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Abstract

We introduce Meta-Album, an image classification meta-dataset designed to fa-
cilitate few-shot learning, transfer learning, meta-learning, among other tasks. It
includes 40 open datasets, each having at least 20 classes with 40 examples per
class, with verified licences. They stem from diverse domains, such as ecology
(fauna and flora), manufacturing (textures, vehicles), human actions, and optical
character recognition, featuring various image scales (microscopic, human scales,
remote sensing). All datasets are preprocessed, annotated, and formatted uniformly,
and come in 3 versions (Micro ⇢ Mini ⇢ Extended) to match users’ computational
resources. We showcase the utility of the first 30 datasets on few-shot learning
problems. The other 10 will be released shortly after. Meta-Album is already
more diverse and larger (in number of datasets) than similar efforts, and we are
committed to keep enlarging it via a series of competitions. As competitions ter-
minate, their test data are released, thus creating a rolling benchmark, available
through OpenML.org. Our website https://meta-album.github.io/ contains
the source code of challenge winning methods, baseline methods, data loaders, and
instructions for contributing either new datasets or algorithms to our expandable
meta-dataset.1

Figure 1: Meta-Album sample images. Each column represents one domain and each row one set.
Domains are arranged in the same order as in Table 2.

1All authors except for the first two authors (equal contributions) are in alphabetical order of last name.
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1 Introduction

1.1 Background

Machine learning has progressed rapidly in recent years and has enabled breakthroughs in various
domains. The success of most machine learning techniques hinges on the availability of large amounts
of data [34, 63], limiting their applicability in domains where only little data is available. Enabling
machine learning algorithms to learn new tasks from only a few examples is studied within the field of
few-shot learning [43, 57, 65]. Novel meta-learning algorithms have recently been proposed targeting
few-shot learning, triggering a surge of popularity for such problems [4, 22, 26, 75]. Despite the
popularity of the field, progress is held back by a lack of good, challenging, and computationally
feasible meta-datasets, that enable us to accurately assess the generalization abilities of few-shot
learning algorithms. To remedy this, we introduce Meta-Album (Figure 1), an extensible multi-
domain meta-dataset, including (so far) 40 image classification datasets from 10 different domains:
30 of these are currently available through our website, and the remaining 10 will be released in
spring 2023. This is part of a long-term effort to create a publicly available and growing meta-dataset,
in conjunction with a meta-learning challenge series (the 2021 and 2022 editions are both parts of the
NeurIPS competition track [6, 12, 13]). As competitions terminate, older datasets get released, thus
refreshing a rolling benchmark, made available through OpenML.org [71]. We check that all datasets
are free for use in academic research and provide their original licenses.

Meta-Album was specifically designed to facilitate meta-learning research in the cross-domain
few-shot setting, which is more realistic than commonly used evaluation protocols. Traditionally,
few-shot learning algorithms (e.g., [14, 24, 61]) have been evaluated by taking an existing benchmark
dataset from a particular “domain” (e.g., handwriting recognition) with a large number of classes,
and then breaking it down into smaller classification tasks, each including a random subset of classes
(e.g., a few specific characters). Algorithms are then tested for their ability to solve such tasks
“quickly” from a small number of examples, after being trained on many other tasks. Typically the
number of classes N and examples per class k are both fixed in what is known as an N-way k-shot
learning problem. While this setting has served research well, it is not very representative of practical
real-world applications where tasks may come from various domains, include classes not drawn at
random, but stemming from a class hierarchy, and include any number of classes and/or examples per
class. By providing data from a wide variety of domains, including datasets with many classes and
a minimum number of examples per class, and retaining class hierarchy annotations, Meta-Album
enables benchmarking according to a variety of more realistic settings.

1.2 Related work

In this section, we review meta-datasets previously proposed to benchmark few-shot learning and
meta-learning, as well as large-scale multi-class datasets, and then contrast them with Meta-Album.

Single dataset benchmarks: Omniglot [32] is often used as a starting benchmark for few-shot
learning and meta-learning. MiniImageNet [73] and Tiered-ImageNet [54] are adapted for few-
shot image classification from ImageNet [56]. CIFAR-FS [2] and FC100 [45] are remodeled from
CIFAR-100 [30] for few-shot settings.

Multi-dataset benchmarks: A recent trend is to assemble numerous datasets from different domains
in the same benchmark. Visual Decathlon [53] gathers 10 diverse datasets. The focus is on finding a
model with a universal representation capacity for use in many tasks. VTAB (Visual Task Adaptation
Benchmark) [82] assembles 19 image classification tasks across various domains. These tasks are
grouped into 3 partitions: natural, specialized, and structured. Meta-Dataset [70] includes 10 image
classification datasets from several application domains in one collection. Meta-Dataset also leverages
the label hierarchy in ImageNet and Omniglot to organize the tasks.

Transfer learning and meta-learning benchmarks: VTAB + MD [10] attempts to unify common
transfer and meta-learning datasets in a single benchmark. The authors also provide a comparison of
popular meta- and transfer learning methods. BSCD-FSL (Broader Study of Cross-Domain Few-Shot
Learning) [20] gathers 4 real-world tasks to compare few-shot, meta-learning, and transfer learning
methods. WILDS [28] is a benchmark of 10 datasets of various modalities (images, graphs, and text;
6 of them are image datasets), reflecting a diverse range of distribution shifts that naturally arise in
real-world applications, and hence useful to evaluate meta-learning and transfer learning techniques.
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Table 1: Comparison between Meta-Album and other large-scale or (meta-) datasets
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Meta-Dataset 7 10 53 068 000 43/1 696 3/140 000 210 GB 3 7 7 7 7
VTAB 3 19 2 244 000 2/397 40/1 000 100 GB 3 7 7 7 7
MS-COCO 1 1 328 000 80/80 9/10 777 44 GB 7 7 7 7 7
Mini Imagenet 1 1 60 000 100/100 600/600 1 GB 7 3 3 3 7
Omniglot 1 1 32 000 1 623/1 623 20/20 148 MB 7 3 3 3 7
CUB-200 1 1 6 000 200/200 20/39 647 MB 7 3 7 7 7
CIFAR-100 3 1 60 000 15/50 600/600 161 MB 7 3 3 3 7

Meta-Album Micro 10 40 32 000 19/20 40/40 380 MB 3 3 3 3 3
Meta-Album Mini 10 40 220 950 19/706 40/40 3.9 GB 3 3 3 3 3
Meta-Album Extended 10 40 1 583 624 19/706 1/187 384 15 GB 3 3 7 3 3

CTrL is a continual transfer-learning benchmark [72] including 7 commonly used datasets in image
classification. In reinforcement learning, sets of simulation environments exist for meta- and transfer
learning, such as Meta-World [81].

Outside few-shot and meta-learning: The AutoDL challenge [40] features a series of 66 datasets
from numerous domains. These datasets cover a wide range of modalities: image, video, audio, text,
and tabular. This competition focuses on finding a universal algorithm, which can solve many tasks
without human supervision.

We compare Meta-Album with previous benchmarks/datasets in Table 1, and provide further details
in Appendix G. Meta-Album covers a variety of domains, including ecology, manufacturing, tex-
tures, object classification, and character recognition, as well as a variety of scales: microscopic,
macroscopic (human scale), or distant (remote sensing). While mostly re-purposing public datasets
from heterogeneous sources to maximally vary recording conditions, we also introduce a few fresh
datasets in OCR and ecology domains. Meta-Album comprises 3 different versions, Micro ⇢ Mini ⇢
Extended: Micro includes 20 classes and 40 images per class for ease of running sample code, Mini
retains all original classes but also includes only 40 examples per class, while Extended includes all
classes and examples. The variety of versions positions Meta-Album anywhere amongst small-scale
datasets such as Omniglot [32], miniImageNet [73, 52] and CUB [74], which usually have at most
70 000 images in total and weigh at most a few GB, or very large-scale benchmarks such as Meta-
dataset [70] and VTAB [10], which have more than 50 million images, weigh at least a few hundreds
GB, and require high-end super-computer clusters. Its principal distinguishing feature is that it has,
by far, the largest number of domains and datasets, collected in different conditions, and that it is
designed to be continually extended by either adding new domains or new datasets in already
existing domains, making it a tool of choice for cross-domain, domain-independent, and continual
learning studies. Secondly, while other benchmarks usually provide only raw data, we format all
images uniformly as 128⇥ 128 pixel maps, which has two benefits: reducing the storage/memory
footprint and facilitating the benchmarking of methods independent of preprocessing steps. To that
end, we optimized cropping and resizing to reduce dimensions as much as possible without degrading
performance too much. In addition, Meta-Album includes datasets that have a large number of
classes and class hierarchy annotations when available, with a minimum number of classes and
examples per class: at least 20 classes (except one dataset having only 19 classes) with a minimum
of 40 examples per class. This facilitates benchmark design, allowing us to vary the number of
classes and the number of training examples per class over a large range of values. Finally and
importantly, we selected datasets that are not typically used in transfer-learning or meta-learning
benchmarks, e.g., for pre-training backbone networks, such as ImageNet (which is included in
e.g., Meta-Dataset), or for conducting other meta-learning or transfer-learning experiments, such as
Omniglot, CIFAR-100, SVHN, or MNIST (which are included in e.g., VTAB and CTrL). This avoids
giving an unfair advantage to methods that were developed using such commonly used datasets.
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1.3 Contributions and recommended use

In summary, the contributions of our work are the following.

• We provide a new meta-dataset for few-shot learning and meta-learning consisting of 40
uniformly formatted datasets from 10 domains, which facilitates research in cross-domain
meta-learning as well as practical and realistic evaluation of few-shot algorithms.

• We provide 3 versions of each dataset: Micro, Mini, and Extended to facilitate usage by
researchers with access to different amounts of computational power.

• We uniformly preprocessed and formatted data, but also provide instructions to retrieve
the corresponding raw data on our aforementioned website.

• We stimulate community-driven benchmarking, in conjunction with our challenge series,
by welcoming new contributors and providing software and instructions to create additional
datasets for Meta-Album, with strict quality control and review processes.

• We showcase our new meta-dataset by performing an experimental evaluation for several
use cases, including transfer learning, few-shot meta-learning, and cross-domain few-shot
meta-learning tasks, using a variety of algorithms, and we open-source the code used.

The recommended use of Meta-Album is to conduct fundamental research on machine learning
algorithms and perform benchmarks, particularly in few-shot learning, meta-learning, continual
learning, transfer learning, and image classification. Meta-Album is not recommended to create
products, whether commercial or not, or to derive scientific findings outside benchmarking.

2 Meta-Album design and initial release

In this section, we explain the motivations behind the design of Meta-Album and present the 30
datasets included in the initial NeurIPS 2022 release. 10 more datasets are kept private, and will be
released in spring 2023.

2.1 Motivation

Meta-Album emerged from a sequence of few-shot meta-learning benchmarks, following the problem
formulations described in Section 3.1. The first of these was the 2020 MetaDL-mini challenge, which
was run in conjunction with AAAI 2021 [12]. It followed the “within domain few-shot learning”
protocol, and algorithms were evaluated with small-scale public datasets (Omniglot and CIFAR-100).
Subsequently, we designed a first version of Meta-Album, including 15 datasets, for a larger-scale
“within domain few-shot learning” challenge (MetaDL @ NeurIPS 2021 [13]). Here, algorithms were
meta-trained and meta-tested on tasks extracted from a single dataset at a time, and performances
were averaged over 5 datasets, both in the feedback phase and the final evaluation phase, to obtain
a more robust evaluation. The 5 extra datasets were provided for practice purposes. The results of
this challenge (further detailed in Section 3) indicated that these tasks were well within reach of
state-of-the-art methods. This motivated us to move to the “cross-domain few-shot learning” setting.
The design of this new challenge (part of an official NeurIPS 2022 challenge [6]) motivated us
to grow Meta-Album to 30 datasets spanning multiple domains. We intend to continue growing
Meta-Album and already have 10 more datasets lined up, in preparation for the next challenge. This
will constitute a rolling benchmark: with each new challenge, previous feedback datasets are publicly
released, previous final evaluation datasets become feedback datasets, and fresh datasets become final
evaluation datasets.

Existing meta-datasets did not allow us to carry out our challenge program for several reasons:
(1) they included datasets too familiar to the meta-learning community; (2) they did not include
enough datasets to robustly evaluate participants (particularly in the cross-domain setting); (3) their
datasets had a large variance in number of classes and examples per class, introducing bias in our
experimental design. This required us to source new datasets. Furthermore, since these challenges
include code submission, and providing the same resources to all participants, we needed to limit
computational resources. Therefore, we had to downscale images while taking care that this does not
significantly degrade performance.
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2.2 Data search

Many people were involved in the sourcing of all datasets and their preparation, and they are gratefully
acknowledged in our acknowledgements. This collaboration followed precise instructions to identify
datasets that are: (i) from the same domain; (ii) freely available for academic research; (iii) having at
least 20 classes with at least 40 examples per class; (iv) with images of good enough quality by visual
inspection and with no offensive material (we excluded “deprecated” datasets); (v) with baseline
performance within a given range.

The last criterion was needed to ensure the success of our challenges, since tasks that are too easy
or too hard do not allow us to separate challenge participants. For the purpose of designing Meta-
Album, we defined a “domain” according to four characteristics: (1) application domain; (2) pattern
recognition problem (texture or object classification); (3) scale: micro, human scale, or distant;
(4) input channels. We ended up with 10 domains (see Table 2): Large animals, small animals, plants,
plant diseases, microscopy, remote sensing, vehicles, manufacturing, human actions, and optical
character recognition (OCR). Data sources were very varied, and mostly came from internet searches,
but we also produced our own optical character recognition datasets and obtained novel donated data.

2.3 Data preparation

We performed several iterations of preprocessing, experiments, and analyses to prepare the datasets.
This workflow included identifying and, when possible, correcting bias and artifacts (including
artifacts we may have introduced by resizing and cropping images), and making sure that images are
recognizable by human eye inspection.

As we work with datasets from diverse sources, each dataset requires a different preprocessing
strategy, e.g., the small animals’ datasets, plant-diseases datasets, manufacturing, and remote sensing
datasets have images in different resolutions and orientations. However, usually, the object of interest
lies in the middle of the image, which facilitated cropping images horizontally or vertically to
get squared images. In some cases, e.g., the plankton dataset, the image orientation depends on
the shape of the plankton and the way it is photographed, i.e., images have vertical or horizontal
orientations based on the plankton in the image. Cropping images is not useful in this case because a
big part of the plankton would be cropped. As such, we added a matching background to the images
(either horizontally or vertically) by extending the top and bottom 3 rows or left and right columns
respectively. In order to make sure that we do not introduce artifacts in the data, afterwards we
applied a Gaussian kernel of size (29, 29) using open-cv [3] to the newly constructed background.
In other cases, the area of interest was not necessarily centered, e.g., human action datasets, and we
had to use a human face detector to locate the subject, and then we cropped the upper body. For all
datasets except for the optical character recognition datasets, we resized the images to a 128⇥ 128
resolution using an anti-aliasing filter [3]. The optical character recognition datasets are synthetically
generated directly to the correct dimension by OmniPrint [64] (MIT license), and do not need further
processing. The preprocessed data was formatted in a data format conserving as much meta-data
as possible. For the micro and the mini version, only classes with at least 40 examples are kept for
each dataset to maintain a balance between a large number of classes and sufficient examples per
class while for the extended version, all classes and all images are kept. More details about data
preparation and formatting can be found in Appendix C.

2.4 Initial Meta-Album release

The initial release of Meta-Album consists of 3 datasets for each of the 10 domains. Each dataset
has 3 versions controlling the size, as explained in Section 1.2. All datasets are annotated with class
labels and other meta-data. All 30 datasets were chosen after careful and critical analysis during the
data preparation and quality control steps as described in Appendix C. Table 2 provides statistics on
the various versions; Figure 1 shows sample images from each dataset. More details about datasets
and their meta-data are listed in Appendix A. License information for all datasets can be found
in Appendix B. Meta-Album datasets are being used in the NeurIPS Cross-domain meta-learning
Challenge 2022. The first 30 datasets are available on OpenML [71], and later in spring 2023, 10
more datasets will be released, followed by other releases as our challenge program unfolds. Details
about how to access Meta-Album datasets, contribute to the open meta-dataset, prepare new datasets
with quality control, and submit these datasets for inclusion in Meta-Album can be found on the
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Table 2: Meta-Album: Datasets summary (Mini versions)
Domain ID Domain Name Set # Dataset ID Dataset Name # Categories # Images Original source

LR_AM Large Animals
0 BRD Birds 315 12 600 Birds 400 [50]
1 DOG Dogs 120 4 800 Stanford Dogs [27]
2 AWA Animals with Attributes 50 2 000 AWA [78]

SM_AM Small Animals
0 PLK Plankton 86 3 440 WHOI [62]
1 INS_2 Insects 2 102 4 080 Pest Insects [76]
2 INS Insects 104 4 160 SPIPOLL [59]

PLT Plants
0 FLW Flowers 102 4 080 Flowers [44]
1 PLT_NET PlantNet 25 1 000 PlantNet [18]
2 FNG Fungi 25 1 000 Danish Fungi [48]

PLT_DIS Plant Diseases
0 PLT_VIL PlantVillage 38 1 520 PlantVillage [23, 46]
1 MED_LF Medicinal Leaf 25 1 000 Medicial Leaf [55]
2 PLT_DOC PlantDoc 27 1 080 Plant Doc [60]

MCR Microscopy
0 BCT Bacteria 33 1 320 DiBas [84]
1 PNU PanNuke 19 760 PanNuke [16, 17]
2 PRT Subcel. Human Protein 21 840 Protein Atlas [66]

REM_SEN Remote Sensing
0 RESISC RESISC 45 1 800 RESISC45 [8]
1 RSICB RSICB 45 1 800 RSICB128 [35]
2 RSD RSD 38 1 520 RSD46 [79, 41]

VCL Vehicles
0 CRS Cars 196 7 840 Cars [29]
1 APL Airplanes 21 840 Multi-type Aircraft [77]
2 BTS Boats 26 1 040 MARVEL [19]

MNF Manufacturing
0 TEX Textures 64 2 560 KTH-TIPS [15, 42] Kylberg [31] UIUC [33]
1 TEX_DTD Textures DTD 47 1 880 Texture DTD [9]
2 TEX_ALOT Textures ALOT 250 10 000 Texture ALOT [5]

HUM_ACT Human Actions
0 SPT 100 Sports 73 2 920 100 Sports [49]
1 ACT_40 Stanford 40 Actions 39 1 560 Stanford 40 Actions [80]
2 ACT_410 MPII Human Pose 29 1 160 MPII Human Pose [1]

OCR Optical Char. Recog.
0 MD_MIX OmniPrint-MD-mix 706 28 240
1 MD_5_BIS OmniPrint-MD-5-bis 706 28 240 OmniPrint [64]
2 MD_6 OmniPrint-MD-6 703 28 120

Meta-Album Website. This web page will also inform on software updates and revisions or new
releases of our meta-dataset.

3 Use cases and baselines

This section illustrates how Meta-Album can be used for a variety of purposes. The code of all exper-
iments is provided in our GitHub repository https://github.com/ihsaan-ullah/meta-album,
and can serve as a basis to benchmark new algorithms against the baseline methods we investigate
here. The problems investigated range from few-shot learning (for which Meta-Album was designed)
to multi-class image classification, transfer learning, hierarchical classification, and continual learning.
Because of lack of space, we only report few-shot learning experiments.

3.1 Problem setting

In this paper, we focus on few-shot image classification, where the goal is to learn to perform new
classification tasks from a limited number of examples. Here, every task Tj = (Dtrain

Tj
,Dtest

Tj
)

consists of a support set Dtrain
Tj

with training examples and a query set Dtest
Tj

with test examples.2

In N-way k-shot classification, we require that every support set contain exactly N classes with k
examples per class (kN = |Dtrain

Tj
|). Another requirement is that the classes in the query set must

occur in the support set.

Few-shot learning does not necessarily require meta-learning. As in other “regular” learning problems,
a learner, having available a set of training examples Dtrain

Tj
for a given task, can just return a trained

model (classifier). But meta-learning is frequently used to enhance few-shot learning.

In a meta-learning problem, a meta-learner, having available a set of m training tasks Mtrain
D =

{Tj}mj=1, returns a meta-trained learner. In order to develop a meta-trained few-shot learner, available
data organized in tasks MD (coming either from one or multiple datasets) are split into three “meta-
splits” containing disjoint sets of classes: meta-training split Mtrain

D , meta-validation split Mvalid
D ,

2The nomenclature support set instead of training set, and query set instead of test set is common in the
meta-learning literature. It highlights the fact that, while meta-training is done on tasks = {support set, query
set}, no actual test-data is presented to the classifier. The meta-test data also includes pairs of support and query
sets, from which the ground truth of query set samples is hidden from the classifier.
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Table 3: Datasets used in the NeurIPS 2021 MetaDL challenge [13].
Phase Datasets according to Table 2

Feedback Phase SM_AM.PLK, MDN.MLD, MNF.TEX_DTD, REM_SEN.RSICB,
OCR.MD_MIX

Final test phase SM_AM.INS, PLT_DIS.PLT_VIL, MNF.TEX, REM_SEN.RESISC,
OCR.MD_5_BIS

and meta-testing split Mtest
D . The learner is meta-trained with Mtrain

D . During meta-training,
the learner is evaluated with Mvalid

D every few meta-training cycles, to monitor progress. The
final product of meta-training when the time budget has elapsed, is the learner with the highest
performance on Mvalid

D tasks. It is then evaluated on tasks from Mtest
D .

Within the realm of few-shot learning, we distinguish two cases. Within domain few-shot learning
refers to the problem where data from the meta-validation and meta-test splits come from the
same domain as meta-training data. Here, domain refers to one single dataset of Meta-Album
Di, i 2 {1, . . . , 30}. We enforce that Di is partitioned into Mtrain

Di
, Mvalid

Di
, and Mtest

Di
, using

three disjoint sets of classes. In this setting, the goal of learners is to learn tasks including classes
coming from the same original domain/dataset. If the learner has been meta-trained, test tasks
include new classes unseen during meta-training. Cross-domain few-shot learning, in contrast,
is a setting for which meta-split is performed at dataset level instead of class level. Once the learner
has been meta-trained, test tasks come from new datasets unseen during meta-training. Note that
as a consequence, there is still a slight domain overlap between the meta-train, meta-validation and
meta-test dataset. For example, the meta-train dataset can contain observations from ten different
datasets, including the ‘Fungi’ dataset, whereas the learner will be evaluated on a meta-test dataset
constructed from ten different datasets, including the ‘Flowers’ dataset. This introduces two important
challenges for the meta-learning algorithms whenever confronted with a given task in the meta-test
set: 1) it has to deal with several classes in the meta-train set that are not related to the concepts from
the task at hand. 2) while there are indeed observations in the meta-train set that are related to concept
of the current task, these come from a different dataset, and might be sampled according to different
conditions (different camera, lightning, geographical area, etc.). This aligns with the cross-domain
setting introduced in the NeurIPS’22 meta-learning challenge [6]. Beyond the cross-domain setting,
one can imagine a ‘domain independent’ setting, where each of the meta-train, meta-validation and
meta-test datasets contain classes from different domains, and therefore no domain knowledge from
the meta-train phase can be exploited.

We also distinguish between fixed N-way k-shot evaluations and any-way any-shot evaluations.
The former requires fixing the value of N and k for the entire benchmark. The latter requires
randomly choosing N and k for each task, within pre-defined ranges. Meta-Album allows us to
choose N 2 [2, 20] and k 2 [1, 20].

3.2 Experiments

The first motivational use of Meta-Album has been the NeurIPS 2021 MetaDL challenge [13].
This was a meta-learning challenge with code submission, aiming at evaluating few-shot learning
methods in the within domain setting, as described in Section 3.1. The evaluation was carried out
with 600 tasks in the 5-way 5-shot setting, using a subset of Meta-Album (see Table 3).

The solutions of the top participants have been open-sourced. In a paper, authored collaboratively
between the competition organizers and the top-ranked participants [13], we analyse the results of the
competition. The lessons learned include that learning good representations is essential for effective
transfer learning. The winner’s solution MetaDelta++ [7], based on a combination of pre-trained
backbone networks, performed best on all final 5 test phase datasets, with high accuracy scores (0.98,
0.94, 0.99, 0.92, 0.94). This indicates that, in future challenges, we are ready to tackle harder tasks,
and motivated us to move to cross-domain few-shot learning, in the any-way any-shot setting
for the NeurIPS 2022 challenge [6]. Fine-tuning backbones on meta-training data turned out to be
important, though there are indications that off-the-shelf backbones pre-trained with self-supervised
learning on massive datasets might become the way of the future, essentially making meta-learning
unnecessary for image classification problems. Thus, meta-learning should be benchmarked in de
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novo training conditions, in the future, to prepare for scenarios (in other domains) in which such
backbones are not available. The NeurIPS 2022 challenge encourages de novo training in a dedicated
league. Appendix D contains a detailed analysis of the difficulty of all Meta-Album datasets following
the NeurIPS 2021 MetaDL challenge protocol.

Difficulty of cross-domain few-shot learning

To evaluate the gap in difficulty between “within domain” and “cross-domain” few-shot learning
problems (Section 3.1), we carried out first experiments in the 5-way [1, 5, 10, 20]-shot setting. For
all experiments, we use Meta-Album Mini, single PNY GeForce RTX 2080TI GPUs with 11GB of
VRAM or a single NVIDIA V100 with 16GB of VRAM. Each experimental run took at most 24
hours on the former GPU (for details, please see Appendix E and Appendix F).

Although several methods have been proposed in the state-of-the-art to tackle the cross-domain few-
shot learning problem [11, 36, 37, 38, 39, 51, 69], they require too much time or are not compatible
with our fully supervised setting. Therefore, we investigated the few-shot learning performance
of popular meta-learning methods: MAML [14], Matching networks [73], and Prototypical net-
works [61]. We compared them against two baseline methods: TrainFromScratch (learning every
task starting from a random initialization at meta-test time, i.e., no meta-learning) and FineTuning,
which is pre-trained on the classification problem arising from concatenating all meta-training classes
and corresponding data and only fine-tunes the last layer at meta-test time [7]. All techniques use a
ResNet-18 backbone [21] and are trained from scratch on Meta-Album (not using any pre-trained
feature extractors) using the best-reported hyperparameters by the original authors on 5-way 5-shot
miniImageNet (i.e., for FineTuning the backbone is pre-trained with Meta-Album meta-training data
only). It is worth mentioning that the purpose of our baseline methods is to give a set of “classical”
and “representative” techniques, not to be exhaustive.

For a given dataset, all meta-learning techniques are meta-trained on 60 000 tasks. However, the
backbone used for FineTuning is meta-trained (pre-trained) on 60 000 randomly sampled batches of
size 16. The performance of trainers is validated every 2 500 tasks (or batches in case of pre-training
the FineTuning backbone). The query set for every task contains 16 examples per class, following [7].
The learning algorithm with the best validation performance is evaluated on 600 meta-test tasks
randomly sampled from the meta-testing split, which has information from unseen classes during
training and validation. We average the results over 3 runs with different random seeds. Error bars
are 95% confidence intervals of the mean overall meta-test tasks in all runs (1 800 tasks per dataset).

Results are shown in Figure 2. A first observation is that Prototypical Networks (ProtoNet) dominate
other algorithms (both within domain and cross-domain) and that the ranking of algorithms does
not significantly change with the number of shots. However, the exception is FineTuning for 1-shot
learning in the cross-domain configuration, which outperforms ProtoNet by a small margin. Moreover,
we observe that FineTuning outperforms MAML and Matching Networks (the other episodic meta-
learning algorithm we tried), corroborating findings showing that finetuning yields excellent few-shot
learning performance without using episodic meta-learning [7, 25, 67, 68]. We also see that the
naive baseline TrainFromScratch yields the worst performance, indicating that meta-learning actually
helps transfer knowledge to new tasks. Furthermore, we observe that the performances improve
with the number of shots (training examples per class). Lastly, the details provided in Appendix E
and Appendix F show that FineTuning is the fastest method at training time while ProtoNet and
MatchingNet are the fastest methods at inference time with less than 1 second per task.

For cross-domain few-shot learning, as can be expected, the accuracy is lower since the problem is
more complex. However, it does not dramatically decrease compared to within domain few-shot
learning, which leads us to speculate that such a new problem is within reach of the current state-
of-the-art. This gives rise to new opportunities for improvement in this more complicated and more
realistic setting.

Difficulty of “any”-way “any”-shot learning

Moving to yet more realistic and harder tasks, we also investigated the performance in the “any”-way
“any”-shot setting, where tasks at meta-test time include a varying number of classes between 2 to
20 and a varying number of examples per class between 1 to 20. For example, at meta-test and
meta-validation time, some carved out tasks might be as follows: Test task 1: 5-way 1-shot task
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(a) Within domain (b) Cross-domain

Figure 2: Comparison of “within domain” and “cross-domain” few-shot learning. We plot
5-way [1, 5, 10, 20]-shot learning meta-test mean task accuracy, averaged over 1 800 tasks drawn
from the 30 released Meta-Album datasets. Corresponding 95% confidence intervals are within the
size of the symbols.

(a) Difficulty of fixed and variable # of ways and shots (b) Influence of # of ways

Figure 3: Comparison of “cross-domain” few-shot learning using fixed and variable number of
ways and shots, and influence of number of ways on performance. We plot few-shot learning
meta-test mean task accuracy, averaged over test tasks drawn from the 30 released Meta-Album
datasets. Corresponding 95% confidence intervals are almost imperceptible as they are around ±0.15.

from Dataset 9; Test task 2: 3-way 15-shot task from Dataset 3; Test task 3: 12-way 4-shot task
from Dataset 8; etc. However, during the meta-training phase, we kept the number of classes constant
(specifically, we used 5-way any-shot tasks). This facilitates using off-the-shelf meta-learning
techniques. All other experimental conditions (hyper-parameters, computational resources) are the
same as in the previous section.

In Figure 3a we can observe that the complexity of the any-way any-shot setting is similar to the
5-way 1-shot setting. Nevertheless, the meta-learning approaches (ProtoNet, MatchingNet, MAML)
adapt better to this novel setting since their performance is better than the one achieved in the 5-way
1-shot setting, while the performance of FineTuning and TrainFromScractch is worse compared to the
same setting. Additionally, the results presented in Figure 3b and Appendix F show that the dominant
difficulty factor in any-way any-shot learning is the variability in the number of ways since as it can
be seen, the performance of the evaluated methods is highly affected by the increment in this number.
This is supported by the fact that the absolute Pearson correlation between the number of ways and
the test accuracy is larger (r=-0.55, p<0.05) than the correlation between the number of shots and the
accuracy (r=0.1, p<0.05). Therefore, we anticipate that this new setting of any-way any-shot learning
will deliver new interesting results in the upcoming challenge.
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4 Discussion and conclusion

We introduce Meta-Album, a new meta-dataset for few-shot image classification, which is both
practical and extensive: it includes many datasets from a wide variety of domains, all preprocessed
to allow training according to different settings on commodity GPUs. It is especially amenable
to evaluating meta-learning and transfer learning techniques. It can also be used for hierarchical
classification as well as domain adaptation, due to the presence of overlapping classes between
datasets, and continual learning, where algorithms are progressively trained across datasets.

We evaluate the utility of Meta-Album using a range of few-shot learning experiments. Our findings
include that Prototypical Networks and the FineTuning baseline perform quite well. This corroborates
the results of the NeurIPS’21 challenge, in which the winners capitalized on the use of pre-trained
backbones, obtaining results in the high 90% classification accuracy in the “within domain” 5-way
5-shot setting [13]. Meta-Album will further challenge the research community by being considerably
larger and by mixing tasks from multiple domains, in [2-20]-way [1-20]-shot settings. Furthermore,
Meta-Album allows de novo training. We tested and compared this new framework to that of previous
challenges and demonstrated an increased difficulty on all our baseline methods.

In preparing the datasets we identified several types of biases, including correlations between class
labels and nuisance variables (e.g., background, luminosity, contrast, colour spectrum, position and
orientation of objects). In this first release, we avoided correcting such biases, to avoid introducing
yet more bias, and opted to homogenize the datasets by shuffling the examples. We documented
our findings to facilitate the creation of challenges that study the problem of bias, in which the
(meta-)training data and (meta-)test data will have distribution shifts.

In future work, we want to make tasks more challenging by ensuring that every task consists of
related concepts, belonging to a same super-class. For example, insects from the Coleoptera order
have more resemblance with one another than with insects coming from another order, e.g., butterflies.
As such, it would be more challenging to have a task where the goal is to classify various insects from
the Coleoptera order, rather than a tasks where insects from various orders are combined into one
classification task. This requires datasets in which class hierarchies are provided, and we currently
have only a few of those. Further work also includes introducing the even more difficult “domain
independent” settings, in which meta-training and meta-testing are performed on entirely different
domains. Indeed, a problem setting where the goal is to learn how to learn on tasks that are not related
to the meta-test data, would truly challenge a meta-learning system.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A] There are

no negative societal impacts. Rather, this meta-dataset can foster progress in the fields
of few-shot learning and meta-learning. We have added “recommended use” in Section
1.3.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g., for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] The
code and instructions are publicly released on the Meta-Album GitHub repository
(https://github.com/ihsaan-ullah/meta-album)

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] See Section 3.2. Additional details can be found in the Meta-Album GitHub
repository.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Figure 2, Figure 3, Appendix E, Appendix F

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] For used resources, see Section 3.2,
and for detailed running times see Appendix E, Appendix F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

[Yes] See Section 3.2, Appendix A and datasheets for dataset
(b) Did you mention the license of the assets?

[Yes] See Appendix B
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide software for data formatting, data quality control and conversion on the
Github repository https://github.com/ihsaan-ullah/meta-album

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? Yes, we provide details in Appendix B.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] None of the datasets allow for personal
identification

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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