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A B S T R A C T

Error-bounded piecewise linear approximation (𝑙∞-PLA) has been proven effective in addressing challenges
in data management and analytics. It works by approximating the original time series with linear segments
such that the approximation error on each data point does not exceed a pre-defined threshold. To achieve
this goal, most prior works on 𝑙∞-PLA use a fixed error threshold during the entire approximation process,
assuming a stable time series. However, in many real-world applications, the distribution of values on the
time series undergoes substantial changes in different temporal stages. This introduces a need to adaptively
tune the error threshold based on the properties of the time series while considering the trade-off between
representation error and storage resources. In this work, we propose a general framework for constructing 𝑙∞-
PLA with adaptive error bounds (AEPLA). It works by dividing the original time series into a set of intervals
and assigns adaptive error bounds to these sub-sequences based on their fluctuation levels. Next, these sub-
sequences are approximated using a user-defined 𝑙∞-PLA method. We implement this framework by employing
three different types of 𝑙∞-PLA methods and evaluate the performance of our approach on an extensive set of
real-world time-series datasets from industrial and scientific domains. Our experiments show that constructing
𝑙∞-PLA using the AEPLA framework can provide better a trade-off between representation error and storage
resources and achieves lower time and space costs than applying the original 𝑙∞-PLA methods.
1. Introduction

Time-series data is being generated on an unprecedented scale
in many application domains, such as power grid monitoring and
operations, financial markets, manufacturing, and traffic observation
and control. However, the consistent increase in the number of data
samples creates challenges for data analytics tasks as well as data
management (Fu, 2011). These challenges are twofold: on the one
hand, the raw data provides redundant information for AI systems to
make decisions; on the other hand, the large volume of data consumes
a considerable amount of energy during transmission and/or storage.
Therefore, it is often desirable to reduce raw data size to increase
storage and processing efficiency. This is usually achieved by designing
new approaches to optimise the data representation.

Various techniques are applicable in creating time-series repre-
sentations. These include Discrete Fourier Transform (DFT) (Agrawal
et al., 1993), Discrete Wavelet Transform (DWT) (Popivanov and
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Miller, 2002), Piecewise Aggregate Approximation (PAA) (Mishra et al.,
2022) and Piecewise Linear Approximation (PLA) (Keogh and Smyth,
1997). Among these, PLA is one of the most widely used methods, due
to its simplicity. PLA generally works by dividing the original data
stream into a set of segments and representing the data within each
segment by a linear function. This simple but effective method has
been applied to many domains, such as similarity search (Chen et al.,
2007), classification (Chen et al., 2018), and forecasting (Chen and
Hao, 2020).

The problem of approximating the time series using PLA becomes
more challenging when considering streaming time series. In this con-
text, data points are generated in real-time, potentially for an indefinite
time. This scenario calls for online PLA methods, which can decide
whether to assign the upcoming data to the previous segment or to start
a new one. Our paper, like many prior studies of online PLA as surveyed
in Lovrić et al. (2014), focuses on the 𝑙∞-norm based PLA method,
vailable online 26 August 2023
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referred to as 𝑙∞-PLA. Given a prescribed global error bound 𝜖0, the goal
of constructing 𝑙∞-PLA is to approximate the stream with a piecewise
inear function, such that the approximation error on each data point
oes not exceed 𝜖0. Extensive prior work on 𝑙∞-PLA tends to set a fixed

value for 𝜖0 during the entire approximation process. It means that
the approximation is not adaptive with respect to the characteristics
of a given time series. The focus of this paper, on the other hand, is
time-series approximation with unfixed error thresholds, which allows
creating a multi-resolution representation of the time series (Zhan et al.,
2020) in different application fields. For instance, Si and Yin (2013)
proposed a multi-resolution PLA method for the technical analysis that
detects specific patterns in financial time series (e.g., the head-and-
shoulder pattern). In this approach the represented time series with
higher and lower error thresholds are used for longer- and shorter-
duration technical pattern searching, respectively. Liu et al. (2016)
proposed an online compression framework for streaming trajectories
of moving entities such as cars with different error tolerances. In their
framework, older trajectories will be compressed with larger error
bounds to reflect the decay of the importance of the data over time.
Hu et al. (2020) proposed a multi-resolution representation method for
the analysis of Internet-of-Things sensor data. Different error bounds
are applied to meet the diverse needs of users, e.g., a higher er-
ror bound is given with respect to a stricter fitting error limitation.
Zhan et al. (2021) proposed a multi-resolution piecewise representation
method for time-series anomaly detection, where the segmented orig-
inal time series is projected into the feature space with different error
bounds. Furthermore, Luo et al. (2021) presented an efficient time-
series retrieval method also based on a multi-resolution representation.
Deng and Li (2022) proposed a PLA method with optimised fitting
errors to remove the noise and fluctuations in hydraulic fracturing
time series. The previously mentioned for multi-resolution time-series
representation are all based on specific PLA methods or designed for
specific applications. In other words, none of these works has provided
a general and systematic framework that can be used for different
applications with user-specified 𝑙∞-PLA methods.

To bridge the gap and provide a more flexible 𝑙∞-PLA-based rep-
resentation, we revisit the determination of 𝜖0 by considering the
objective of setting an error bound. Generally, the constraint on the
approximation error of each data point is not extremely strict in many
real-world tasks. In those cases, it is preferable to adjust the error
bound in the approximation process based on the characteristics of the
given time series. Specifically, a relatively small error bound should
be used when rapid changes occur within a period to retain more
features and to reduce the local representation error. In contrast, a
larger error bound is suitable for periods when the data stream is stable
to increase the compression ratio at the cost of a tolerable increase of
representation error. In this manner, we can achieve a better trade-off
between precision and compression.

In this paper, we characterise different classes of 𝑙∞-PLA functions
and propose a general framework for 𝑙∞-PLA with adaptive error
bounds (AEPLA). This framework aims at adjusting the error bound in
the approximation process, depending on the stability of the time series
at different temporal stages. Compared to using a fixed 𝜖0, the proposed
approach can better preserve the key features of a given time series
with limited storage resources. More specifically, our contributions in
this paper can be summarised as follows:

• We introduce a general framework for 𝑙∞-PLA with adaptive error
bounds that can be used in combination with different user-
defined or user-selected 𝑙∞-PLA methods. This framework can
provide better trade-offs between representation error and storage
resources compared to applying the original 𝑙∞-PLA methods with
a fixed error bound.

• We implement AEPLA based on different types of 𝑙∞-PLA methods
to demonstrate how different PLA methods can integrate within
this framework. We evaluate different aspects of its approxi-
mation performance on a broad range of real-world time-series
2

datasets from industrial and scientific domains. p
• We further improve this framework in an offline mode by propos-
ing an approach for automatically tuning its input parameters (in
this case, a scaling factor) using automated algorithm configu-
ration methods such that its performance cannot be affected by
ad-hoc user-defined parameters.

The rest of this study is organised as follows. Section 2 summarises
prior works on piecewise linear approximation. Section 3 briefly intro-
duces the error criteria used in quantifying the approximation quality
and the concept of error-bound PLA. Section 4 provides the formal defi-
nition of the problem and a detailed description of our new framework.
Details on our empirical evaluation and the results we obtained from it
are presented in Section 5. Finally, we draw some general conclusions
and provide a brief discussion of future work in Section 6.

2. Related work

Time-series representation by PLA has been studied in many dif-
ferent contexts; hence, many methods have been proposed earlier.
Generally, the proposed methods can be divided into two classes:
offline and online (Lovrić et al., 2014).

Offline PLA: The offline versions of PLA have to work on time
series with finite length, meaning that the available data points should
remain unchanged during the whole approximation process. Dynamic
Programming (DP) can be used to find the optimum solution for
offline time-series segmentation (see e.g., Pang et al. (2022) and Wu
et al. (2021)) Given the maximum number of segments and the er-
ror tolerance of each segment, the goal of the DP approach is to
find the optimal segmentation solution with minimal overall error.
Carmona-Poyato et al. (2020) proposed an optimal offline time-series
segmentation method based on the A∗ algorithm (a classic graph traver-
al algorithm Salotti, 2002). Later, they proposed another optimal
ffline solution (Carmona-Poyato et al., 2021) based on feasible space,
hich is an area where any straight line within can approximate

he data points in a segment with a given error bound (Liu et al.,
008). However, the high computational complexity of these optimal
ethods motivates the development of heuristic methods that produce

ub-optimal results in most cases. Top-down (Ji et al., 2016) and
ottom-up (Keogh et al., 2004) approaches are two typical heuristic so-

utions for time-series segmentation. The top-down approach considers
he whole time series as one segment at first and splits it attractively.
he Bottom-up approach starts with small segments of equal length and
erges them to attain the final results. Besides, Evolutionary Computa-

ion algorithms (Durán-Rosal et al., 2019), Bayesian inference (Oliver
t al., 1998), and Hidden Markov Models (HMM) (Mori et al., 2005)
ave also been applied to offline time-series segmentation. Generally,
he offline versions lack the ability to process real-time data since the
ength of the time series extends over time.
Online PLA: The online versions of PLA work on infinite-length

ime series. Online PLA methods use greedy strategies to determine
hether the upcoming data point belongs to the previous segment or
new one. Hence they are more suitable for streaming time-series

egmentation. Various online PLA methods can be categorised based
n the error metric used for evaluation of the approximation error,
hat is, 𝑙𝑝 norm (𝑝 = 1, 2,∞). The sliding window (Keogh et al., 2004)
s a classical method defined based on l1/l2 norm (i.e., Manhattan
nd Euclidean distance, respectively). This method works by accumu-
ating each new data point into the current segment as long as the
otal representation error does not exceed a predefined error bound.
WAB (Keogh et al., 2004) which combines SW and Bottom-up, is also
idely used in this context. However, setting a proper error budget is
ever an easy task without knowledge about the whole time series. On
he other hand, constructing PLA based on the 𝑙∞ norm, also defined
s error-bounded PLA (𝑙∞-PLA), puts an error bound on each data
oint. The 𝑙∞-PLA methods can be categorised according to the form of

iecewise function generated, that is, continuous, disjoint, mixed type,
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Table 1
Overview of important works on offline and online PLA.

Authors Years Fundamental algorithm Online Offline Characteristic

Pang et al. (2022) 2022 Dynamic programming ✓ Optimal
Wu et al. (2021) 2021 Dynamic programming ✓ Optimal
Carmona-Poyato et al. (2021) 2021 Feasible space algorithm (Liu et al., 2008) ✓ Optimal
Carmona-Poyato et al. (2020) 2020 A∗ algorithm ✓ Optimal
Ji et al. (2016) 2016 Top-down ✓ Heuristic
Keogh et al. (2004) 2004 Bottom-up ✓ Heuristic
Hu et al. (2018) 2018 Turning points identification ✓ Continuous
Zhao et al. (2016) 2016 Feasible space algorithm (Liu et al., 2008) and OptimalPLR (Xie et al., 2014) ✓ Continuous
Elmeleegy et al. (2009) 2009 Swing Filter ✓ Continuous
Liu et al. (2008) 2008 Feasible space windows ✓ Continuous
Lin et al. (2020) 2020 Swing Filter ✓ Disjoint
Xie et al. (2014) 2014 Convex hull-based ✓ Disjoint
O’Rourke (1981) 1981 Polygon-based ✓ Disjoint
Zhao et al. (2020) 2020 OptimalPLR (Xie et al., 2014) ✓ Mixed-type
Luo et al. (2015) 2015 Extended polygon-based ✓ Mixed-type
Zhao et al. (2022) 2022 OptimalPLR (Xie et al., 2014) ✓ Semi-connected
Hakimi and Schmeichel (1991) 1991 Polygon-based ✓ Semi-connected
t
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and semi-connected. We call it continuous 𝑙∞-PLA, if it is completely
comprised of connected linear representations; otherwise, it is referred
to as disjoint 𝑙∞-PLA. Mixed-type 𝑙∞-PLA consists of both connected
and disconnected linear representations. Finally, semi-connected 𝑙∞-
PLA allows the connection point of two adjacent segments to be located
within two timestamps (Zhao et al., 2020).

For the continuous case, Elmeleegy et al. (2009) reinvented Swing
Filter based on the idea from Gritzali and Papakonstantinou (1983).
Liu et al. (2008) also proposed an improved version of that in Gritzali
and Papakonstantinou (1983) named Feasible Space Window (FSW)
which introduced the idea of feasible space to search for the farthest
endpoint of a segment. Hu et al. (2018) proposed CSMR_TP, which uses
turning points to refine the result of FSW. Zhao et al. (2016) proposed
ConnSegAlg, which uses a backwards-checking strategy to minimise the
number of segments. For the disjoint case, O’Rourke (1981) proposed
a linear-time optimal method ParaOptimal for PLA under 𝑙∞ norm. Xie
et al. (2014) proposed OptimalPLR, which is theoretically equivalent
to ParaOptimal. Lin et al. (2020) proposed Swing-RR to further reduce
the space cost by resolution reduction. For the mixed-type case, Luo
et al. (2015) constructed an extended polygon to fit a mixed-type PLA.
Zhao et al. (2020) proposed SemiMixedAlg, which employs a series of
theoretically proven deductions as shortcuts to DP-based computing. It
achieves the same results in terms of the compression ratio as in Luo
et al. (2015), but with lower running time and memory costs. For the
semi-connected case, Hakimi and Schmeichel (1991) first proposed a
pipeline-based method for constructing optimal semi-connected seg-
ments. Different from the pipeline-based method, Zhao et al. (2022)
proposed a linear-time semi-connected PLA method, which constructs
the optimal number of semi-connected segments by progressively revis-
ing the segmentation given by Xie et al. (2014); this has been proven
to achieve state-of-the-art performance in terms of time and memory
complexity. A number of important works on offline and online PLA
are summarised in Table 1.

Despite the various 𝑙∞-PLA methods that have been proposed for
online time-series approximation, applying these methods directly is
ill-suited for the problem we considered, i.e., constructing PLA with
data storage resource limits. In this case, we prefer to reduce the
overall approximation error as much as possible with the same amount
of storage resources or under the same value of compression ratio.
One solution is to adjust the value of the error bound during the
approximation process. In a recent study (Hu et al., 2018), the authors
proposed a method for 𝑙∞-PLA with different error bounds by refining
the segmentation results given by Liu et al. (2008). Inherently, this
approach is equivalent to only decreasing the error bound during the
periods with rapid changes in the time series. Although this can result
in a lower approximation error, it comes at the cost of a lower compres-
3

sion ratio. In contrast, the framework we propose in this paper is able to i
better adapt the error bound in the approximation process, respecting
the characteristics of time series. In this manner, it can provide a lower
overall approximation error than applying the original 𝑙∞-PLA method
without increasing the amount of data storage resources used. Besides,
the new framework is not tied to a specific PLA algorithm and can be
combined with any user-defined PLA method.

3. Preliminaries

Before introducing our new framework, we provide a number of
basic definitions and principles for piecewise linear approximation.
Table 2 summarises the notations used in this paper, and Fig. 1,
visualises them.

3.1. Error criteria

Given a time series 𝑆 = (𝑦1, 𝑦2,… , 𝑦𝑛), the quality of its approxima-
ion 𝑆′ = (𝑦′1, 𝑦

′
2,… , 𝑦′𝑛) can be measured based on different error forms.

he most commonly used criterion is 𝑙𝑝-error, i.e.,
( 𝑛
∑

𝑖=1

|

|

𝑦′𝑖−𝑦𝑖||
𝑝

)
1
𝑝

. (1)

The widely used 𝑙1-norm and 𝑙2-norms are also called Manhattan
and Euclidean distance, respectively. These norms essentially represent
the sum of errors over the entire time series, which renders them
unsuitable for online PLA. In other words, it is impossible to define
a proper error budget without information on the upcoming data. In
light of this, a better choice in this context is the 𝑙∞-norm, defined as

𝑙𝑖𝑚
𝑝→∞

( 𝑛
∑

𝑖=1

|

|

𝑦′𝑖−𝑦𝑖||
𝑝

)
1
𝑝

= 𝑚𝑎𝑥
𝑖

|

|

𝑦′𝑖−𝑦𝑖|| , (2)

hich gives the maximal error bound on all data records.

.2. Error-bounded piecewise linear approximation

Given time series 𝑆, the idea of error-bounded PLA is to split 𝑆 into
set of segments and then fit a polynomial model for each segment,

uch that the approximation error on each data point does not exceed
predefined error threshold 𝜖0.

Formally, 𝑆 = (𝑦1, 𝑦2,… , 𝑦𝑛) can be seen as a polygonal line
, which is indicated by the dashed line connecting 𝑦1, 𝑦2,… , 𝑦𝑛 in
ig. 1. Then, the approximation is equivalent to fitting a set of linear
unctions 𝑓1, 𝑓2,… , 𝑓𝑘 to 𝛤 , such that ∀𝑖 = 1...𝑛, |𝑦𝑖 − 𝑦′𝑖| ≤ 𝜖0, and the
umber of segments 𝑘 is minimised. Considering the different forms of
iecewise functions, all 𝑙∞-PLA methods can be categorised as discussed
n Section 2. Fig. 2 illustrates the approximation results obtained
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Table 2
An overview of the notations used in the article.
Symbol Meaning

𝑆 A time series 𝑆 = (𝑦1 , 𝑦2 ,… , 𝑦𝑛) of length 𝑛, where 𝑦𝑖 is the value at the timestamp 𝑖
𝑆′ The representation of each data point of 𝑆, i.e., 𝑆′ = (𝑦′1 , 𝑦

′
2 ,… , 𝑦′𝑛)

𝜖0 The global error bound on each data point
𝜖𝑚 The local error bound on each data point
𝛤 A polygonal line connecting (𝑦1 , 𝑦2 ,… , 𝑦𝑛)
𝑓𝑚 The linear function to represent the 𝑚th segment of 𝑆
𝑏𝑢𝑓 A time-series interval
𝛼 A scaling factor
𝑙𝑚𝑎𝑥 The maximum value in 𝑏𝑢𝑓
𝑙𝑚𝑖𝑛 The minimum value in 𝑏𝑢𝑓
𝑔𝑚𝑎𝑥 The maximum value in 𝑆
𝑔𝑚𝑖𝑛 The minimum value in 𝑆
𝑙𝑟 The local range 𝑙𝑟 = 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛
𝑔𝑟 The global range 𝑔𝑟 = 𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛
𝛽 The fluctuation coefficient 𝛽 = 𝑙𝑟∕𝑔𝑟
𝑝 An error percentage satisfying 𝜖0 = 𝑝 ⋅ 𝑔𝑟
Fig. 1. An example time series for the illustration of the notations used in this article.
Fig. 2. Approximations of the time series within the interval in Fig. 1 using three different piecewise functions, i.e., (a) FSW as continuous PLA, (b) OptimalPLR as disjoint PLA,
and (c) SemiOpt as semi-connected PLA.
from different types of 𝑙∞-PLA methods, i.e., continuous, disjoint and
semi-connected. Herein, we applied PLA, OptimalPLR, and SemiOpt,
respectively, to approximate the time series within the interval as
shown in Fig. 1.

4. PLA with adaptive error bounds

Given a time series 𝑆 and the global error bound 𝜖0, the idea of
constructing 𝑙∞-PLA with adaptive error bounds is equivalent to fitting
a set of linear functions to 𝑆, where the error threshold for each
approximation function is determined based on 𝜖0 and the fluctuation
level of 𝑆 at different temporal stages.

Formally, 𝑆 will be divided into a set of consecutive segments,
represented by 𝑘 linear functions 𝑓1, 𝑓2,… , 𝑓𝑘, such that ∀𝑖 = 1...𝑛 ∶
|𝑦𝑖 − 𝑦′𝑖| ≤ 𝜖𝑚, where 𝑦𝑖 is supposed to be within the temporal range
of 𝑓𝑚. The relation between 𝜖0 and the error threshold 𝜖𝑚 for 𝑓𝑚 will
be discussed in Section 4.3. The connection between two adjacent
functions 𝑓𝑗−1 and 𝑓𝑗 can be based on any one of the three types
illustrated in Fig. 2.
4

4.1. Framework overview

In this section, a new framework to construct 𝑙∞-PLA with adaptive
error bounds (AEPLA) is proposed. The new framework allocates differ-
ent error bounds based on the stability of a given time series at different
stages. First, the original time series is divided into consecutive inter-
vals. The fluctuation level of data within each interval is evaluated by
comparing its local range with the global range of the time series (to be
defined later). The error bound is dynamically adjusted based on this
comparison. Next, each interval can be approximated by means of user-
defined 𝑙∞-PLA methods with these dynamically adjusted error bounds
to obtain the final, flexible approximation. The workflow of AEPLA is
shown in Fig. 3.

4.2. Determining the intervals

Before the allocation of dynamic error bounds, we need to evaluate
the stability of the original time series at different temporal stages. In
AEPLA, this evaluation will be performed for consecutive intervals. The
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Fig. 3. The workflow of AEPLA.

first step is to determine the proper length of these intervals. If the
length is allowed to be set arbitrarily large, it will be equivalent to
evaluating the stability of the entire time series; on the other hand,
an interval that is too small will result in overly fragmented approxi-
mations. In this step, a series of data points from a given interval are
read into a buffer (buf ), representing intervals of variable length. As
discussed above, buf should be long enough to include at least one
segment and also be restricted from evaluating the stability of the entire
data stream. In AEPLA, this balance is struck by considering the length
of time series and 𝜖0, that is,

|𝑏𝑢𝑓 | = 𝛼 ⋅ 𝑛 ⋅ 𝜖0 (3)

where | ⋅ | indicates the length, 𝑛 is the length of the given time series,
and 𝛼 is a scaling factor between 2∕(𝑛⋅𝜖0) and 1. The lower bound of this
variable ensures that the minimum number of data points in the buffer
will be 2, which is sufficient for forming at least one line segment. The
upper bound ensures that the size of buf will not exceed 𝑛. The rationale
behind the formula is that more data points are allowed to be included
in a segment with a lower error bound (i.e., larger 𝜖0). Therefore, the
size of buf should be increased in this case. The parameter 𝛼 in Eq. (3)
also affects the length of buf. The choice of this scaling factor can
be performed in an automated and data-driven manner. Optimisation
of 𝛼 will be discussed in the Experiments Section (see Section 5.6).
The original time series is read into buf in chronological order for
evaluation, which will be discussed in Section 4.3.

4.3. Tuning the error bound

Next, the dynamic error bound 𝜖𝑚 is assigned to the intervals based
on the degree of stability of data contained in buf. In our new frame-
work, the fluctuation of the sub-sequence contained in buf is evaluated
in terms of its local range (lr) value. The local range is defined as
𝑙𝑟 = 𝑙𝑚𝑎𝑥− 𝑙𝑚𝑖𝑛, where lmax and lmin are the maximum and minimum
values of the data in buf, respectively. Additionally, the global range
(gr) is defined as 𝑔𝑟 = 𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛, where gmax and gmin are the
5

maximum and minimum values of the whole time series, respectively.
The value of 𝑔𝑟 is updated over time as new data arrives. The stability
of the original time series within a specific period is indicated by a
fluctuation coefficient 𝛽 = 𝑙𝑟∕𝑔𝑟, which is essential for determining
the error bound. Using 𝛽, the dynamic error bound for each interval
is defined as

𝜖𝑚 = 𝜖0 ⋅ 𝑒
(0.5−𝛽), (4)

where 𝜖0 is a user-defined global error bound.
In general, we would like 𝜖𝑚 to be adjusted based on 𝜖0. Further-

more, we would like 𝜖𝑚 to be sensitive to the level of stability of the
time series within a given interval, as captured by 𝛽. For decreasing
values of 𝛽, we would like 𝜖𝑚 to increase. To achieve this, in Eq. (4),
𝜖0 is multiplied by an exponential function to provide a nonlinear and
monotonic increase. Considering that the range of 𝛽 varies between 0
and 1, the exponent is re-scaled by adding a constant 0.5, such that
the local error bound 𝜖𝑚 is allowed to be adjusted around the value of
𝜖0. Moreover, the value of the exponent is adjusted to be symmetric,
indicating an unbiased adjustment of the error bound regarding the
change of 𝛽.

In the literature, the value of 𝜖0 is usually determined based on the
Maximum Error Percentage (MEP) (Liu et al., 2008; Xie et al., 2014).
Using MEP, for a given error percentage 𝑝, 𝜖0 is defined as 𝜖0 = 𝑝 ⋅ 𝑔𝑟.
As a result, Eq. (4) can be rewritten as

𝜖𝑚 = 𝜖0 ⋅ 𝑒
(0.5−𝛽) = 𝑝 ⋅ 𝑔𝑟 ⋅ 𝑒(0.5−𝛽). (5)

Based on Eq. (5), a large value of 𝛽, corresponding to large fluctua-
tions in the given interval, results in a relatively small 𝜖𝑚. On the other
hand, large 𝜖𝑚 will be assigned to more stable intervals characterised by
small values of 𝛽. Compared to having a fixed error bound, calculating
adaptive error bounds using Eq. (5) makes it possible to better approx-
imate fluctuating time series using limited storage. While the original
value of Eq. (5) still needs to be defined by the user, the goal is to
provide a more reasonable estimate that is not overly sensitive to the
original 𝜖0.

4.4. Applying PLA methods

After the allocation of dynamic error bounds, the original time
series can be approximated using user-defined or user-selected 𝑙∞-
PLA methods for each interval. Generally, a specific 𝑙∞-PLA method
is applied to the data in buf, and the linear approximations for each
segment are generated in chronological order. Next, buf is updated
with the last segment of the previous interval and the additional new
data from the time series. The idea is that the last segment generated
within the current buf is generally incomplete. As these data are read
into buf again, we could refine the approximation of data close to the
breakpoints of two intervals. The process of applying 𝑙∞-PLA methods
(mentioned in Section 3.2) to buf, generating linear approximations and
updating buf is repeated as long as data is streaming.

To summarise, AEPLA consists of the following three steps: (i) divid-
ing the original time series into a sequence of intervals; (ii) assigning
dynamic error bounds to each interval, based on the degree of fluctu-
ation within it; and (iii) generating a piecewise linear representation
of the original time series within each interval using 𝑙∞-PLA methods.
The process is described in the form of pseudo-code in Algorithm 1.

4.5. Properties

In this section, we further discuss the properties of the proposed
framework. For simplicity, hereinafter, we denote the original 𝑙∞-PLA
methods withM and the corresponding adaptive version obtained using
our new framework with 𝑀+, where 𝑀 is a specific PLA method
(e.g., FSW). First, as 𝑀+ is built based on 𝑀 , we prove that the perfor-
mance of 𝑀+ in terms of representation quality is also bounded by that
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Algorithm 1 AEPLA: PLA with adaptive error bounds.
Input: 𝑙∞-PLA_method (specified by user);

𝑆: time series of length n;
𝜖0: global error bound;
𝛼: scaling factor (default = 0.2);

utput: piecewise linear representation of 𝑆 with adaptive error
ounds.
1: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑠𝑡𝑎𝑟𝑡 ← 0;
2: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑡𝑜𝑡𝑎𝑙 ← [];
3: while 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑠𝑡𝑎𝑟𝑡 < 𝑛 do
4: 𝑔𝑟 ← 𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛;
5: bufferLength ← 𝛼 ⋅ 𝑛 ⋅ 𝜖0;
6: 𝑏𝑢𝑓 ← S[𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑠𝑡𝑎𝑟𝑡:(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑠𝑡𝑎𝑟𝑡+bufferLength)];
7: 𝑙𝑟 ← 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛;
8: 𝛽 ← 𝑙𝑟∕𝑔𝑟;
9: 𝜖𝑚 ← 𝜖0 ⋅ 𝑒(0.5−𝛽);
0: 𝑠𝑒𝑔 ← 𝑙∞-PLA_method(𝑏𝑢𝑓 , 𝜖𝑚);
1: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑡𝑜𝑡𝑎𝑙.append(𝑠𝑒𝑔[1:(|𝑠𝑒𝑔| -1)]); \\ |𝑠𝑒𝑔| denotes the

length of 𝑠𝑒𝑔
2: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑠𝑡𝑎𝑟𝑡 ← original index of first data point of 𝑠𝑒𝑔[|𝑠𝑒𝑔|] in

𝑆;
3: 𝑏𝑢𝑓 ← [];
4: end while
5: return 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑡𝑜𝑡𝑎𝑙;

of 𝑀 , and that 𝑀+ will be degraded to 𝑀 under a special circumstance.
hen, we show that performing 𝑀 within the new framework will not

ncrease the time complexity, i.e., 𝑀+ is also a linear-time algorithm
as 𝑀 , which can be applied for online time-series segmentation.

Property 4.1. For given 𝜖0, let 𝑟+ be the number of segments generated
by 𝑀+. Let 𝑟𝑚𝑎𝑥 be the number of segments for 𝑀 with fixed error bound
𝜖0 ⋅ 𝑒−0.5. Also, let 𝑟𝑚𝑖𝑛 be the number of segments for 𝑀 with fixed error
bound 𝜖0 ⋅ 𝑒0.5. We can prove that 𝑟𝑚𝑖𝑛 ≤ 𝑟+ ≤ 𝑟𝑚𝑎𝑥.

Proof. This property can be proven by considering two extreme cases.
First, suppose that the given time series 𝑆 is a sawtooth function, such
that the local range 𝑙𝑟 equals the global range 𝑔𝑟 (i.e., 𝛽 = 1) within
any interval of 𝑆, 𝑀+ is equivalent to applying 𝑀 with fixed 𝜖0 ⋅ 𝑒−0.5.
Thus the maximum number of segments generated by 𝑀+ is bounded
by 𝑟𝑚𝑎𝑥. On the other hand, suppose that 𝑆 is similar to a horizontal
line, such that the local range 𝑙𝑟 equals zero (i.e., 𝛽 = 0) within any
interval of 𝑆, 𝑀+ is equivalent to applying 𝑀 with fixed 𝜖0 ⋅ 𝑒0.5, thus
the minimum number of segments generated by 𝑀+ is bounded by 𝑟𝑚𝑖𝑛.
Since the number of segments generated by typical 𝑙∞-PLA methods
decreases monotonically with respect to the increase of 𝜖𝑚 (Xie et al.,
2014), we conclude that 𝑟𝑚𝑖𝑛 ≤ 𝑟+ ≤ 𝑟𝑚𝑎𝑥.

Property 4.2. Given a time series 𝑆 and an 𝜖0, 𝑀+ is degraded to 𝑀 , if
we set all the local error bounds 𝜖𝑚 to 𝜖0.

Proof. Clearly, if we replace the procedure in line 9 of Algorithm 1
by 𝜖𝑚 ← 𝜖0, 𝑀+ is equivalent to performing PLA within consecutive
intervals using the original 𝑙∞-PLA 𝑀 and a fixed error bound 𝜖0. Thus,
the overall approximations given by 𝑀+ and 𝑀 are the same in this
case.

Property 4.3. Given a time series 𝑆 of length 𝑛, the computational
complexity of applying 𝑙∞-PLA using AEPLA is in the order of the original
𝑙∞-PLA method.

Proof. Specifically, let 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 be the time complexity of any original
𝑙∞-PLA method, 𝑙 the length of the buffer 𝑏𝑢𝑓 , and 𝑘 the total number
6

of times the buffer is filled (i.e., 𝑛 = 𝑙⋅𝑘). In this case, the computational
Table 3
Time complexity of widely used 𝑙∞-PLA methods. 𝑀 and 𝑃 are the number of segments
and the average length of segments, respectively.

Method Time complexity

SW (Keogh et al., 2004) 𝑂(𝑃 ⋅ 𝑛)
SWAB (Keogh et al., 2004) 𝑂(𝑃 ⋅ 𝑛)
FSW (Liu et al., 2008) 𝑂(𝑀 ⋅ 𝑛)
ConnSegAlg (Zhao et al., 2016) 𝑂(𝑛)
ParaOptimal (O’Rourke, 1981) 𝑂(𝑛)
OptimalPLR (Xie et al., 2014) 𝑂(𝑛)

complexity of Algorithm 1 is primarily determined by: (i) the time
complexity for searching 𝑔𝑟, 𝑂(𝑛); (ii) the time complexity for searching
𝑙𝑟, 𝑂(𝑙); (iii) the time complexity for running the original method on
𝑏𝑢𝑓 , 𝑙

𝑛 ⋅ 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. The overall time complexity is 𝑂(𝑛) + 𝑘 ⋅ 𝑂(𝑙) + 𝑘 ⋅
𝑙
𝑛 ⋅ 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑂(𝑛) + 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. Given the time complexity of the widely
used 𝑙∞-PLA methods ( Table 3), we can see that 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is greater than
or equal to 𝑂(𝑛) in general. Hence the asymptotic time complexity of

EPLA is the same as 𝑂𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, with relatively minor differences in the
constants.

5. Empirical analysis

In this section, we present a set of experiments to evaluate the per-
formance of our proposed framework from different perspectives. Three
types of 𝑙∞-PLA approaches (disjoint, continuous, and semi-connected),
as illustrated in Fig. 2, are tested under the AEPLA framework (detailed
in Section 5). We compare the results of using these methods within
our framework against the results achieved by the original methods.
The code to reproduce the experiments is available in a repository.1

Our experiments are designed with the goal of answering the fol-
lowing research questions:

• RQ1: What is the advantage obtained by the new AEPLA frame-
work in terms of time-series approximation quality? Since both
the original (𝑀) and the adaptive version achieved by AEPLA
(𝑀+) depend on a user-defined value of 𝜖0, we compare the
approximation quality achieved by each method using the same
user-defined values of 𝜖0.

• RQ2: What is the advantage obtained by the new AEPLA frame-
work in time-series compression? As the time-series approxima-
tion can be seen as a compression task, we carry out another com-
parison of 𝑀 and 𝑀+ to investigate how each method performs
when limited to using the same memory space.

• RQ3: What are the time and space costs of the new AEPLA
framework? In Section 4.5, we proved that the performance of
𝑀+ is bounded by 𝑀 . Here, we compare the actual running time
and space cost of 𝑀 and 𝑀+ to affirm this claim.

• RQ4: How does the choice of parameters impact the AEPLA
method? Since in our framework, we introduce a scaling factor 𝛼,
we analyse the extent to which the choice of this parameter affects
the performance of AEPLA. We further discuss an optional, offline
optimisation process for automatically tuning this parameter.

.1. Experiment setup

In this section, we provide the details of our experimental setup to
ddress the previous research questions.
Benchmark datasets: For our evaluations, we require raw (unla-

elled) and relatively long time-series data with different character-
stics (e.g., being stationary/non-stationary, cyclical/non-cyclical). We
ave chosen 84 datasets covering various application areas, including

1 https://github.com/zhourongleiden/AEPLA.

https://github.com/zhourongleiden/AEPLA
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Table 4
Details of the benchmark datasets.

Datasets Sources Application areas

A1–A20 CompEngine Astrophysics
B1–B20 CompEngine Finance
C1–C20 CompEngine Meteorology
D1–D20 CompEngine Finance
CinC_ECG_torso UCR Physiology
InlineSkate UCR Kinesiology
MALLAT UCR Signal processing
StarLightCurves UCR Astrophysics

physics, finance, and meteorology from CompEngine.2 and the UCR
archive.3 (see the complete list in Appendix). CompEngine is a self-
organising library of time-series data, originally designed to allow the
collection of a large set of time-series data from diverse industrial and
scientific domains. Following previous work (e.g., Xie et al. (2014) and
Zhao et al. (2016, 2020)), datasets chosen from the UCR archive are
concatenated to simulate long-streaming data (10–100 MB in size). We
note that only 4 relatively longer datasets from the entire UCR database
are utilised, as the primary goal here is to demonstrate the applicability
of our method to large volumes of data. Table 4 summarises the details
of the benchmark datasets.

Baseline PLA methods: We test our proposed framework on three
types of error-bounded PLA methods, namely (i) continuous PLA, (ii)
disjoint PLA, and (iii) semi-connected PLA.

• FSW (Liu et al., 2008): We have also chosen FSW as a heuristic
method within the category of continuous PLA since no method
in this category can guarantee optimal approximation in linear
time (Zhao et al., 2020). However, FSW was chosen as an ex-
ample within this category because it can provide a near-optimal
solution (Xu et al., 2012) and is easy to implement.

• OptimalPLR (Xie et al., 2014): We have chosen OptimalPLR
within the category of disjoint PLA methods since it can provide
an optimal approximation of the time series in terms of the
number of segments in linear time.

• SemiOpt (Zhao et al., 2022): We have chosen SemiOpt within
the category of semi-connected PLA methods, as it is proven
to achieve state-of-the-art performance in terms of compression
ratios in linear time.

All of the methods were implemented in Python, based on the pseudo-
code provided by the authors. We note that other 𝑙∞-PLA methods, such
as the ones discussed in Section 2, can also be easily used within our
new framework. Besides, the notion of the adaptive error bounds can
also be integrated with any compressor (e.g., SZ Zhao et al., 2021 and
ZFP Lindstrom, 2014) as long as there is an error bound that should be
determined by users in the data reduction or approximation process.
However, we will not further explore the idea in this paper.

Performance metrics: We evaluate the performance of our pro-
posed framework from two different perspectives. On the one hand,
we compare the approximation of the baseline and adaptive PLA al-
gorithms under the same external conditions imposed by how the
parameter 𝜖0 is selected by users. For this purpose, we consider the
representation error per segment (RE/S), which represents the ap-
proximation quality achieved for a fixed global error bound 𝜖0. We
evaluate the performance of PLA methods in terms of RE/S as a function
of different 𝜖0 values. On the other hand, we are also interested in
the trade-off between the approximation error and the number of
resulting segments, both of which depend on the global error bound,
𝜖0. To quantitatively assess the trade-off between these two competing

2 https://www.comp-engine.org/.
3 https://www.cs.ucr.edu/~eamonn/time_series_data/.
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Fig. 4. An illustration of the hypervolume indicator (two objectives).

objectives, we chose the hypervolume indicator (HI) (Zhang et al.,
2022), a metric commonly used in the context of evaluating multi-
objective optimisation algorithms. More specifically, the details of these
performance metrics are as follows:

• Representation error (RE): The root-mean-square error (RMSE)
between each 𝑦𝑖 and its approximation 𝑦′𝑖 .

• Representation error per segment (RE/S): The representation er-
ror divided by the number of segments 𝐾, where 𝑛 is the total
length of the original time series, i.e.,

𝑅𝐸∕𝑆 = 1
𝐾

⋅

(

1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦′𝑖−𝑦𝑖||
2
)

1
2

. (6)

• Hypervolume indicator (HI): A mapping of the set of trade-off
solutions (considering two or more objectives) given by an op-
timiser into a unary value. (Please refer to Emmerich and Deutz
(2018) for a more comprehensive definition.) Fig. 4 provides an
illustration of this indicator. Here, 𝑅𝐸(𝜖0) and 𝐾(𝜖0) represent the
two metrics that we wish to minimise (i.e., the representation er-
ror and the number of segments) as functions of 𝜖0. Furthermore,
𝑠(𝜖𝑖0)(𝑖 = 1...6) represents the set of solutions provided by a PLA
method (either the original PLA method, 𝑀 , or the corresponding
adaptive version, 𝑀+). Each solution is produced using a different
value 𝜖𝑖0 for the 𝜖0 parameter. The point Ref denoted in the figure
is the so-called reference point used to calculate the hypervolume;
here, the area marked in grey defines the value of the hyper-
volume indicator. A higher hypervolume generally denotes better
performance. Thus, when comparing two PLA methods using this
indicator, a higher value denotes better overall approximation
performance irrespective of how the 𝜖0 parameter is set by the
user. We note that, in the figure, all solutions except for 𝑠(𝜖30 ) are
non-dominated points (Ehrgott, 2012) and thus contribute to the
calculation of HI (when dealing with two optimisation objectives,
a solution is non-dominated when neither of its two objective
values can be improved without degrading the other).

Initial parameter setting: In Section 4.2, we mentioned that to use
our framework, the scaling factor 𝛼 needs to be initialised to a default
value; based on preliminary experiments on all datasets, we have set
this default value to 𝛼 = 0.2. For the two baseline methods used in our
experiments, the error bound is determined as 𝜖0 = 𝑝 ⋅𝑔𝑟 (𝑝 ranges from
0.03 to 1) using MEP (Liu et al., 2008; Xie et al., 2014).

5.2. Experiments on continuous PLA

In the first set of experiments, we address RQ1 by applying our
proposed framework to FSW and denote the resulting method by FSW+.
These experiments are essentially testing the applicability of our ap-
proach to continuous 𝑙∞-PLA methods.

Figs. 5 to 8 show the results of RE/S using different values of 𝜖0 for
80 datasets divided into 4 categories, respectively. Due to the broadly

https://www.comp-engine.org/
https://www.cs.ucr.edu/~eamonn/time_series_data/
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Fig. 5. RE/S achieved by FSW+ versus FSW on datasets A1-A20 for different error bounds.
Fig. 6. RE/S achieved by FSW+ versus FSW on datasets B1-B20 for different error bounds.
Fig. 7. RE/S achieved by FSW+ versus FSW on datasets C1-C20 for different error bounds.
Fig. 8. RE/S achieved by FSW+ versus FSW on datasets D1-D20 for different error bounds.
varied range of values, we present RE/S values on a logarithmic scale.
The numbers on the horizontal axis represent different values of 𝑝 (the
user-specified error percentage in Eq. (5)), which is proportional to 𝜖0,
denoted as 𝑝(𝜖0).

In each figure, results are shown in form of box plots for datasets
in the same category. For instance, each box in Fig. 4 summarises
the distribution of results of RE/S for a given 𝑝 obtained from all
datasets (A1–A20) in the Astrophysics category. Since the nature of
the time-series data in each category is similar, it is reasonable to
present the results obtained from them in the form of a distribution.
As discussed before, allocating adaptive error thresholds to different
intervals properly maintains more features of the original time series
after the compression. Therefore, we expect FSW+ to lead to a better
approximation quality with lower RE/S under the same global error
8

bound.
As seen in Figs. 5 to 8, FSW+ clearly outperforms FSW for tight
storage restrictions (i.e., large 𝜖0) by having lower RE/S values. How-
ever, FSW+ and FSW provide similar results in terms of median RE/S
under low compression ratios (error bounds below 0.07) and FSW tends
to perform better for extremely low error thresholds (close to 0). The
reason is that such tight restrictions will lead to over-fragmented ap-
proximations of the entire time series by FSW, with low representation
error but a large number of segments. For high compression ratios,
i.e., when using looser representation error restrictions, fewer segments
should be used during the approximation process. FSW+ is designed
to assign fewer segments within relatively stable periods (with small
𝛽) and more segments for the intervals containing more fluctuations.
This means that the overall approximation quality of FSW+ could be
better than that of FSW by avoiding unnecessary over-fragmentation,
regardless of a higher value of RE/S. We will inspect this with further

analysis.
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Fig. 9. Comparison between 𝐾𝐹𝑆𝑊 + and 𝐾𝐹𝑆𝑊 on all datasets under a tight error
bound (𝜖0 = 0.03).

Table 5
The average compression ratio of FSW+ and FSW on all datasets under the same global
rror bound (𝜖0 = 0.03). Results presented in boldface denote statistically significantly
igher performance, which is verified by means of a Wilcoxon signed-rank test with a
ignificance level of 0.05 (𝒑 < 𝟏𝟎−𝟓).
Datasets A1–A20 B1–B20 C1–C20 D1–D20 Average

𝜌
FSW+ 7.583 5.323 6.386 4.296 5.897
FSW 6.028 4.554 6.158 3.872 5.153

So far, we have not explicitly considered the effect of 𝜖0 on the
umber of segments, which under some conditions, can cause over-
ragmentation. In Fig. 9, we, therefore, compare the number of seg-
ents produced by FSW+ and FSW across all datasets under a tight

rror bound (𝜖0 = 0.03) (the number of segments from the two methods,
enoted by 𝐾𝐹𝑆𝑊 + and 𝐾𝐹𝑆𝑊 , have been normalised using Min-
ax Normalisation). As can be clearly seen from these results, FSW

enerally produces a larger number of segments. While this can lead to
etter results in terms of RE/S (as previously observed in Figs. 5 to 8), it
enerally does not yield better approximations, as over-fragmentation
hould be avoided in time-series data compression (Keogh et al., 2004).
n Table 5, we show the average compression ratio (denoted by 𝜌) of

FSW+ and FSW on all datasets under the same global error bound (𝜖0
= 0.03). The compression ratio is defined as the ratio of the original
data size to the compressed data size. The compression ratio attained
by FSW+ is higher than that achieved by FSW (10%, in general).
The significance of the differences is verified by means of a Wilcoxon
signed-rank test (since the data do not follow a normal distribution)
with a significance threshold of 0.05 (𝑝 < 10−5). Our results clearly
indicate that the proposed method can yield a more compact repre-
sentation of the original time series with adaptive approximation error
constraints.

Inevitably, with smaller values of 𝜖0, FSW+ also generates a large
number of segments (much smaller than FSW). However, a closer
inspection of the results in Fig. 10 shows that a large proportion of
segments generated by FSW+ are from parts of the time series with
large fluctuations, which cause a decrease in 𝜖𝑚. On the other hand,
the adaptive increase of 𝜖𝑚 performed by FSW+ within stable periods of
a given time series helps to reduce overall over-fragmentation. Fig. 10
illustrates this phenomenon for FSW+ and FSW on dataset A4 with 𝜖0 =
0.03. Here, fluctuating periods of the time series are highlighted in red.
FSW+ generates considerably fewer segments than FSW (235 vs. 539)
within the stable periods, while FSW+ and FSW both generate a similar
number of segments (547 vs. 543) for the fluctuating periods. This is
shown in Figs. 10(c) and 10(d), where we visualise the piecewise linear
approximation results given by FSW+ and FSW within the same stable
period. We can see that FSW+ allocates a fewer number of segments
than FSW in this period. These results illustrate the poor (and somewhat
9

extreme) trade-off between the number of segments and approximation
error achieved by FSW, which is avoided by FSW+. This also explains
he smaller RMSE of FSW compared to FSW+, which results from over-
ragmentation of the stable periods of the time series (in this case,
he RMSE value is 7.278 for FSW and 16.188 for FSW+), while FSW+

erforms slightly better than FSW in the fluctuating periods (in this
ase, the RMSE value is 2.114 for FSW and 2.102 for FSW+).

Our comparison with respect to RE/S presented in Figs. 5 to 8
learly demonstrates the advantage achieved by AEPLA for tight storage
estrictions (i.e., large 𝜖0). This advantage becomes even clearer when

comparing the approximation quality of FSW+ and FSW for the same
amount of storage space, i.e., the representation error when using the
same number of segments, as per our second research question (RQ2).

To address RQ2, we now turn towards analysing the trade-off
between the number of segments and representation error using the
hypervolume indicator using Fig. 11. In Fig. 11(a), we show the rep-
resentation error as a function of the number of segments for both
FSW+ and FSW on the dataset (A1). As can be clearly seen in the
figure, for all but the highest numbers of segments, FSW+ achieves
considerably lower representation error than FSW. Figs. 11(b) and
11(c) illustrate how the sets of solutions obtained from FSW+ and
FSW, respectively, are used to calculate HI on dataset A1. In these
figures, the non-dominated solutions are marked with squares, and the
hypervolume is indicated by the shaded area, bounded from above
by a reference point, which is determined by the maximal possible
value of the two objective functions, considering all the non-dominated
solutions produced by FSW+ and FSW. As seen in Figs. 11(b) and
11(c), the dominated solutions are not considered in the calculation
of HI because they fall into the hypervolume determined by the non-
dominated points. Generally, the indicator quantifies the space which is
dominated by a set of solutions 𝑆. The larger the value of this indicator,
the better the performance of the algorithm in question.

Fig. 12 compares the values of the hypervolume indicator obtained
from FSW+ versus FSW on all datasets, in terms of relative difference
(RD) defined as

𝑅𝐷 =
𝐻𝐼𝐹𝑆𝑊 + −𝐻𝐼𝐹𝑆𝑊

𝐻𝐼𝐹𝑆𝑊
(7)

where 𝐻𝐼𝐹𝑆𝑊 + and 𝐻𝐼𝐹𝑆𝑊 refer to the hypervolume of FSW+ and
FSW respectively. Before the comparison, the values of both objective
functions have been normalised using the normalisation mechanism
proposed in Ishibuchi et al. (2017); let 𝑚𝑎𝑥(𝑓𝑖) and 𝑚𝑖𝑛(𝑓𝑖) be the

aximum and minimum values of the objective functions (𝑓𝑖 (𝑖 =
, 2) represents 𝑅𝐸(𝜖0) and 𝐾(𝜖0), respectively) among non-dominated
olutions given by FSW+ and FSW on the same dataset, then the
bjective value 𝑛(𝑓𝑖) of the 𝑖th objective 𝑓𝑖 is normalised as

(𝑓𝑖) =
𝑓𝑖 − 𝑚𝑎𝑥(𝑓𝑖)

𝑚𝑎𝑥(𝑓𝑖) − 𝑚𝑖𝑛(𝑓𝑖)
𝑓𝑜𝑟 𝑖 = 1, 2 (8)

Positive RD values (within the shaded area) indicate that the hy-
pervolume achieved by FSW+ is larger than the one achieved by
FSW (i.e., FSW+ produces a better performance trade-off than FSW);
larger absolute values of RD indicate larger differences in hypervolume.
We observe that FSW+ outperforms FSW on 58.75% (47/80) of our
benchmark datasets according to this metric.

Table 6 shows the detailed distribution of the RD values for FSW+

and FSW on all benchmarks. We can see that FSW+ achieves signifi-
cantly better performance (5% or more) in at least 22 cases, while the
advantage of FSW over FSW+ observed in some cases is rather small.

We further analysed the statistical significance of these results
through hypothesis testing. Noting that the values of RD are not
normally distributed, we have chosen the non-parametric one-sided
Wilcoxon signed-rank test that does not assume a normal distribution
of data. For a standard significance level of 0.05, the test rejects the
null hypothesis that the median of RD is lower than or equal to zero
(𝑝 = 0.0022), suggesting that FSW+ can provide a significantly better
trade-off between the number of segments and representation accuracy.
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Fig. 10. The approximation results produced by FSW+ (a) and FSW (b) on dataset A4 with 𝜖0 = 0.03, where the numbers above the rectangles indicate the number of segments
generated in the corresponding intervals. The piecewise linear approximation results given by FSW+ and FSW within the same stable period are shown in (c) and (d), respectively.
Fig. 11. (a) Two sets of solutions given by FSW+ and FSW against the sample set (A1). The non-dominated solutions and the corresponding hypervolume of FSW+ (b) and FSW
(c), respectively.
Table 6
Distribution of the RD values considering FSW+ and FSW on all benchmarks. Based on the non-parametric one-sided Wilcoxon signed-rank test, the null hypothesis that the median
of RD is lower than or equal to zero is rejected with a significance level of 0.05 (𝒑 = 𝟎.𝟎𝟎𝟐𝟐).

RD values Below −10% Below −5% Below −3% Above 0% Above +3% Above +5% Above +10%

Number of cases 0 4 10 47 28 22 8
The comparison of HI values shows that AEPLA has achieved a
better balance between the two specific objectives. This can be more
intuitively understood by quantifying how much fewer segments are
needed by FSW+ to reach the same RE as FSW. For this purpose,
we compare the number of segments generated by FSW+ and FSW to
achieve a certain RE level, 𝛾, across all benchmarks. Without loss of
generality, we set 𝛾 as half of the worst RE for the better of the two
methods (denoted 𝑅𝐸0.5, see Fig. 13) on each of the 80 datasets, and
compare the corresponding number of segments generated by FSW+

and FSW. In Fig. 13, we show the representation error as a function of
the number of segments for both FSW+ and FSW on dataset A1, where
𝐾𝛾+ and 𝐾𝛾 are the number of segments needed by FSW+ and FSW to
reach the same RE level 𝛾. The average of 𝐾𝛾∕𝐾𝛾+ on each of the four
sets of benchmarks, as well as on all benchmarks are summarised in
Table 7. For the same 𝛾 = 0.5, more segments (a factor of 1.4 in general)
10
Table 7
Comparison between the number of segments generated by FSW+ (𝐾𝛾+ ) and FSW (𝐾𝛾 )
to achieve a certain RE level 𝛾 (0.5). The average of 𝐾𝛾∕𝐾𝛾+ on all benchmarks is
shown in the last column.

Datasets A1–A20 B1–B20 C1–C20 D1–D20 Average

𝐾𝛾∕𝐾𝛾+ 1.047 1.768 1.060 1.674 1.387

are needed by FSW than FSW+, clearly indicating the advantage of
AEPLA for time-series compression in terms of the compression ratio.

Finally, we evaluate our method on larger time-series data. Table 8
summarises the compression evaluation results of FSW+ and FSW on
four longer time series. Specifically, we present the relative difference
between the hypervolume indicator RD, and the average RE/S (𝑅𝐸∕𝑆)
with a different global error bound on a logarithmic scale. As seen in
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Fig. 12. Comparison of FSW+ and FSW with respect to the hypervolume indicator. (a) Results on Astrophysics benchmarks (A1-A20). (b) Results on High-low pricing benchmarks
B1-B20). (c) Results on Precipitation rate benchmarks (C1-C20). (d) Results on Trade-volume benchmarks (D1-D20).
Fig. 13. An illustration of 𝐾𝛾∕𝐾𝛾+ on dataset A1 where 𝐾𝛾+ and 𝐾𝛾 are the number
of segments needed by FSW+ and FSW to reach the same RE level 𝛾 = 0.5 (𝑅𝐸0.5).

Table 8
Comparing the performance of FSW+ and FSW on four longer time series.

Datasets RD log(𝑅𝐸∕𝑆𝐹𝑆𝑊 + ) log(𝑅𝐸∕𝑆𝐹𝑆𝑊 )

CinC_ECG_torso 3.645% −1.343 −1.019
InlineSkate 1.117% −1.366 −1.054
MALLAT 4.018% −2.494 −1.182
StarLightCurves −0.033% −1.597 −1.010

Table 8, FSW+ generally achieves better performance on RD, while
the advantage of FSW is rather small (in one of the four cases).
Furthermore, the average RE/S of FSW+ is significantly lower than
hat of FSW in all cases, indicating the advantage of our method in
erms of approximation quality regardless of the volume of data to be
ompressed.

.3. Experiments on disjoint PLA

So far, we have addressed RQ1 and RQ2 for the case of contin-
ous PLA methods. In this section, we analyse AEPLA for disjoint
∞-PLA methods to address the same research questions; here, we chose
ptimalPLR as a representative method in this category.
11
Table 9
The average compression ratio of OptimalPLR+ and OptimalPLR on all datasets under
the same global error bound (𝜖0 = 0.03). Results presented in boldface denote
statistically significantly higher performance, which is verified through Wilcoxon
signed-rank test with a significance level of 0.05 (𝒑 < 𝟏𝟎−𝟓).

Datasets A1–A20 B1–B20 C1–C20 D1–D20 Average

𝜌
OptimalPLR+ 7.779 5.201 5.718 3.334 5.508
OptimalPLR 6.757 4.785 5.237 3.624 5.101

Regarding RQ1, Figs. 14 to 17 show the performance of
OptimalPLR+ versus OptimalPLR across all benchmarks for different
global error bound settings. This comparison yields similar results to
those seen for FSW+ versus FSW: The performance of OptimalPLR+

compared to OptimalPLR increases with the error bound. The observed
performance advantage of OptimalPLR+ is more pronounced for higher
compression ratios (i.e., higher error bounds), especially on datasets
B1-B20 and D1-D20. Table 9 shows the average compression ratio of
OptimalPLR+ and OptimalPLR on all datasets with the same global
error bound (𝜖0 = 0.03). The significance of the differences is analysed
using a Wilcoxon signed-rank test (𝑝 < 10−5). The results show that
OptimalPLR+ often yields significantly higher compression ratios.

Regarding RQ2, the comparison of the hypervolume indicators
shown in Fig. 18 and the RD values presented in Table 10 shows
that OptimalPLR+ outperforms OptimalPLR on 58.75% (47/80) of our
benchmarks. These results are statistically significant according to the
one-sided Wilcoxon signed-rank test at a standard significance level of
0.05 (𝑝 = 0.0046).

We also compare the number of segments generated by
OptimalPLR+ and OptimalPLR for achieving a given RE level 𝛾 across
all benchmarks. The averages of 𝐾𝛾∕𝐾𝛾+ for each of the four categories
of benchmarks as well as across all benchmarks are summarised in
Table 11. For the same 𝛾 = 0.5, substantially more segments (a factor
of 1.7 in general) are generated by OptimalPLR than by OptimalPLR+.

Further inspection of results reveals that for several datasets and
error bounds, OptimalPLR generates unreliable approximations; Fig. 19
shows examples of these unreliable approximations on benchmarks (A1
and A6). The reason for this undesirable behaviour is that the original
disjoint 𝑙 -PLA method may fail to recognise some relatively small
∞
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Fig. 14. RE/S achieved by OptimalPLR+ versus OptimalPLR on datasets A1-A20 for different error bounds.
Fig. 15. RE/S achieved by OptimalPLR+ versus OptimalPLR on datasets B1-B20 for different error bounds.
Fig. 16. RE/S achieved by OptimalPLR+ versus OptimalPLR on datasets C1-C20 for different error bounds.
Fig. 17. RE/S achieved by OptimalPLR+ versus OptimalPLR on datasets D1-D20 for different error bounds.
Table 10
Distribution of the RD values considering OptimalPLR+ and OptimalPLR on 80 benchmarks. Based on the non-parametric one-sided Wilcoxon
signed-rank test, the null hypothesis that the median of RD is lower than or equal to zero is rejected with a significance level of 0.05
(𝒑 = 𝟎.𝟎𝟎𝟒𝟔).
RD values Below −10% Below −5% Below −3% Above 0% Above +3% Above +5% Above +10%

Number of cases 0 2 7 47 14 6 2
a
t

Table 11
Comparison between the number of segments used in OptimalPLR+ (𝐾𝛾+ ) and Opti-

alPLR (𝐾𝛾 ) to achieve a certain RE level 𝛾 (0.5). The average of 𝐾𝛾∕𝐾𝛾+ on all
benchmarks is shown in the last column.

Datasets A1–A20 B1–B20 C1–C20 D1–D20 Average

𝐾𝛾∕𝐾𝛾+ 1.706 2.324 1.472 1.184 1.672
12
fluctuations with a fixed error bound. For instance, if the difference be-
tween a local maximum and minimum is lower than the specified error
bound, the original time series within the corresponding period will be
approximated by one segment, leading to an increased loss of informa-
tion and higher approximation error. On the other hand, OptimalPLR+

voids this problem by adjusting the error bound accordingly, leading
o a more stable performance.

We finally compare the approximation quality of OptimalPLR+ and
OptimalPLR on larger time-series data. As seen in Table 12, we can
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Fig. 18. Comparison of OptimalPLR+ and OptimalPLR with respect to the hypervolume indicator against all datasets. (a) Results on Astrophysics datasets (A1-A20). (b) Results on
igh-low pricing datasets (B1-B20). (c) Results on Precipitation rate datasets (C1-C20). (d) Results on Trade-volume datasets (D1-D20).
Fig. 19. Trade-off between the number of segments and representation error for OptimalPLR+ versus OptimalPLR for two datasets (A1 and A6) where OptimalPLR produces
unreliable results for some error bounds.
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Table 12
Comparing the performance of OptimalPLR+ and OptimalPLR on four longer time
series.

Datasets RD log(𝑅𝐸∕𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝐿𝑅+ ) log(𝑅𝐸∕𝑆𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑃𝐿𝑅)

CinC_ECG_torso 3.650% −1.300 −1.027
InlineSkate 1.222% −1.161 −1.014
MALLAT 1.789% −1.353 −1.067
StarLightCurves 0.644% −1.147 −0.921

draw a similar conclusion to those comparing FSW+ against FSW:
OptimalPLR+ can yield a better performance trade-off with higher RD
and better approximation quality with a lower RE/S.

5.4. Experiments on semi-connected PLA

In this section, we further verify the applicability of AEPLA for
semi-connected 𝑙 -PLA methods by addressing research questions RQ1
13

∞ o
and RQ2; here, we chose SemiOpt as a representative method in this
category.

Regarding RQ1, the performance of SemiOpt+ versus SemiOpt
across all benchmarks are compared in Figs. 20 to 23. We can draw
similar conclusions from the comparisons as those in continuous and
disjoint cases: SemiOpt+ can avoid over-fragmentation under tight
error bounds; the performance advantage of SemiOpt+ over SemiOpt
becomes more pronounced with the increase of the error bound. In
Table 13, we show the average compression ratio 𝜌 of SemiOpt+ and
SemiOpt on all datasets under a tight global error bound (𝜖0 = 0.03). We
an see that the compression ratio attained by SemiOpt+ is higher than

that achieved by SemiOpt by 18% in general. The significance of the
differences is verified by Wilcoxon signed-rank test (𝑝 < 10−5). These
esults confirm that the proposed method can yield a more compact
epresentation of the original time series.

Regarding RQ2, we compare the values of the hypervolume indica-
or obtained from SemiOpt+ versus SemiOpt on all datasets in terms

f relative difference (RD) in Fig. 24 and Table 14. We can observe
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Fig. 20. RE/S achieved by SemiOpt+ versus SemiOpt on datasets A1-A20 for different error bounds.
Fig. 21. RE/S achieved by SemiOpt+ versus SemiOpt on datasets B1-B20 for different error bounds.
Fig. 22. RE/S achieved by SemiOpt+ versus SemiOpt on datasets C1-C20 for different error bounds.
Fig. 23. RE/S achieved by SemiOpt+ versus SemiOpt on datasets D1-D20 for different error bounds.
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Table 13
The average compression ratio of SemiOpt+ and SemiOpt on all datasets under the
ame global error bound (𝜖0 = 0.03). Results presented in boldface denote statistically
ignificantly higher performance, which is verified through Wilcoxon signed-rank test
ith a significance level of 0.05 (𝒑 < 𝟏𝟎−𝟓).
Datasets A1-A20 B1-B20 C1-C20 D1-D20 Average

𝜌
SemiOpt+ 7.974 5.270 6.105 3.288 5.659
SemiOpt 6.377 4.157 5.601 2.922 4.764

an obvious advantage of SemiOpt+ from the comparison: SemiOpt+
utperforms SemiOpt on 91.25% (73/80) of our benchmarks. The dif-
erence is statistically significant according to the one-sided Wilcoxon
igned-rank test at a standard significance level of 0.05 (𝑝 < 10−5).

In Table 15, we compare the number of segments generated by
emiOpt+ and SemiOpt for achieving a given RE level 𝛾 across all
14

enchmarks. For the same 𝛾 = 0.5, SemiOpt generates substantially b
more segments (on average a factor of 2.1 in general) than SemiOpt+.
In other words, SemiOpt+ can achieve a higher compression ratio under
the same RE level.

We finally demonstrate the applicability of AEPLA based on semi-
connected 𝑙∞-PLA methods to large volumes of data. Table 16 sum-

arises the hypervolume indicator RD and the average RE/S (𝑅𝐸∕𝑆)
of SemiOpt+ and SemiOpt on four longer time series. We can see that
SemiOpt+ achieves better performance in all cases, with positive RD
values and lower 𝑅𝐸∕𝑆 values, respectively.

.5. Time and space costs

We have addressed RQ1 and RQ2 by applying the proposed frame-
ork to different types of PLA methods. In this section, we turn to
Q3 to compare the actual running time and maximum space usage
etween 𝑀+ and 𝑀 under the same global error bound (𝜖 = 0.03).
0
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Fig. 24. Comparison of SemiOpt+ and SemiOpt with respect to the hypervolume indicator against all datasets. (a) Results on Astrophysics datasets (A1-A20). (b) Results on High-low
pricing datasets (B1-B20). (c) Results on Precipitation rate datasets (C1-C20). (d) Results on Trade-volume datasets (D1-D20).
Table 14
Distribution of the RD values considering SemiOpt+ and SemiOpt on 80 benchmarks. Based on the non-parametric one-sided Wilcoxon signed-rank test, the null hypothesis that
the median of RD is lower than or equal to zero is rejected with a significance level of 0.05 (𝒑 < 𝟏𝟎−𝟓).

RD values Below −10% Below −5% Below −3% Above 0% Above +3% Above +5% Above +10%

Number of cases 0 0 1 73 52 35 10
𝜖

Table 15
Comparison between the number of segments used in SemiOpt+ (𝐾𝛾+ ) and SemiOpt
(𝐾𝛾 ) to achieve a certain RE level 𝛾 (0.5). The average of 𝐾𝛾∕𝐾𝛾+ on all benchmarks
is shown in the last column.

Datasets A1–A20 B1–B20 C1–C20 D1–D20 Average

𝐾𝛾∕𝐾𝛾+ 1.964 3.445 1.428 1.722 2.140

Table 16
Comparing the performance of SemiOpt+ and SemiOpt on four longer time series.

Datasets RD log(𝑅𝐸∕𝑆𝑆𝑒𝑚𝑖𝑂𝑝𝑡+ ) log(𝑅𝐸∕𝑆𝑆𝑒𝑚𝑖𝑂𝑝𝑡)

CinC_ECG_torso 2.34% −8.198 −7.304
InlineSkate 0.21% −8.572 −7.982
MALLAT 1.44% −11.771 −10.980
StarLightCurves 4.67% −10.944 −10.155

In Table 17, we first show the average actual running time of 𝑀+ and
on the 80 datasets. We can see that the average time costs of 𝑀+

re close to that of 𝑀 , with minor increases (4.5%, 5.6% and 4.5%
or FSW, OptimalPLR and SemiOpt in average, respectively) due to
he construction of the buffer and the computation of the fluctuation
oefficient 𝛽, which verifies the claim made in Property 4.3. Besides,
et 𝑡(𝐹 ), 𝑡(𝑂), and 𝑡(𝑆) be the average time cost of FSW, OptimalPLR,
nd SemiOpt respectively, the results in Table 17 confirm that 𝑡(𝐹 ) <
(𝑂) < 𝑡(𝑆), which is determined by the complexity of the corresponding
LA methods. This is also in line with the conclusions drawn from the
riginal papers (Liu et al., 2008; Xie et al., 2014; Zhao et al., 2022).

We then compare the average space usage of 𝑀+ and 𝑀 . In Ta-
15

le 18, we also give the space costs of 𝑀 with a fixed error bound
0 ⋅ 𝑒−0.5 (denoted as 𝑀−0.5), and 𝑀 with a fixed error bound 𝜖0 ⋅ 𝑒0.5

(denoted as 𝑀0.5). The results in Table 18 verify that: (i) 𝑀+ achieves
a bit lower space costs than 𝑀 (0.08%, 0.02% and 0.04% for FSW,
OptimalPLR and SemiOpt in average, respectively) since 𝑀+ generates
more compact representation; (ii) the space usage of 𝑀+ is bounded
by that of 𝑀−0.5 and 𝑀0.5 as claimed in Property 4.1.

5.6. Choice of the scaling factor 𝛼

So far, we have addressed RQ1 to RQ3 for continuous, disjoint, and
semi-connected PLA methods. In this section, we turn to RQ4 and study
the impact of the scaling factor 𝛼 parameter in Eq. (3), which affects
the length of the buffer, buf. Generally, the choice of 𝛼 is related to the
length of the original time series. If the time series is extremely long,
the length of the buffer determined by Eq. (3) will be relatively large. In
this case, the local error bounds determined by Eq. (4) might be lower
in general, which could undermine the influence of adjusting the error
bound. In previous sections, 𝛼 has been set to a default value of 0.2
based on preliminary tests. In this section, we introduce a procedure
for the optimisation of 𝛼 in a data-driven manner to address this issue.

To evaluate the approximation quality of AEPLA with adaptive 𝛼,
we would like to automatically select the optimal 𝛼 for each dataset.
For this purpose, we use an algorithm configuration tool that is typi-
cally used for efficiently optimising algorithm hyperparameters. Specif-
ically, we chose SMAC (sequential model-based algorithm configura-
tion) (Hutter et al., 2011), a freely available, prominent automated
configuration method known to be able to optimise algorithm parame-
ters substantially more efficiently than traditional alternatives, such as
(exhaustive) grid search.

Using SMAC, we can automatically determine parameter settings

that maximise the performance of a given algorithm according to an
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Table 17
Comparison between 𝑀+ and 𝑀 in terms of the time costs (ms).

Datasets FSW OptimalPLR SemiOpt

𝑀+ 𝑀 𝑀+ 𝑀 𝑀+ 𝑀

A1–A20 34.398 ± 8.125 34.064 ± 6.121 129.010 ± 23.715 127.160 ± 25.309 270.68 ± 41.986 239.807 ± 54.897
B1–B20 16.866 ± 5.404 15.731 ± 5.162 57.562 ± 24.402 53.492 ± 20.410 881.359 ± 37.201 849.986 ± 36.268
C1–C20 38.064 ± 10.540 37.448 ± 9.585 136.517 ± 25.977 134.255 ± 27.338 256.419 ± 31.470 255.443 ± 34.875
D1–D20 8.583 ± 2.066 7.926 ± 2.275 25.841 ± 10.875 23.142 ± 10.159 30.489 ± 13.608 30.174 ± 13.744
Table 18
Comparison between 𝑀+ and 𝑀 in terms of the space costs (mb).

Datasets FSW OptimalPLR SemiOpt

𝑀+ 𝑀 𝑀−0.5 𝑀0.5 𝑀+ 𝑀 𝑀−0.5 𝑀0.5 𝑀+ 𝑀 𝑀−0.5 𝑀0.5

A1–A20 83.941 84.091 84.508 83.636 83.386 83.464 83.702 83.28 83.31 83.352 83.462 83.297
B1–B20 83.28 83.464 83.732 83.176 82.949 82.977 83.216 82.912 83.016 83.078 83.219 82.975
C1–C20 84.724 84.639 85.065 84.336 83.866 83.827 84.095 83.628 83.589 83.572 83.628 83.538
D1–D20 82.703 82.744 82.877 82.683 82.646 82.661 82.764 82.579 82.658 82.702 82.756 82.568

Average 83.641 83.756 84.046 83.458 83.202 83.242 83.444 83.100 83.143 83.176 83.266 83.095
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objective function. Here, we maximise 𝐻𝐼 , motivated by our goal of
finding a buffer length that maintains the balance between approxi-
mation quality and the compression ratio regardless of the choice of
𝜖0. For this purpose, 𝑀+ (the corresponding adaptive versions of the
original PLA methods, as introduced earlier) is optimised using SMAC
over the entire range of 𝛼 for each dataset. The configurations with
the largest value of the hypervolume indicator and the corresponding
optimal value of 𝛼 are recorded. The goal is to test whether 𝑀+ with
daptive 𝛼 (𝑀+

𝛼 ) can outperform 𝑀+ in terms of this indicator. Details
n our experimental setup are given below.

For each dataset, we performed one run of SMAC v.3 (Lindauer
t al., 2017), with the objective of maximising HI, using a time budget
f 50 runs of 𝑀+

𝛼 , the target algorithm to be optimised (i.e., up to 50
arameter configurations were evaluated in each run of SMAC). This
ime budget was chosen based on preliminary experiments, in which
e observed that 𝑀+

𝛼 performed better than 𝑀+ after 50 runs and
hat using more runs did not result in significant further performance
mprovements. There is no running time limit for each target algorithm
un. The configuration space of parameter 𝛼 has been set to the range
f 2∕(𝑛 ⋅ 𝜖0) to 1. All other settings of SMAC have been left at their
efaults. All our experiments were conducted on compute nodes, each
quipped with Dual 16-Core Intel Xeon E5-2683 CPUs (2.10 GHz) with
0 MB cache and 94 GB RAM, running CentOS Linux 3.10.0-1127.

In Table 19, we show the optimal value of 𝛼 for FSW+ (𝛼𝐹 ),
ptimalPLR+ (𝛼𝑂), and SemiOpt+ (𝛼𝑆 ) determined by SMAC on each
f the 80 datasets. We can see that the optimal value of 𝛼 for different
ypes of PLA methods are similar for the same dataset and that the op-
imal value of 𝛼 varies among different benchmark datasets. By looking
nto the nature of each dataset, we found that SMAC tends to determine
relatively small value of 𝛼 for datasets containing consistently large

luctuations. For instance, we show the original time series B8 and C2 in
ig. 25. Evidently, B8 is relatively stable, while C2 represents a dataset
ith large fluctuations. The corresponding values of 𝛼𝑂 determined by
MAC for these two datasets are 0.99 and 0.07, respectively. According
o Eq. (3), the size of 𝑏𝑢𝑓 for C2 will become considerably smaller.
s a result, the value of 𝜖𝑚 will be adjusted within shorter and more
table temporal stages (by Eq. (4)) so that local features can be better
reserved.

In Fig. 26, we present the overall comparison of 𝐻𝐼𝑀+
𝛼

and 𝐻𝐼𝑀
n all datasets. The 𝑥-axis represents the value of HI for 𝑀+

𝛼 and the
-axis for 𝑀 . We can observe that the vast majority of points fall into
he lower triangle region, corresponding to a positive relative difference
etween 𝐻𝐼𝑀+

𝛼
and 𝐻𝐼𝑀 . The results of the Wilcoxon signed-rank test

erify the statistical significance with 95% confidence level (p-value
10−5 for all the three cases). FSW+

𝛼 outperforms FSW in 69 out of 80
ases, OptimalRLR+ outperforms OptimalRLR in 71 out of 80 cases, and
16

𝛼

emiOpt+𝛼 outperforms SemiOpt in 77 out of 80 cases. This suggests that
onstructing 𝑙∞-PLA under AEPLA with adaptive scaling factor 𝛼 can
enerally provide a more reasonable trade-off for the approximation
uality and the compression ratio.

It should be mentioned that this optimisation process requires
nowledge of the original time series to select the optimal 𝛼. In other
ords, this approach can be regarded as an optional pre-processing

tep in an offline mode. By taking this approach, users can either set
as default in a streaming mode or apply the optimisation results

rom SMAC to the segmentation process when having the full time
eries. We note that users are advised to adopt the optimisation process
hen targeting extremely long time series. This is because the influence
f adjusting the error bound might be undermined when using a
elatively large buffer size. Furthermore, the fact that we obtained
imilar optimised values of 𝛼 for each category of benchmarks suggests
hat this offline optimisation process can be used successfully to select
he value of 𝛼 across similar datasets.

.7. Further discussions

Piecewise linear approximation is essentially focused on achieving
igh representation quality and reducing storage usage. However, these
wo objectives are conflicting and optimising them both simultaneously
equires achieving a trade-off. Current 𝑙∞-PLA methods are limited
y the fixed error constraint on each data point, which does not
llow finding an optimum solution when facing this conflict. Under
he new framework, we relax the tight restriction on each data point
nd adjust the error bound in the approximation process. With an
daptive error bound, the proposed framework can better allocate
imited storage resources to preserve more features of a given time
eries. This claim has been verified in our experiments by addressing
he research questions. Regarding RQ1, we demonstrate the advantage
f the proposed framework for tight storage restrictions with a lower
𝐸∕𝑆; regarding RQ2, we prove that a better trade-off between the

epresentation quality and the storage usage can be achieved under the
ew framework.

However, addressing RQ3, we also notice that the extra steps in
he new framework can increase the processing time by up to 10% in
ome cases. Furthermore, as it has also been claimed in Property 4.1,
he original 𝑙∞-PLA method can outperform the new framework under
ome special cases in terms of space cost. Let 𝑟 be the number of
egments generated by 𝑀 , which is proportional to the space cost, we
an see in Table 18 that 𝑟+ is higher than 𝑟 when dealing with datasets
1–C20. As it has been shown in Fig. 25, C1–C20 contains generally

arge fluctuations, thus the local error bound 𝜖𝑚 is generally lower than
0 as 𝛽 > 0.5 (see Eq. (4)). These results in an increase in the number
f segments provided by 𝑀+, i.e., 𝑟+ can be larger than 𝑟.
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Table 19
The optimal value of 𝛼 for FSW+ (𝛼𝐹 ), OptimalPLR+ (𝛼𝑂), and SemiOpt+ (𝛼𝑆 ) determined by SMAC on each of the 80 datasets.

No. 𝛼𝐹 𝛼𝑂 𝛼𝑆 No. 𝛼𝐹 𝛼𝑂 𝛼𝑆 No. 𝛼𝐹 𝛼𝑂 𝛼𝑆 No. 𝛼𝐹 𝛼𝑂 𝛼𝑆
A1 0.13 0.08 0.09 B1 0.2 0.18 0.11 C1 0.05 0.05 0.06 D1 1 0.93 0.85
A2 0.07 0.05 0.05 B2 0.3 0.2 0.17 C2 0.06 0.07 0.14 D2 0.61 0.34 0.37
A3 0.04 0.05 0.06 B3 0.16 0.17 0.15 C3 0.04 0.04 0.05 D3 0.64 1 0.06
A4 0.83 0.88 0.29 B4 0.2 0.27 0.12 C4 0.09 0.1 0.12 D4 0.3 0.38 0.2
A5 0.83 0.98 0.1 B5 0.36 0.33 0.3 C5 0.05 0.04 0.05 D5 0.99 0.98 0.63
A6 0.95 0.95 0.02 B6 0.23 0.37 0.6 C6 0.06 0.05 0.04 D6 0.25 0.24 0.23
A7 0.07 0.11 0.11 B7 0.22 0.43 0.36 C7 0.09 0.05 0.04 D7 0.31 0.27 0.26
A8 0.11 0.17 0.16 B8 0.61 0.99 0.96 C8 0.05 0.05 0.04 D8 0.91 0.91 0.2
A9 0.17 0.15 0.13 B9 0.77 0.82 0.28 C9 0.04 0.05 0.06 D9 0.48 0.56 0.66
A10 0.36 0.4 0.43 B10 0.42 0.43 0.25 C10 0.07 0.09 0.1 D10 1 0.97 0.75
A11 0.35 0.28 0.29 B11 0.54 0.28 0.17 C11 0.27 0.32 0.08 D11 0.43 0.36 0.35
A12 0.06 0.06 0.06 B12 0.24 0.35 0.21 C12 0.11 0.04 0.03 D12 0.9 0.98 0.04
A13 0.24 0.24 0.24 B13 0.54 0.21 0.21 C13 0.16 0.15 0.21 D13 0.96 0.8 0.07
A14 0.15 0.4 0.44 B14 0.31 0.18 0.13 C14 0.05 0.04 0.05 D14 0.53 0.87 0.47
A15 0.5 0.45 0.43 B15 0.3 0.38 0.3 C15 0.08 0.07 0.09 D15 0.42 0.35 0.73
A16 0.06 0.06 0.08 B16 0.37 0.37 0.3 C16 0.18 0.3 0.58 D16 0.98 0.94 0.82
A17 0.5 0.67 0.15 B17 0.3 0.26 0.24 C17 0.03 0.04 0.05 D17 0.3 0.32 0.31
A18 0.13 0.09 0.11 B18 0.74 0.48 0.63 C18 0.06 0.06 0.07 D18 0.32 0.34 0.37
A19 0.21 0.38 0.2 B19 0.35 0.2 0.45 C19 0.08 0.07 0.06 D19 0.27 0.32 0.44
A20 0.58 0.52 0.24 B20 0.26 0.26 0.12 C20 0.04 0.05 0.05 D20 0.61 0.71 0.55
Fig. 25. The original versions of time series B8 (a) and C2 (b).
Fig. 26. Comparison between 𝐻𝐼𝑚𝑒𝑡ℎ𝑜𝑑+
𝛼

and 𝐻𝐼𝑚𝑒𝑡ℎ𝑜𝑑 on all datasets.
6. Conclusions

We introduced PLA with adaptive error bounds (AEPLA) – a time-
series representation framework that allocates dynamic error bounds
based on the fluctuation of the original time series in different temporal
stages. We implemented AEPLA based on different types of 𝑙∞-PLA
methods and tested it on a broad range of real-world datasets. Our
experimental results demonstrate the superiority of AEPLA compared
to fixing the error bound from three aspects: (i) compared to original
𝑙∞-PLA baselines, we achieved a lower average representation error
per segment, and thus, more features of the fluctuating time series
17
could be maintained under high compression ratio (the global error
bound greater than 0.07 in general); (ii) compared to these baselines,
a lower representation error under the same number of segments can
be achieved, which points to a more reasonable trade-off between
the approximation error and the compression ratio; (iii) the proposed
framework can yield a more compact representation of the original time
series, leading to lower average time and space complexity; Further-
more, the optimisation of the scaling factor 𝛼 in AEPLA can reduce
the representation error when achieving the same compression ratio.
The performance of AEPLA is highly dependent on the global error-
bound hyperparameter and one possible solution for optimising this



Engineering Applications of Artificial Intelligence 126 (2023) 106892Z. Zhou et al.
Table 20
Benchmark datasets used in the experiment.

The list of the datasets

Physics (Astrophysics)

No. Data source Name

A1 SPIDR Solar Data SPIDR L10900 Standard deviation std
A2 SPIDR HPI DMSP SPIDR hpidmsp L13300 F08 meas
A3 SPIDR HPI NOAA SPIDR hpinoaa L11700 NOAA12 power
A4 SPIDR Geomagnetic annual means Ionosphere SPIDR ionosph foF2 Capetown CT13M L16500
A5 SPIDR Interplanetary Magnetic Field SPIDR by WIND L13300 minly
A6 SPIDR Solar Data SPIDR L12600 Number of observations nobs
A7 SPIDR HPI NOAA SPIDR hpinoaa L12000 NOAA16 power
A8 SPIDR Interplanetary Magnetic Field SPIDR by WIND L8200 minly
A9 SPIDR Solar Data SPIDR L13000 Number of solar spots nspots
A10 SPIDR Geomagnetic annual means Ionosphere SPIDR ionosph foF2 Capetown CT13M L19000
A11 SPIDR Interplanetary Magnetic Field SPIDR bz ACE L10700 minly
A12 SPIDR HPI DMSP SPIDR hpidmsp L13600 F12 meas
A13 SPIDR Solar Data SPIDR L15500 Number of observations nobs
A14 SPIDR Geomagnetic annual means Ionosphere SPIDR ionosph foF2 Moscow MO155 L16400
A15 SPIDR Interplanetary Magnetic Field SPIDR bz ACE L11200 minly
A16 SPIDR HPI NOAA SPIDR hpinoaa L13800 NOAA12 power
A17 SPIDR Geomagnetic SPIDR geomag L16900 DST
A18 SPIDR Solar Data SPIDR L15800 Number of solar spots nspots
A19 SPIDR Interplanetary Magnetic Field SPIDR bz ACE L11300 minly
A20 SPIDR Geomagnetic SPIDR geomag L6900 DST

Finance (High-low pricing)

B1 Yahoo Finance FI yahoo HL GDAXI
B2 Yahoo Finance FI yahoo HL GSPC
B3 Yahoo Finance FI yahoo HL HSI
B4 Yahoo Finance FI yahoo HL IBEX
B5 Yahoo Finance FI yahoo HL IIX
B6 Yahoo Finance FI yahoo HL IPC
B7 Yahoo Finance FI yahoo HL IRX
B8 Yahoo Finance FI yahoo HL ISCI
B9 Yahoo Finance FI yahoo HL ISEQ
B10 Yahoo Finance FI yahoo HL ITEQ
B11 Yahoo Finance FI yahoo HL IXBK
B12 Yahoo Finance FI yahoo HL IXFN
B13 Yahoo Finance FI yahoo HL IXIC
B14 Yahoo Finance FI yahoo HL IXID
B15 Yahoo Finance FI yahoo HL IXIS
B16 Yahoo Finance FI yahoo HL IXK
B17 Yahoo Finance FI yahoo HL IXTR
B18 Yahoo Finance FI yahoo HL IXUT
B19 Yahoo Finance FI yahoo HL JKSE
B20 Yahoo Finance FI yahoo HL KLSE

Meteorology (Precipitation rate)

C1 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.33 15
C2 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.21 21
C3 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.60 9
C4 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.69 27
C5 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.87 33
C6 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.40 29
C7 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.25 9
C8 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.44 37
C9 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.37 23
C10 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.83 15
C11 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.74 47
C12 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.18 15
C13 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.13 25
C14 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.79 37
C15 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.96 1
C16 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.64 47
C17 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.51 41
C18 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.91 21
C19 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.2 13
C20 Precipitation rate, NCEP/NCAR, CRU CM prate.sfc.gauss.1948–2007.d.qs eurasia.48 45
Finance (Trade-volume)
D1 Yahoo Finance Shares FI yahoo V CPW.L
D2 Yahoo Finance Shares FI yahoo V CUK.L
D3 Yahoo Finance Shares FI yahoo V CW.L
D4 Yahoo Finance Shares FI yahoo V DCG.L
D5 Yahoo Finance Shares FI yahoo V DEB.L

(continued on next page)
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Table 20 (continued).
D6 Yahoo Finance Shares FI yahoo V DLN.L
D7 Yahoo Finance Shares FI yahoo V DNO.L
D8 Yahoo Finance Shares FI yahoo V DOM.L
D9 Yahoo Finance Shares FI yahoo V EFM.L
D10 Yahoo Finance Shares FI yahoo V ENRC.L
D11 Yahoo Finance Shares FI yahoo V EVG.L
D12 Yahoo Finance Shares FI yahoo V EZJ.L
D13 Yahoo Finance Shares FI yahoo V FCCN.L
D14 Yahoo Finance Shares FI yahoo V FP.L
D15 Yahoo Finance Shares FI yahoo V FTO.L
D16 Yahoo Finance Shares FI yahoo V GEMD.L
D17 Yahoo Finance Shares FI yahoo V GMG.L
D18 Yahoo Finance Shares FI yahoo V GNK.L
D19 Yahoo Finance Shares FI yahoo V GNS.L
D20 Yahoo Finance Shares FI yahoo V GRG.L
C

C

C

C

D

D

E

E

E

F

G

H

H

H

H

I

J

K

K

L

L

hyperparameter is to consider its impact on a downstream task. Time-
series representation can essentially be considered a pre-processing step
within a machine learning pipeline based on time-series data. In future
work, the impact of this step on a variety of downstream machine learn-
ing tasks and whether this hyperparameter can be optimised within
a full pipeline will be investigated, considering the downstream task
performance along with space and representation quality constraints.
Furthermore, to expand AEPLA’s capabilities, consolidating the appli-
cability of AEPLA for multivariate time series or spatiotemporal data
representation with multiple PLA methods can be proposed to replace
the fixed PLA method.
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