learning (AutoML) techniques [see, e.g., 12, 33].
Furthermore, work should be undertaken to overcome major limitations of current EPMs, notably their
extremely limited capability to generalise to data deviating from the distribution on which they have been
trained, by leveraging work on generative adversarial learning [14] and learning extrapolable functions [see,
e.g., 29, 58, 35]. Finally, leveraging these next-generation EPMs and active learning techniques [see, e.g.,
53], which complement each other well in this context, we see a clear path for developing methods for
synthesising monitoring mechanisms for given Al algorithms and systems.



4.2 Advanced automated algorithm design

At the core of AutoAl lies the idea of automating the design of Al algorithms and systems. This will
require advanced automated algorithm design methods, just as automated algorithm configuration methods
[see, e.g., 22] provide the basis for existing AutoML approaches [12, 33]. Towards this end, we envision
three major lines of research.

Firstly, we see the need for automated algorithm configuration techniques that are orders of magnitude
faster than the current state of the art, because current techniques are too costly for an effective AutoAl
approach, especially when taking into account the need for thorough empirical evaluation using advanced
statistical techniques. To realise such next-generation algorithm configuration techniques, it seems promis-
ing to leverage automated analysis of the combinatorial landscapes searched by algorithm configuration
procedures [see, e.g., 50], by automatically selecting between multiple configuration techniques, and by
developing novel, ‘grey-box’ techniques that exploit information about the inner workings of the algorithm
being optimised.

Secondly, it will be necessary to devise algorithm configuration and selection techniques that can handle
multiple design objectives, resource constraints (such as limitations in memory or computational power)
and user preferences. This is important, because the design choices made when building an Al system
for a given purpose typically depend on user preferences (what kind of prediction accuracy is desired or
needed?) and resource constraints (which kind of device is the system going to run on?); also, there often is
more than one design objective (e.g., we want high prediction accuracy of an ML system, but also need the
system to run fast on hardware with limited capabilities), and users of the Al system being automatically
assembled should be able to explore tradeoffs between competing objectives. To achieve these goals, it
should be possible to build on our recent proof-of-concept work on multi-objective algorithm configuration
[4]; to leverage the advanced performance prediction methods outlined earlier in order to deal with resource
constraint; and to incorporate user preferences in the form of priors and hard constraints into fundamental
mechanisms used for algorithm selection and configuration.

Thirdly, AutoAl will require algorithm selection and configuration methods capable of producing results
(i.e., design choices) that are robust to deviations from the distributions of data used for training, since we
want to produce Al systems that perform well even when the precise circumstances for which they were
optimised change. Work on such methods could build on existing approaches for empirical scaling analysis
[43, 44], as well as on techniques from transfer and reinforcement learning [see, e.g., 26, 37, 12, 10].
Furthermore, the desired robustness could, at least in part, be achieved by using per-instance algorithm
configuration techniques that effectively switch between different configurations of a given Al algorithm
or system, depending on characteristics of the given input data, and by synthesising on-line controllers for
specific parameters whose values should be adapted while an algorithm, such as an automated reasoning
engine, is solving a specific instance of an Al problem.

4.3 Automatic design simplification

In many cases, we do not want to achieve performance at the cost of excessive complexity of an Al algorithm
or system. (Here, complexity intuitively refers to size or number of components of a piece of software.)
The reason is that complex systems have a higher risk of failure, e.g., due to bugs in components; they also
tend to be more difficult to configure robustly for high performance, due to the increased risk of overfitting
to given training data.

We therefore see a need to develop methods for the automated simplification of the systems and algorithms
produced by an AutoAl system. Specifically, there are three approaches that can lead to such methods:
one based on tentatively removing components or replacing them with simpler ones while maintaining
performance characteristics; one aimed at allowing the user to explore tradeoffs between the complexity
and performance of the Al systems or algorithms constructed by AutoAl; and the third focussed on methods



for helping the designers and maintainers of the AutoAl system to keep that system as simple as possible,
particularly with respect to the number and complexity of the components it draws on when automatically
assembling Al software. The pursuit of these directions can strongly build on existing work on parameter
importance analysis [11, 20]; on work from multi-objective optimisation [4, 8], including advances in multi-
objective algorithm configuration outlined earlier; and on active testing [36].

4.4 Automated synthesis of Al systems

To fully realise the vision of AutoAl, we need to develop methods that allow users without expertise in Al
or software design to build Al systems. One approach towards this goal is based on the following idea.
(1) Scripted, but natural language dialogue is used to elicit information from the user. (2) Based on this
information, a rule-based procedure assembles a template of the desired system, along with a specification
of semantically equivalent components that can be used to instantiate it, as well as user preferences and
constraints on possible instantiations. Finally, (3) advanced algorithm design procedures are used to find a
valid instantiation that can be expected to perform well, and finally, the resulting design choices are used
to instantiate the skeleton, which completes the assembly of the system. To implement this approach, it
seems promising to combine ideas from work on the synthesis of scheduling algorithm by Monette et al.
[42] with advanced automated algorithm design techniques and mechanisms that elicit crucial information
about the desired functionality, available data and computational infrastructure from the user. This requires
collections of flexible, parametric Al system components for a range of broadly applicable tasks, such
as data preprocessing, supervised and unsupervised learning, automated planning and reasoning, general-
purpose search and optimisation, along with formal specifications based on which abstract templates for
these can be combined into instantiable templates for a broad range of use cases.

5 Possible concerns and objections

In this section we discuss a number of concerns and objections we expect to be raised regarding the concept
of AutoAl and its realisation, in the form of questions and answers.

Can Al systems really compete with human experts when it comes to building AI systems? Yes, there
is limited evidence that this might be possible, in existing work on AutoML as well as automated algorithm
selection and configuration for important and widely studied Al problems. In addition, we do not have to
fully replace human expertise, but just to augment and leverage it; specifically, much human Al expertise
can be captured in the construction of an AutoAl system and then leveraged when that system is used to
automatically construct custom Al solutions for given use cases. This is analogous to the way in which
compilers capture human expertise in generating efficient machine code and leverage this on a massive
scale. Just like the best human experts might be better in producing highly optimised machine code than a
state-of-the-art compiler, human Al experts might be able to produce better results than an AutoAl system
at least for some time to come; however, the Al systems constructed by an AutoAl system might be good
enough to be effectively alleviate the shortness of Al expertise in many application areas and democratise
the use of Al

Isn’t this simply AI applied to AI? Essentially yes, but that doesn’t make it easy. Meta-learning is
an interesting special case and known to be hard; AutoAl is far more general and challenging for several
reasons. Firstly, in a typical use case for AutoAl, there is likely to be less data relative to the number of
design choices and parameters; this is already the case for the far more restricted case of AutoML, where
overfitting is known to be a challenge [see, e.g., 56]. Secondly, by applying Al to the design of algorithms
and systems for solving complex problems, we have to deal with even higher computational cost than en-
countered in most other Al applications.



Won’t AutoAI make Al systems less transparent and human-understandable? No. Al systems con-
structed by AutoAl should in many cases be simpler (in terms of fewer components), thanks to the use of
automated simplification techniques and the ability to realise full performance potential of simple designs
— which is challenging for human Al experts, as is evident, e.g., from the efficacy of automated hyperpa-
rameter optimisation of simple machine learning methods. Furthermore, key parts of the design process
for Al systems that are conventionally based on human intuition are fully formalised in AutoAl, making
them easier to analyse, challenge and understand. Through the ability to constrain the automated design
process to certain choices and components that are easier to understand for humans, AutoAl makes it easier
to realise explainable Al

Won’t AutoAl exaggerate inequity caused by AI? No; while AutoAl techniques and systems need to
be built by human experts, their use will require less Al expertise, facilitating broad application and better
leverage of human expertise. Furthermore, by encapsulating much of the specialised expertise required for
building conventional Al systems into the AutoAl framework, we amplify the reach of that scarce expertise
and greatly expand the group of individuals and organisations that can benefit from it. To ensure broad
access to the benefits of this new way of constructing Al systems, it will be necessary, however, to develop
AutoAl in publically funded projects, rather than to leave this area completely to industry,

Won’t this lead to the loss of even more jobs through automation? No. There is a general expectation
that there will be a shortage of Al experts in the foreseeable future. Compensating for jobs lost as a result
of AI deployment / automation by means of training more Al experts is somewhat unrealistic, since the
PhD-level expertise currently needed to develop effective and trustworthy Al systems is difficult and costly
to obtain. AutoAl will make it possible for a much broader pool of talent to effectively develop, deploy and
maintain Al systems and thus create, rather than destroy jobs.

Doesn’t this increase the risk of run-away AI? No. Although AutoAl does provide some techniques
that would necessarily be required for any kind of general Al (notably some of the self-assessment and self-
improvement capabilities outlined earlier), research on AutoAl is not aimed at producing general, human-
level Al Instead, the ultimately goal is to make it possible for people without deep and highly specialised
Al expertise to develop, deploy and maintain Al systems that are performant, robust and predictable. The
Al systems thus obtained will be limited in scope and, in fact, highly customised to the needs of their
users. They will also be constructed taking into account the users’ preferences and constraints. The AutoAl
system that designs them will necessarily have access to a broad range of Al techniques and use powerful
techniques to assemble customised systems from them. However, neither the former nor the latter will be
geared towards general, human-level intelligence. Overall, our vision of AutoAl is closely aligned with
the goals of human-centred Al, notably with the emphasis on Al systems and techniques that complement,
rather than replace, human intelligence and capabilities.

6 Conclusions

Just as the future of machine learning lies, to a significant extent, in the development and broad use of
AutoML techniques, the future of Al lies in an analogous direction we dub AutoAl. AutoAl not only holds
the key to addressing the talent bottleneck (which incurs a serious risk of broad deployment and use of poor-
quality Al systems), but also provides a path towards broad access to predictable, robust and performant Al
systems, and thus advances democratisation of Al

We strongly believe that by building on several lines of active research, it is possible in the near future
to design working prototypes of AutoAl systems. Meeting the challenges arising in this context requires
methological advances that will have broad benefits beyond the area of AutoAl; for example, the “self-
aware” Al techniques outlined in Section 4.1 would doubtlessly be useful in the context of traditional
approaches to the design, deployment and operation of Al systems.



Overall, we are convinced that AutoAl offers substantial benefits, along with a wealth of intriguing research
challenges. We therefore expect AutoAl to quickly become one of the most vibrant and fastest-moving
research areas within Al, sustained by a large and energetic community of researchers and practitioners.
We hope that the vision and ideas outlined in this report will help to initiate this effort and provide some
guidance to those interested in pursuing it.

Acknowledgements: Some of the ideas presented in this document have been discussed with members
of the ADA Research Group and colleagues at LIACS; I specifically thank Mitra Baratchi, Jan van Rijn,
Aske Plaat and Simon Portegies-Zwart for valuable comments.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Sunny: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming, 14(4-5):509-524, 2014.

Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. Automated software transplan-
tation. In Proceedings of the 2015 International Symposium on Software Testing and Analysis, pages 257-269.
ACM, 2015.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and Yunshan Zhu. Symbolic model
checking using sat procedures instead of bdds. In Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, pages 317-320. ACM, 1999.

Aymeric Blot, Holger H. Hoos, Laetitia Vermeulen-Jourdan, Marie-Eléonore Kessaci-Marmion, and Heike Traut-
mann. MO-ParamILS: a multi-objective automatic algorithm configuration framework. In Proceedings of the
10th International Conference on Learning and Intelligent Optimization (LION 10), 2016.

Thelma Elita Colanzi, Silvia Regina Vergilio, Wesley Klewerton Guez Assuno, and Aurora Pozo. Search based
software engineering: Review and analysis of the field in Brazil. Journal of Systems and Software, 86(4):970 —
984, 2013. SI: Software Engineering in Brazil: Retrospective and Prospective Views.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 337-340. Springer, 2008.

Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI-18), pages 7965-7970, 2018.

Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages 403—449. Springer, 2014.

Katharina Eggensperger, Marius Thomas Lindauer, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown.
Efficient benchmarking of algorithm configuration procedures via model-based surrogates. Machine Learning,
107:15-41, 2018.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization at scale.
In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), pages 1436-1445, July
2018.

Chris Fawcett and Holger H. Hoos. Analysing differences between algorithm configurations through ablation.
Journal of Heuristics, 22(4):431-458, Aug 2016.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hut-
ter. Efficient and robust automated machine learning. In Proceedings of the 28th International Conference on
Neural Information Processing Systems (NIPS-15), pages 2755-2763, Cambridge, MA, USA, 2015. MIT Press.

Eugene C. Freuder. Progress towards the holy grail. Constraints, 23(2):158-171, 2018.



[14]

[15]
[16]

(17]
(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 2672-2680. Curran
Associates, Inc., 2014.

Google. Cloud AutoML website. https://cloud.google.com/automl/, last visited on 30 August 2018.

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. Search Based Software Engineering:
Techniques, Taxonomy, Tutorial, pages 1-59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Holger H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70-80, 2012.

Holger H Hoos, Tomas Peitl, Friedrich Slivovsky, and Stefan Szeider. Portfolio-based algorithm selection for
circuit gbfs. In International Conference on Principles and Practice of Constraint Programming, pages 195-209.
Springer, 2018.

Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. Boosting verification by automatic tuning of
decision procedures. In Formal Methods in Computer-Aided Design, 7th International Conference, FMCAD
2007, Austin, Texas, USA, November 11-14, 2007, Proceedings, pages 27-34, 2007.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyperparameter impor-
tance. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages 754-762. JIMLR.org, 2014.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of mixed integer programming
solvers. In Proceedings of the 7th International Conference on the Integration of Al and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2010), pages 186-202, 2010.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algo-
rithm configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization
(LION 5), pages 507-523, 2011.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267-306, 2009.

Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos, and Kevin Leyton-Brown. The
configurable SAT solver challenge (CSSC). Artificial Intelligence, 243:1-25, 2017.

Frank Hutter, Manuel Lépez-Ibafiez, Chris Fawcett, Marius Lindauer, Holger H. Hoos, Kevin Leyton-Brown, and
Thomas Stiitzle. Aclib: A benchmark library for algorithm configuration. In Panos M. Pardalos, Mauricio G.C.
Resende, Chrysafis Vogiatzis, and Jose L. Walteros, editors, Learning and Intelligent Optimization, pages 36—40,
Cham, 2014. Springer International Publishing.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimization. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS-16), pages
240-248, 2016.

Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Satenstein: Automatically building
local search SAT solvers from components. Artificial Intelligence, 232:20-42, 2016.

Hyunjik Kim and Yee Whye Teh. Scaling up the Automatic Statistician: Scalable structure discovery using
Gaussian processes. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS-18), pages 575-584, 2018.

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian neural networks.
In Proceedings of the 5th International Conference on Learning Representations (ICLR-17), April 2017.

Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability. Addison-Wesley,
Reading, MA, USA, 2015.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints in spreadsheets and tabular
data. Machine Learning, 106(9):1441-1468, Oct 2017.

10



(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Pavel Kordik, Jan Cerny, and Tomés Fryda. Discovering predictive ensembles for transfer learning and meta-
learning. Machine Learning, 107(1):177-207, Jan 2018.

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-WEKA 2.0:
Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine Learning Research,
18:25:1-25:5, 2017.

Wolfgang Kiichlin and Carsten Sinz. Proving consistency assertions for automotive product data management.
Journal of Automated Reasoning, 24(1-2):145-163, 2000.

Rui Leite and Pavel Brazdil. Active testing strategy to predict the best classification algorithm via sampling and
metalearning. In Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, pages 309-314, Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

Rui Leite, Pavel Brazdil, and Joaquin Vanschoren. Selecting classification algorithms with active testing. In
International Workshop on Machine Learning and Data Mining in Pattern Recognition, pages 117-131. Springer,
2012.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Efficient hyperpa-
rameter optimization and infinitely many armed bandits. CoRR, abs/1603.06560, 2016.

Marius Lindauer, Holger H. Hoos, Kevin Leyton-Brown, and Torsten Schaub. Automatic construction of parallel
portfolios via algorithm configuration. Artificial Intelligence, 244:272-290, 2017.

Marius Thomas Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. AutoFolio: an automatically
configured algorithm selector. Journal of Artificial Intelligence Research, 53:745-778, 2015.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and
Kevin Murphy. Progressive neural architecture search. arXiv preprint arXiv:1712.00559, 2017.

James Robert Lloyd, David K Duvenaud, Roger B Grosse, Joshua B Tenenbaum, and Zoubin Ghahramani. Au-
tomatic construction and natural-language description of nonparametric regression models. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 1242-1250, 2014.

Jean-Noél Monette, Yves Deville, and Pascal Van Hentenryck. Aeon: Synthesizing scheduling algorithms from
high-level models. In John W. Chinneck, Bjarni Kristjansson, and Matthew J. Saltzman, editors, Operations
Research and Cyber-Infrastructure, pages 43-59, Boston, MA, 2009. Springer US.

Zongxu Mu, Jérémie Dubois-Lacoste, Holger H. Hoos, and Thomas Stiitzle. On the empirical scaling of running
time for finding optimal solutions to the TSP. Journal of Heuristics, 2018 (to appear).

Zongxu Mu and Holger H. Hoos. Empirical scaling analyser: An automated system for empirical analysis of
performance scaling. In Sara Silva and Anna Isabel Esparcia-Alcdzar, editors, Genetic and Evolutionary Com-
putation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, pages
771-772. ACM, 2015.

Neil Newman, Alexandre Fréchette, and Kevin Leyton-Brown. Deep optimization for spectrum repacking. Com-
munications of the ACM, 61(1):97-104, 2017.

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Evaluation of a tree-based pipeline
optimization tool for automating data science. In Proceedings of the 2016 Annual Conference on Genetic and
Evolutionary Computation (GECCO-16), pages 485-492, 2016.

Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore.
Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal,
March 30 — April 1, 2016, Proceedings, Part I, chapter Automating Biomedical Data Science Through Tree-Based
Pipeline Optimization, pages 123—137. Springer International Publishing, 2016.

Sergey Paramonov, Samuel Kolb, Tias Guns, and Luc De Raedt. Tacle: Learning constraints in tabular data.
In Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CKIM-17), pages
2511-2514, 2017.

11



(49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Justyna Petke, Mark Harman, William B Langdon, and Westley Weimer. Specialising software for different
downstream applications using genetic improvement and code transplantation. IEEE Transactions on Software
Engineering, 44(6):574-594, 2018.

Yasha Pushak and Holger H. Hoos. Algorithm configuration landscapes: More benign than expected? In Pro-
ceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN-18), 2018, to
appear.

Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso Emilio Gerevini, and Holger H. Hoos. Static and dynamic
portfolio methods for optimal planning: An empirical analysis. International Journal on Artificial Intelligence
Tools, 26(1):1-27, 2017.

Hannes Schwarz, Lars Kotthoff, Holger Hoos, Wolf Fichtner, and Valentin Bertsch. Using automated algorithm
configuration to improve the optimization of decentralized energy systems modeled as large-scale, two-stage
stochastic programs. Annals of Operations Research, 2018 (to appear).

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):1-114,
2012.

Automatic Statistician. website. https://cloud.google.com/automl, last visited on 30 August 2018.

Paul Stephan, Robert K Brayton, and Alberto L Sangiovanni-Vincentelli. Combinational test generation using
satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(9):1167—
1176, 1996.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: combined selection and
hyperparameter optimization of classification algorithms. In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani,
Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy,
editors, The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, pages 847-855. ACM, 2013.

Mauro Vallati, Chris Fawcett, Alfonso Gerevini, Holger H. Hoos, and Alessandro Saetti. Automatic generation
of efficient domain-optimized planners from generic parametrized planners. In Proceedings of the Sixth Annual
Symposium on Combinatorial Search, SOCS 2013, Leavenworth, Washington, USA, July 11-13, 2013.,2013.

Jan N. van Rijn, Salisu Mamman Abdulrahman, Pavel Brazdil, and Joaquin Vanschoren. Fast algorithm selection
using learning curves. In Elisa Fromont, Tijl De Bie, and Matthijs van Leeuwen, editors, Advances in Intelligent
Data Analysis XIV, pages 298-309, Cham, 2015. Springer International Publishing.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked science in machine learning. ACM
SIGKDD Explorations Newsletter, 15(2):49-60, 2014.

Gust Verbruggen and Luc De Raedt. Towards automated relational data wrangling. In Proceedings of AutoML
2017 @ ECML-PKDD: Automatic selection, configuration and composition of machine learning algorithms,
pages 18-26, 2017.

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Evaluating component solver contributions to
portfolio-based algorithm selectors. In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and Appli-
cations of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012.
Proceedings, volume 7317 of Lecture Notes in Computer Science, pages 228-241. Springer, 2012.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-based algorithm selection
for SAT. Journal of Artificial Intelligence Research, 32:565-606, 2008.

Steven R. Young, Derek C. Rose, Thomas P. Karnowski, Seung-Hwan Lim, and Robert M. Patton. Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments, MLHPC ’15, pages 4:1-4:5, New York, NY, USA,
2015. ACM.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable
image recognition. arXiv preprint arXiv:1707.07012, 2017.

12



