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ABSTRACT In the context of the current COVID-19 pandemic, various sophisticated epidemic and machine
learning models have been used for forecasting. These models, however, rely on carefully selected archi-
tectures and detailed data that is often only available for specific regions. Automated machine learning
(AutoML) addresses these challenges by allowing to automatically create forecasting pipelines in a data-
driven manner, resulting in high-quality predictions. In this paper, we study the role of open data along
with AutoML systems in acquiring high-performance forecasting models for COVID-19. Here, we adapted
the AutoML framework auto-sklearn to the time series forecasting task and introduced two variants for
multi-step ahead COVID-19 forecasting, which we refer to as (a) multi-output and (b) repeated single
output forecasting. We studied the usefulness of anonymised open mobility datasets (place visits and the
use of different transportation modes) in addition to open mortality data. We evaluated three drift adaptation
strategies to deal with concept drifts in data by (i) refitting our models on part of the data, (ii) the full data,
or (iii) retraining the models completely. We compared the performance of our AutoML methods in terms
of RMSE with five baselines on two testing periods (over 2020 and 2021). Our results show that combining
mobility features and mortality data improves forecasting accuracy. Furthermore, we show that when faced
with concept drifts, our method refitted on recent data using place visits mobility features outperforms all
other approaches for 22 of the 26 countries considered in our study.

INDEX TERMS Automated machine learning, time series forecasting, concept drift, COVID-19, mobility
data.

I. INTRODUCTION

In December 2019, a coronavirus disease (COVID-19),
caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), emerged in the city of Wuhan,
China. By January 2020, the World Health Organisation
advised governments to prepare for active surveillance and
case management [1]. For policymakers to respond ade-
quately, the ability to accurately forecast the spread of the
disease is essential. This has inspired many researchers to
work on forecasting methods in response to the COVID-19
pandemic based on available data. Such data may be in the
form of the number of confirmed cases, deaths, hospitalisa-
tions or vaccinations. Agencies such as the European Centre
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for Disease Prevention and Control [2] have invested substan-
tial effort into consolidating such data sources. Furthermore,
several technology companies — including Apple, Facebook,
Foursquare and Google — have published data reflecting the
movement of people within a population. These data sources
are interesting with respect to COVID-19 forecasting, as the
movement of people is directly related to the spread of the
contagious disease.

Despite such efforts, loannidis ef al. [3] claim that fore-
casting for COVID-19 has majorly failed. They argue that
draconian countermeasures have been taken on the basis
of incorrect modelling assumptions, poor data quality and
high sensitivity of estimates due to exponentiated variables.
Early models have built upon speculations while predict-
ing for entire seasons. As a result, many forecasting models
would only work well for isolated homogeneous populations
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but not for richer real-world scenarios. In this paper,
we study to understand why forecasting COVID-19 is diffi-
cult and how available open data and recent advancements in
machine learning can be used to create accurate forecasting
models.

Constructing high-performance machine learning pipelines
is challenging. A forecasting task pipeline typically consists
of many steps, such as data pre-processing, feature extraction
and selection, and model fitting. For each of these steps,
choices need to be made, and corresponding hyperparameters
need to be tuned that may impact the accuracy of predictions.
Manual tuning often relies on simplifying assumptions,
which may not fully capture the underlying characteris-
tics of the data. Automated machine learning (AutoML)
is a recently growing field that enables users to construct
high-performance classification or regression pipelines in a
fully automated manner. AutoML has been demonstrated
to extract competitive and high-quality models automati-
cally in various applications, often outperforming manually
tuned models. Successful AutoML frameworks include auto-
sklearn [4], Auto-Keras [5] and Auto-WEKA [6].

In this work, we approach the forecasting of COVID-19
mortality as a time series regression task and explore how
AutoML can be deployed for this goal. Specifically, we look
into the role of different datasets and how to account for
data drift when the underlying concept generating the data
changes. We are forecasting COVID-19 substantially later
than early work, such as [7], [8], [9]. This gives us the oppor-
tunity to use methods that need more training data (e.g.,
deep learning models) and would not be feasible in early
forecasting scenarios. We adapt the well-known and freely
available AutoML framework auto-sklearn [4] to the task
of COVID-19 forecasting. Extending this framework, in this
paper, we aim to investigate the usefulness of various disease
and mobility datasets, analysing how they can best be used
for COVID-19 forecasting. There are two main challenges
to achieve this goal. The first challenge lies in the fact that
auto-sklearn was not explicitly designed for the task of time
series forecasting. Time series forecasting introduces extra
parameters to set for instance to allow for suitable input win-
dow sizes and forecasting horizons. The second challenge is
that available AutoML frameworks such as auto-sklearn are
designed for data with a stable data generation process. The
pandemic, however, has a complex data generation process.
As lock-down policies are applied, the virus mutates, or vac-
cination campaigns modulate its spread, the underlying data
generation process undergoes substantial changes. This type
of concept drift necessitates adaptations to this framework in
order to ensure high-quality forecasting results. Our contri-
butions in this paper are as follows:

« We adapt the auto-sklearn AutoML framework to the
task of forecasting COVID-19 mortality data and intro-
duce two AutoML forecasting variants for multi-step
ahead time series forecasting.

« We study how we can incorporate anonymised mobility
data representing place visits and the use of different
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transportation modes. We also study to which extent
doing so permits more accurate forecasting.

o We extend this framework to take into account
non-stationarity and concept drift in the data by com-
paring the performance of three different drift adaption
strategies.

« We evaluate our methods on real-world datasets from
58 countries worldwide and against five baselines.

Il. RELATED WORK

A. COMPARTMENTAL MODELS

Traditionally, epidemics are charted using compartmental
models, like the SIR model [10]. This model splits the popu-
lation of individuals in different compartments based on their
health status. At each time step, the flow of individuals tran-
sitioning from one compartment to the other is described by
differential equations, representing contact ratios and recov-
ery time. Given more knowledge about a given disease, more
complex compartmental models may be created by adding
more compartments that reflect that knowledge. The SEIR
model [11], for instance, extends the SIR model by injecting
the exposed compartment, holding people infected by the
disease but not yet capable of infecting others.

B. COMPARTMENTAL MODELS WITH CONTACT
NETWORKS

Basic compartmental models require the unrealistic assump-
tion that the population is homogeneous and every individual
has an equal amount of contact with every other individ-
ual. To become more realistic, compartmental models may
be extended with contact networks. Liu et al. [12] used a
multi-layered contact network — where each layer entails a
mode of contact — and an SIR model to simulate the prop-
agation of flu. They show that this approach gives more
insights about the underlying dynamics of the spread of dis-
eases. Balcan et al. [13], similarly used a multi-scale network
to simulate an influenza-like disease. Instead of individuals,
they used sub-populations as nodes and gravitational flow
derived from commuting and flight data as weights for the
edges introducing a form of spatial awareness to the com-
partmental models.

In order to create realistic contact networks, detailed
mobility datasets are needed. Ideally, these datasets encom-
pass the entire population of a region, detailing where and
how people have come in contact with each other. In real-
ity, datasets often summarise interactions and often present
samples of a population. Also, recorded interactions in these
datasets are not enriched with duration, or intensity [14].
Contact networks where individuals are simulated as a basis
for the spread of diseases are called agent-based networks.
To create agent-based networks, one needs datasets con-
taining the movement patterns of individuals. For instance,
Aleta et al. [15] created an agent-based network using a
dataset containing place visits published by Foursquare
to simulate the spread of COVID-19 through a synthetic
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population in the Boston metropolitan area. While for some
countries, the mobility data is detailed enough to create real-
istic contact networks, for most, this is not the case. In many
countries, mobility data is considered as personal data and
should not be collected. In our work, we make predictions
for a large number of countries. Instead of detailed mobil-
ity data on the individual level, we use aggregated mobility
data on a national level. This is not detailed enough to con-
struct contact networks. However, such datasets can easily
be shared and used as features for regressors and extracting
general knowledge from global data that can be useful for
forecasting.

C. AUTOREGRESSIVE MODELS

Another classic approach is to use autoregressive meth-
ods. An autoregressive model is a regression model where
the input variables are observations from previous time
steps. ARIMA models were successfully deployed to fore-
cast COVID-19. Kumar et al. [16] used the ARIMA model
to analyse the trend of 15 countries during the first three
months of the pandemic. Alzahrani et al. [17] compared the
ARIMA model with the simpler AR, MA and ARMA mod-
els making forecasts for four weeks for Saudi Arabia and
found that ARIMA outperformed the others. Chakraborty
and Gosh [9] extended an ARIMA model by adding a
wavelet transformation on the residuals of the model. This
improved the forecasts and was tested for Canada, France,
India, South Korea and the UK on a forecasting range of ten
days.

D. DEEP LEARNING MODELS

Recently, deep learning methods got applied to forecast epi-
demics. One of such approaches is the work by Wu et al. [18]
who predicted flu in the United States using a combina-
tion of CNN, RNN and residual links. They achieved a
robust improvement over autoregressive models using mul-
tiple real-world datasets. Aiken et al. [19] compared autore-
gressive models with a GRU RNN to predict flu prevalence.
They found that on larger prediction horizons, the RNN
achieved significantly lower RMSE. Fu et al. [20] predicted
influenza using an attention-based LSTM. One of the obser-
vations they made was that the sequence length of their train-
ing data highly influenced the performance of their model.
Applied to COVID-19, many other work has been performed
using LSTMs [8], [21], [22], [23]. Shahid ef al. [24] perform
a comparative study using a GRU, LSTM and Bi-directional
LSTM. To train deep neural networks, one needs a lot of
training instances. As for early epidemics, the number of
instances is limited, and it may be challenging to create suf-
ficiently detailed models. Typically, the architecture used has
a great influence on the performance of the model and should
be carefully constructed. In our work, this is not necessary
as we use the underlying characteristics of the pandemic
to automatically create our models. It is possible to auto-
matically construct deep learning architectures via Neural
Architecture Search, using for example, Auto-Keras [5] or
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Auto-Pytorch [25], but as these need large quantities of data,
the amount of data available in epidemics may be insufficient.

E. AUTOMATED MACHINE LEARNING METHODS

The creation of regression pipelines encompasses many steps;
data pre-processing, feature pre-processing, hyperparame-
ter optimisation and algorithm selection. The best choice
of the algorithm, pre-processing step and further how to
set their hyperparameters, typically depends on the data at
hand. Therefore, it is difficult to select a single algorithm
to ensure that the best model is configured for a forecast-
ing problem. Different choices of these components may
vastly influence the predictive performance of the pipeline,
which is why we can benefit from making these choices
automatically. AutoML systems have recently addressed this
issue through developing techniques to automatically config-
ure high-performing machine learning pipelines. Sequential
Model Based Optimisation (SMBO) is a black box optimisa-
tion framework that has been used for the purpose of hyper-
parameter optimisation. Hutter ez al. [26] used (SMBO) to
automatically optimise hyperparameters of machine learn-
ing algorithms. Sequential Model-based Algorithm Config-
uration (SMAC) [27] is a system that implements SMBO
and can be used for hyperparameter optimisation. This is
a general-purpose algorithm configurator, which makes it
possible to both select algorithms and tune their hyperpa-
rameters efficiently. Auto-WEKA [6] is an AutoML frame-
work around the WEKA software package using SMAC for
its configuration. This framework fully automated the cre-
ation and tuning of classification and regression pipelines.
Auto-sklearn [4] is an AutoML framework by Fuerer et al.
around the scikit-learn [28] Python package. This framework
includes meta-learning to warm start the configuration search
and creates ensembles of pipelines. In more recent updates,
this framework is updated with multi-output regression. This
option makes it suitable for forecasting with a range of mul-
tiple days. TPOT [29] is a tree-based pipeline optimisation
tool for AutoML. Similar to auto-sklearn, it is built upon
scikit-learn. Instead of using SMBO, TPOT uses genetic
programming for hyperparameter optimisation. H20 [30] is
another AutoML framework that uses the random search
for its hyperparameter optimisation and combines models in
stacked ensembles. Unlike auto-sklearn, H20 does not opti-
mise data and feature pre-processors, but only optimises mod-
els. It is also possible to automatically construct deep neural
networks. Frameworks that support this are Auto-Keras [5]
and Auto-PyTorch [25], build Python packages. These frame-
works find solutions to neural architecture search (NAS),
where they aim to find the optimal neural network, minimis-
ing a loss function. Han et al. [31] used TPOT and H20 to
forecast COVID-19 mortality data from Ceard. Their study
found that TPOT outperforms regression models not automat-
ically tuned, achieving a higher R? score. Marques et al. [32]
compared models produced with H20 with an LSTM net-
work using data from the countries of Brazil, China, the
United States of America, Italy, and Singapore and found
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that H20 outperformed the LSTM in terms of MAE, MSE
and R?.

Among these frameworks in this work, we have selected
to adapt auto-sklearn to the task of COVID-19 forecasting.
As data is limited when forecasting the pandemic, using
AutoML systems generating deep neural networks is unfea-
sible. Among frameworks based on classic machine learning
algorithms, H20 does not support the automation of data and
feature pre-processors which are both key components for
time series forecasting to configure the auto-regressive model
and its window size automatically. TPOT and auto-sklearn
are comparable to each other in creating full pipelines. How-
ever, since TPOT relies on cross-validation to validate its
pipelines, it is less suitable for time series forecasting tasks.
The cross-validation scheme splits the data in k folds, train-
ing the models on k — 1 folds and evaluating on the one
that was left out. When the evaluation fold is earlier in
time than the train folds, the model trains to predict past
observations instead of the future one. Auto-sklearn sup-
ports holdout sets as a validation scheme, ensuring we can
train our models without relying on future data. We further
compare our work with deep learning and auto-regressive
methods.

IIl. PROBLEM STATEMENT

We view the forecasting of COVID-19 as a time series
forecasting task. A time series holds discrete observations
indexed over time. In our case, the rate over which the
time series is sampled is constant due to the availability of
daily case and mortality data. Considering a time series con-
taining COVID-19 mortality numbers of length n as x =
[x1,...,x,] with x; € R”", a time series segmentation win-
dow of size w, a time step ¢ and a forecasting horizon of
size h, we want to use a segment of historical observations
X; w = [X;—w, ..., x;] from the time series up to observation
x; to forecast future data points X;, = [X/+1, ..., Xr+4l-
For the task of COVID-19 forecasting, the time series we
consider are the mortality rate of a country, where x; denotes
the number of new deaths at time step . When we consider
using mobility time series m = [my, . .., m,] alongside mor-
tality data x, we extend the notation to use a bivariate time
series Xmy ,, = [X/—y, My—y ..., X, m;] for the forecasting
of [x¢41, ..., X4+x]. In our approach, my is a vector holding
a number of features in terms of the percentual increase of
mobility for a country in a given form, at timestamp ¢, such
as the increase of time spent driving or the increase of time
spent visiting recreational areas. This format is dictated by
the mobility data provided by Apple [33] and Google [34],
which we study in this work. To make comparisons between
different countries, areas or cities possible, we normalise the
mortality data by the size of its population N.

Since the infectiousness of COVID-19 may change over
time, for instance, due to mutations or vaccinations, the
underlying concept generating the data may change. Vast
changes to the concept are detrimental to the performance
of machine learning algorithms. This change is known as
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concept drift. In Equation 1, we show a formal definition of
concept drift between two time steps #y and #; [35].

3X 2 piy(X) # py (X) M

In this definition, py, is the joint distribution between the set
of input sequences X where {x, m € X}.

We aim to address the forecasting task by formulat-
ing the Combined Algorithm Selection and Hyperparameter
(CASH) Optimisation problem [6]. Given a set of machine
learning algorithms A = AM, ... A® with hyperparam-
eter spaces AD . A® we search the optimal algo-
rithm with optimal hyperparameter settings A}, following
Equation 2.

k
1 o
argmin - - Z £@AY, p®

()
. ~k train’ Dvalid) (2)
ADe A reAD i=1

Al €
Here L is the loss generated by algorithm A when trained
using set Dy,in € X and validated using set Dyyjig € X. This
loss is the mean squared error between the forecast made by
algorithm A using xmy ,, and with hyperparameter settings
A (i.e., X, ;) and the true observations in the validation set
(i.e., X;.5,), unseen by algorithm A. We are optimising a full
pipeline. Therefore, optimising A means that we are optimis-
ing the hyperparameters of a combination of pre-processors
P, features F and regressors R, or A = {P, F, M}. Part of
this process is internally optimising the input window size w,
which is a newly added feature pre-processing step for time
series forecasting.

IV. METHODS

As discussed in Section II, in this work, we extend auto-
sklearn to address the problem mentioned in Section III,
as it supports multi-output regression and holdout validation.
Furthermore, it supports automation of data and feature pre-
processing steps, which are both important for time series
forecasting to configure the auto-regressive model and set its
window size.

Still, as this system was not necessarily created to perform
time series forecasting, we add an additional variable input
window size as feature pre-processor and introduce a new
way to perform multi-step ahead forecasting. In this section,
we provide the details on the data used in this work and
how we adapted auto-sklearn to perform the forecasting task.
Finally, we specify how we adapt the auto-sklearn ensembles
when faced with concept drifts.

A. DATA

The data used for our predictions comes from three sources:
mortality data and mobility data representing two types of
mobility modalities: (i) the mode of transport and (ii) place
visits. Table 1 presents the meta-data of these sources.

1) THE MORTALITY DATA
This is collected by the European Centre for Disease Preven-
tion and Control (ECDC) [36], [37]. The data is split into two
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TABLE 1. Meta-data of data sources. The end dates marked with an asterisk (*) are not actual end dates, as these datasets are at the date of writing still

updated regularly.

Data source Originality Category Countries Start date End date
ECDC 1 [36] Original Mortality 214 2019-12-31 | 2020-12-14
ECDC 2 [37] Original Mortality 30 2021-02-28 | 2021-07-10*
Apple [33] Original Mode of transport mobility 63 2020-01-13 | 2021-07-10*
Google [34] Original Place visits mobility 135 2020-02-15 | 2021-07-10*
2020 Merged Combined 58 2020-02-15 | 2020-12-14
2021 Merged Combined 26 2020-03-01 | 2021-07-10

sets, with the main difference being the period over which
time series are collected and the number of countries. Both
datasets hold the daily number of new cases and new deaths.
Additionally, they provide the country population size of the
previous year. For the first dataset, this is the population size
of 2019, and for the second dataset, this is the population
size of 2020. The ECDC 1 dataset has data from December
31st, 2019 until December 14th, 2020. Not all countries have
values at the start of the dataset, as COVID-19 was not first
encountered in all countries at the same time. The data is
provided for 214 countries from all around the world. The
ECDC 2 dataset contains more recent data starting on the first
of March 2021 and is still being updated daily. The data in
this set is collected for 30 countries in the European Union.
Both datasets are maintained and adjusted by ECDC when
numbers are deemed inaccurate due to delays in reporting.
We use the daily new deaths as part of our input and as
truth value to evaluate our estimations. We do so because the
reported deaths are likely to be more reliable than reported
cases, as mentioned by [7]. To make sure the data is compa-
rable between countries, we normalise the daily new deaths to
depict the number of daily new deaths per 1,000,000 people
within the population.

2) THE APPLE MOBILITY TREND REPORTS [33] (MODE OF
TRANSPORTATION)

This data contains the percentual increase or decrease of the
use of modes of transportation as compared with a baseline
volume on January 13th, 2020. The modes of transportation
specified are walking, driving and use of transit. However,
this latter mode is not available for all countries. There-
fore, in our features, we only use the increase or decrease
in the use of walking and driving as means of transporta-
tion. The dataset includes data starting from January 13th,
2020. It holds data for 63 countries, excluding many African
countries.

3) THE GOOGLE COMMUNITY MOBILITY REPORTS [34]
(PLACE VISITS)

This data contains the percentual increase or decrease of
place visits as compared with a baseline period from January
3th to February 6th, 2020. The places are categorised in the
following six categories: retail and recreation, grocery and
pharmacy, parks, transit stations, workplaces and finally, res-
idential. The dataset starts on February 15th, 2020. It holds
data for 135 countries.
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4) COMBINED DATA

We merged the mortality data and the mobility data into two
combined datasets. The first combined dataset captures the
first year of the pandemic. We used the intersection of dates
and countries of the first ECDC dataset and both mobility
datasets. There were some missing values, which we imputed
by taking the average of the values 7 days before the miss-
ing data point and 7 days after the missing data point. This
way, the imputed value fits well between the previous and
next week and daily trends are preserved. For the country of
Serbia, the number of missing values exceeded 10%, which is
why we omitted it from the dataset. The resulting first com-
bined dataset contains data from February 15th, 2020 until
December 14th, 2020. The second combined dataset contains
data from March 1st, 2021 until July 10th, 2021. When com-
bining the mortality data with the mobility data for these
periods, there were no missing values to account for. The
first dataset includes 58 countries from all over the world.
The second dataset contains 26 countries from the European
Union.

B. FORECASTING STRATEGIES

Auto-regressive modelling is a common approach taken for
forecasting tasks. An auto-regressive model performs regres-
sion using past measurements in a time series to predict its
future timestamps. Many regression algorithms can be used
to create an auto-regressive model. Furthermore, the data can
be pre-processed in different ways within a machine learning
pipeline before being fed into the regression algorithm. In this
paper, we extend the auto-sklearn [4] AutoML framework to
achieve this goal. Auto-sklearn is a wrapper around the popu-
lar Python module scikit-learn [28]. Scikit-learn is a machine
learning library including a large set of algorithms that can
be used for regression and classification tasks, providing var-
ious ways to pre-process data, select features, fit models and
evaluate the results.

1) VANILLA AUTO-SKLEARN

Auto-sklearn automates the process of creating good
pipelines. Internally, it uses [27] SMAC, an SMBO frame-
work. SMAC constructs a surrogate model capable of
predicting the performance of an algorithm on the corre-
sponding hyperparameter space (in this case, the space of
all possible pipelines and hyperparameter settings). This
model selects a list of promising configurations, evaluated
on a validation set, based on their expected improvement
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Multi-output ensemble

Incidence
data
Data

preparation

Data
pre-processor

Test data

Forecasting
ensemble

Feature
pre-processor

Y

Regressors

Bayesian optimiser

(Optional)
mobility data

Auto-sklearn

FIGURE 1. The multi-output ensemble. This ensemble creates multiple predictions at once but has no access to meta-learning. Within the
framework, pipelines are constructed to form a forecasting ensemble. By feeding this ensemble test data predictions can be made.

Repeated single-output ensemble

Incidence
data
Data

preparation

Data
pre-processor

Meta-learning

Bayesian optimiser

Test data

Forecasting
ensemble

Feature
pre-processor

Regressor

Y

Forecast

Auto-sklearn

FIGURE 2. The repeated single-output ensemble. This ensemble creates one prediction at each time step. To create predictions for a longer time
period, for each new time step the predictions of previous steps are used. It has access to meta-learning, but cannot use additional data sources

as input.

over the incumbent, the best-seen configuration. A local
search is performed near these promising configurations
to find configurations with higher expected improvement.
In each iteration, the incumbent is updated to store the best
found configuration. The best configurations are grouped
together in an ensemble using ensemble selection [38]. This
ensemble method iteratively adds the configuration with the
highest ensemble performance gain on the validation set.
Configurations grouped in the ensemble, each create their
own forecast, which is averaged to create the ensemble fore-
cast. The process of constructing an optimal pipeline can
be warm-started using a meta-learning module. Before the
search for good pipelines starts, the input dataset is compared
with 140 datasets from the OpenML [39] repository. Then,
configurations are selected which are known to perform well
on similar datasets. In the rest of this section, we will explain
different adaptations made to auto-sklearn. Auto-sklearn is
not developed for modelling time series data, which is why
we add a variable window size: a feature pre-processor that
changes the number of days used as the input sequence. Addi-
tionally, there are two ways we approach the multi-step ahead
forecasting: via (i) multi-output regression and (ii) repeated
single-output regression. We detail these additions in the fol-
lowing parts.
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2) DEFINING A FORECASTING FRAMEWORK BASED ON
AUTO-SKLEARN WITH VARIABLE INPUT WINDOW SIZE

To predict the value of [x;41, ..., X;4+5], we train the mod-
els with sequences of the time series in the form of
[x—w, . .., x¢]. In vanilla auto-sklearn this window size w has
to be determined by the user. This would mean that when
we use lags of the time series as features, the number of
lags is predetermined. When making predictions with differ-
ent regressors, not all parts of the time series may be rel-
evant and depending on the configuration, it can be good
to use a longer or shorter input sequence. This is why we
implement the variable window size feature pre-processor as
proposed in our earlier work [40]. This pre-processor has
the hyperparameter w that is optimised within auto-sklearn.
The pre-processor takes the input sequence with predeter-
mined static length and cuts off the first values, resulting in
an input sequence in the form of [x,_,, ..., x;]. The work
presented in [40] experiments on a large set of time series
tasks and showed that the variable window size had major
impact on the accuracy of the framework. We still need to set
a maximum value for the window size. As larger windows
limit the number of data instances we can use, we limit our
window size to a maximum of 30 days. By incorporating
the variable window size optimisation in auto-sklearn, it it
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possible to define a forecasting task in the following two
ways:

o Multi-output. Since version 0.8, auto-sklearn supports
multi-output regression, such that forecasts with forecast
horizon 7 > 1 may be performed without the need for
training multiple models. We use this feature to define
multi step-ahead forecasting in our method and refer to
it multi-output. We show a schematic overview of this
method in Figure 1. To make a multi-output prediction,
separate regressors are fitted for each value of output.
This means that each model consists of & regressors.
As this output format was implemented much later than
others, there is no meta-learning available for multi-
output regression.

« Repeated single-output. The repeated single-output
forecasting scheme with a horizon of 7 > 1 is a model
trained for single-output regression, but once it starts
forecasting, its output is appended to the input sequence.
For instance, when we want to predict the value of
Xi+2, we use the sequence [x,_w+1,...,x,,xt/+1] as
input. In this sequence, x; 41 denotes the prediction of
value x;11. Note that when we append values to the
input sequence, we remove values at the start of the
sequence. Each model uses one regressor. We show
a schematic overview of how this approach is imple-
mented in Figure 2. The advantage of this method over
the multi-output regression method is that it benefits
from meta-learning. However, as it is not trained specif-
ically for forecasting multiple days in future, predic-
tions further away may suffer from errors made earlier.
Another disadvantage is that this method can not use
external changing variables as input, as only one time
series is predicted.

3) AUTO-SKLEARN PARAMETER SETTINGS

As tuning many hyperparameters requires lots of data
instances to prevent overfitting, we put together the time
series of all countries in the training dataset, as opposed to
training separate models for separate countries. This way,
we create a joint model capable of forecasting for many
countries. We normalised the mortality data by the size of
the population of each country. The mobility data depicts
percentual changes in mobility, which does not require further
normalisation to make comparisons between countries possi-
ble. To make sure it handles individual countries well, we pass
the country name as a categorical feature to each instance. For
testing, we separate time series per country again. This way,
we can compare the forecasting quality between countries.
The default setting for resampling strategies is the use of
cross-validation. The resampling strategy dictates what parts
of the training data is used to validate the models. Applied
to time series, cross-validation would mean that for most
folds, future data is used to predict previous values. To negate
this problem, we use a holdout set for validation. This set is
situated at the end of the training set, just previous to the start
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of the test set, to be sure that the ensemble model generated
by auto-sklearn can’t learn future information. This is why we
also disable shuffling. This keeps the temporal integrity of the
data intact and ensures that the holdout validation set consists
of the last dates in the train set. As an optimisation metric,
we use the mean squared error to evaluate the performance
of the pipelines. This ensures that the regressor line tries to
fit the set of data points as close as possible. To ensure our
ensembles are fully trained on the data, we refit the ensembles
on the full train and validation set after validation is finished.
This means that while the pipeline stays the same, the models
are updated with both the train and validation set. This way,
we make sure that there is no gap in knowledge just before
the forecasting starts.

C. DRIFT ADAPTATION

For the pandemic problem, it is important to consider the
changes in the data generation process that lead to concept
drifts in data. On the one hand, there may be a concept drift
caused by the fact that in 2021, many countries in Europe
started their vaccination programs. Furthermore, lock-downs,
mutations in the disease and changes in healthcare can lead to
additional concept drifts in the data. On the other hand, we use
two mortality datasets, separated in time, each normalised
with a different population size (the country population num-
bers have slightly changed from 2020 to 2021). Currently,
auto-sklearn has no drift detection mechanism.

Celik and Vanschoren [41] created several concept drift
adaptation mechanisms for automated machine learning
frameworks. It is not trivial to use any drift detection meth-
ods during training models with autosklearn. This requires
dynamically training multiple models to monitor the drift.
However, autosklearn works with a predefined number of
training instances to create a single model and cannot dynam-
ically detect drift in consecutive windows of training data.
As training a single autosklearn ensemble with sufficient
complexity takes multiple hours, creating many ensembles
for drift detection can quickly increase the time needed
beyond feasibility. While in the problem of COVID-19 fore-
casting, we can safely assume that drift exists in data, fur-
ther research can study how automatic drift detection tech-
niques can be incorporated directly in autosklearn. We imple-
ment three methods based on the work of Celik and Van-
schoren [41] that do not use drift detection to cope with
concept drift. For each of the methods, we first construct
ensembles using the old dataset. The drift adaptation strate-
gies can be viewed as a forget mechanism, discarding old
information in varying degrees. Depending on the mag-
nitude of the concept drift there can be merit for each
method. In our experiments, we study the performance of
these approaches in forecasting. The methods are explained
below:

o Full refit. The full refit method keeps the models trained
on old data and after drift occurs uses the full combina-
tion of both datasets to refit the ensembles. This method
places most emphasis on older data in comparison with
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the others, as it trains the original models on the older
data and uses it for refitting.

« Partial refit. The partial refit method also keeps the
models trained on older data, but after drift occurs,
it uses only the new dataset to refit the ensembles. This
method still uses the older data in the form of ensembles,
but the models are only updated with new data, placing
more emphasis on the newer data.

« Retrain. The retrain method discards the ensembles and
constructs new ones with the new dataset. This method
forgets the old data altogether and only uses new data
for its predictions.

V. EXPERIMENTS

Our goal is to answer the following questions with our exper-
iments (all resources for reproducing this research and results
are available online!):

e Q1: How does the use of mobility data as features
improve COVID-19 forecasting accuracy using our pro-
posed AutoML approach?

e Q2: How does this framework perform in COVID-19
forecasting compared to baselines?

e Q3: Does adapting for concept drift help to improve
COVID-19 forecasting accuracy using this AutoML
approach?

Based on the data sources available and the change in the

population numbers used for normalisation, we use two sce-
narios to address these questions.

A. FIRST SCENARIO: 2020

The first scenario uses 58 countries from all over the world.
We use an evaluation period of 30 days starting on 15 Novem-
ber 2020. The training data comprises time series data
between 15 February 2020 and 14 November 2020, of which
the last 30 days are used as a holdout validation set for our
models.

B. SECOND SCENARIO: 2021

The second scenario uses 26 countries from the European
Union. This scenario has an evaluation period of 30 days,
starting July the 11th in 2021. Depending on the drift adap-
tation technique, the way the data is used changes. In case
of no adaptations, we use the data between 15 February
2020 and 14 December 2020, as well as between 1 March
2021 and 10 June 2021 as train data, of which the last 30 days
are used for holdout validation. When refitting on the full
dataset, we train between 15 February 2020 and 14 Decem-
ber 2020, of which we use the last 30 days for validation.
Then, the data between 15 February 2020 and 14 Decem-
ber 2020, as well as between 1 March 2021 and 10 June
2021, is used to update the ensemble weights. When refitting
on the partial dataset, we again train between 15 February
2020 an 14 December 2020, of which we use the last 30 days
for validation. Then, we update the weights using only the

1 https://github.com/AutoML4covid19/Forecasting
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data between 1 March 2021 and 10 June 2021. Finally, when
retraining the ensembles fully, we disregard the 2020 data,
training only on data between 1 March 2021 and 10 June
2021, using the last 30 days for validation.

C. BASELINES

We selected the following baselines based on earlier research
in COVID-19 forecasting that use machine learning models
and can train models based on the dataset we have collected.
Compartmental methods (e.g., [15]) need specific data that is
not available for all regions. Therefore, we cannot compare
our methods with these:

« Persistence. The persistence baseline can give an idea of
the minimum performance expected. When forecasting
the window [x;y1, ..., Xr4,] €ach predicted value will
be x;, disregarding all previous values x; with i < ¢.

o« ARIMA wavelet. The ARIMA wavelet model [9] is the
combination of an ARIMA model and a wavelet-based
forecasting model. It fits an ARIMA model on the
mortality data and then models the residuals via the
wavelet model. We use the model as implemented by
Chakraborty and Ghosh [9] for COVID-19 forecasting,
but increase the number of forecasting days to align
with the scenarios. The parameters of the ARIMA model
controlling the order of autoregression, the order of dif-
ferencing and the moving average are automatically con-
figured using a grid search and the Akaike Information
Criterion [42].

« GRU, LSTM and Bi-LSTM. To compare our frame-
work with recurrent neural networks, we reproduce
the GRU, LSTM and Bi-LSTM as studied by Shahid
et al. [24] for COVDI-19 forecasting. In our compari-
son, all three architectures share the same architectures,
as chosen by [24] and shown in Table 2. We did, how-
ever, enlarge the batch size from 10 to 58 for the first
scenario or 26 for the second scenario, which are the
number of countries in the dataset. This allows the mod-
els to train for each country simultaneously without them
being able to see future time steps. We also increased the
number of time steps used as input to 30 to match the
other ensembles and baselines in our comparison.

D. EXPERIMENTAL SET-UP

Our framework is built on version 0.12.1 of auto-sklearn.
Auto-sklearn requires users to define a maximum runtime.
All of our ensembles, multi-output or repeated single out-
put, were ran for 3 hours. For the training of every single
pipeline, we limit the runtime of auto-sklearn to a maxi-
mum of 10% of the total runtime, which comes down to
18 minutes. The majority of iterations, however, finish much
faster. This amount of time ensures that hundreds of models
are compared to create the resulting ensembles. We run auto-
sklearn in parallel on 8 cores, of an Intel(R) Xeon(R) CPU
of 2.1 GHz with 10 GB of RAM. As mentioned before in
Section IV, we use a holdout set as a validation strategy,
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TABLE 2. Hyperparameter settings for the GRU, LSTM and Bi-LSTM.

Hyperparameters | Values

No. of neurons {16, 32, 64, 128}

Learning rate 0.001

Optimiser Adam

Batch size 58 or 26, depending on the number of countries in the dataset
Epochs 300

Time steps 30

and make sure not to shuffle the data. As the internal perfor-
mance metric, we use the mean squared error for evaluating
the performance of models. We use the full default regres-
sor and pre-processor search space and extend the feature
pre-processor search space by adding the variable window
size pre-processor. We limit the window pre-processor to a
minimum of three days and a maximum of 30 days.

As the Bayesian optimisation used by auto-sklearn is
stochastic, one run of the framework may optimise towards
a locally optimal configuration, thus not yielding the actual
optimal configuration. We perform bootstrapping to gain con-
fidence in our predictions by creating a distribution over
results. For each estimator we make, we run our framework
25 times. Repeating 1,000 times, we sample with replacement
five ensembles from the 25 runs, of which we select the one
with the lowest validation error. These 1,000 selected models
form our bootstrap distribution used to evaluate the models
on the test set. For each day within the forecasting hori-
zon, we report on the mean forecast and the 95% confidence
interval. We use our bootstrapping approach not only for our
methods but also for the deep learning baselines.

To evaluate our methods we use the root mean squared

error as defined RMSE = \/ % Yo (Y — Y,)2. Here Y,
denotes the true observation of our time series at time ¢ and ¥, f

the prediction of the model. As our ensembles create multiple
predictions for each day, the daily average is used for Y;.

VI. RESULTS

In this section, we answer the questions stated earlier in
Section V. In the figures and tables, we denote our methods
with the prefix M and the baselines with the prefix B.

A. QI1: MOBILITY FEATURES

We initially aim to find answers to the question how does
the use of mobility data as features improve COVID-19 fore-
casting accuracy using our proposed AutoML approach? This
will allow to identify the most informative source of data
for forecasting. To do so, we study the role of incorporating
different types of mobility datasets (i) mode of transport,
(ii) place visits and (iii) their combination on the quality of
our automatically configured models. We perform this analy-
sis for both scenarios using 2020 and 2021 datasets and when
partial refit concept drift adaptation is performed. Because we
want to compare the predictive performance of our methods
for many different countries, we rank their performance based
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on RMSE over all countries. These rankings come from a
bootstrap distribution of 1,000 resamples, based on 25 runs
per ensemble. A method that is consistently better than other
methods in most countries will be assigned a lower aver-
age rank. These average ranks will give an insight on how
well these methods perform compared to each other. For
comparing the ranks, we use Nemenyi test [43], a standard
test for inspecting the significant difference between average
ranks. This test defines a critical distance between average
ranks. Any method within a critical distance to another one
is not significantly different. A critical distance diagram or
a Nemenyi plot, such as those provided in Figures 3a and 3b
can be used to visualize these rankings and their significance.

In Figure 3a, we compare our multi-output ensembles
using different sources of mobility data and our repeated-
single output ensemble for the 2020 scenario. In this scenario,
the repeated single-output ensemble and the multi-output
ensemble using place visits mobility have the best perfor-
mance. The repeated single-output ensemble outperforms all
multi-output ensembles not using place visits data. When we
compare the same methods for the 2021 scenario in Figure 3b,
we see that there is a drop in predictive power when using
place visits mobility features. In this scenario, the repeated
single-output and the multi-output ensemble using only mor-
tality features are better than the ensembles using mobility
features. The best mobility ensembles now use the combi-
nation of place visits and mode of transport, with place vis-
its ranking slightly higher than the mode of transport. The
drop in predictive power of the ensemble using place visits
mobility can be explained by the concept drift and changes
in data distribution in the second scenario. In this case, com-
plex models with more features will lose to simpler models.
In Figure 3c, we show the comparative performance of our
methods in 2021 with the partial refit adaptation strategy.
We found this strategy to be the best approach, as we will
detail when discussing the answer to Q3. The figure indicates
that mobility datasets can also show their power with proper
drift adaptation in the second scenario. This experiment has
shown that using mobility features can improve forecasts but
does not guarantee improvement. Of the mobility datasets
studied, the best results can be found using the place vis-
its data. This dataset holds more predictive power than the
mode of transport dataset. This may be due to their level of
abstraction. The place visits data holds six categories,
whereas the mode of transport has only two. Moreover, the
place visits categories specify groups of locations instead
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(a) Nemenyi plot showing our methods with varying mobility features using RMSE over 58 countries tested in 2020.
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FIGURE 3. The comparative performance of our methods with varying mobility features using RMSE. A lower rank depicts a better performance. When
methods are linked with a horizontal bar, they are within critical distance, meaning there is no significant difference between average ranks. Our methods

are denoted with the prefix M.

of just an increase in activity. If more contagion happens at
specific location groups, this can be picked up easier from the
place visits data.

B. Q2: COMPARISON TO BASELINES

To place the previous results into perspective, we compare
them to the baselines, answering Q2: How does this frame-
work perform in COVID-19 forecasting compared to base-
lines? We compare the performance of the methods over
58 countries for 2020 and 26 countries for 2021.

In Figure 4a, we show the results for the 2020 scenario.
Here, the performance of the methods and baselines are close.
The best baseline is the persistence baseline. Our best two
ensembles perform slightly worse than the persistence base-
line but outperform all other baselines significantly. Our other
methods fall between our best methods and the other base-
lines. A lower rank for more complex deep learning baselines
compared to simpler models, such as a persistence baseline,
in Figure 4a is explained by the lack of enough training data
in the first year that is necessary for training these models.
The predictive power of these models, however, improves as
more data becomes available in the second year, as shown
in Figure 4b. In Figure 4b, we show the comparison with
baselines for the 2021 scenario. While in the previous sce-
nario, the persistence baseline was stronger than the deep
learning baselines, it performs the worst here. Our methods,
however, are all performing worse than the baselines. In the
next section, we show how we can regain the power of our
automatically configured models and mobility features using
the concept drift adaptation techniques.

VOLUME 10, 2022

C. FINE-GRAINED ANALYSIS OF RESULTS

For deeper inspection of results per country, we show the
RMSE of all methods and baselines for the 2020 scenario in
the Appendix in Table 3. The table shows that for 20 out of
58 countries, the persistence baseline has the best forecast.
However, as the first five of these have no new deaths in the
test period, the persistence baseline wins in these by default
as there are no fluctuations in the time series. Our best method
for this scenario, the repeated single-output ensemble, scores
best for 21 of the 58 countries. Using this table, we would
further investigate if the performance of models depends on
the properties of the time series acquired from different coun-
tries. Notably, we look at the existence of (i) periodic patterns
and (ii) trends that point to the complexity of the time series.
In this table, we grouped countries based on the trend and
periodicity importance of the true values acquired using the
procedure explained in [44]. To compute this importance,
we split the true value time series Y; into its trend 7%, periodic-
ity P; and remainder series E;. Then, the trend importance can

be computed as 1 — % and the periodicity importance
as1— %. These measures range from O to 1, allowing

us to group the countries into 4 quadrants. We indicate values
lower than 0.5 as low and higher than 0.5 as high. When writ-
ing about quadrants, we mention trend importance first and
periodicity importance second. The low-high quadrant, thus,
has low trend importance and high periodicity importance.
The table shows that for the low-low quadrant, the persis-
tence baseline often has the lowest error. When there is high
periodicity importance in both the low-high and the high-
high quadrants, our repeated single-output ensemble proves
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(a) Nemenyi plot showing our methods compared to the baseline methods using RMSE over 58 countries tested in 2020.
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FIGURE 4. Nemenyi plot showing the comparative performance of our methods compared to the baseline methods using RMSE. None of the methods use
drift adaptation techniques. A lower rank depicts better performance. When methods are linked with a horizontal bar, they are within critical distance,
meaning there is no significant difference between average ranks. M and B prefixes denote our methods and baselines.

to be quite strong. In the high-low quadrant, there is no clear
winner.

Zooming in on countries within these quadrants, we can see
what patterns our methods are capable of capturing. We show
that the countries of Estonia, Sweden, Switzerland and the
United States as respectively an example of irregular pat-
terns in the low-low quadrant, an important trend in the high-
low quadrant, clear cycles in the low-high quadrant and a
combination of an important trend and clear cycles in the
high-high quadrant (similar graphs of all countries are avail-
able online?). For Estonia (Figure 5), we see that none of
the baselines is able to capture the unsteady pattern of the
true data. Our multi-output ensembles using mobility data
also have difficulty here, but they get closer than the base-
lines. The repeated single-output ensemble predicts a rising
trend with cycles, with rising uncertainty as time progresses.
For Sweden (Figure 6), an example with high trend impor-
tance, all methods are performing worse than persistence. Our
multi-output ensembles predict the rising trend too weakly
and the downward trend too late. The deep learning baselines
estimate an upward trend where in reality, it drops later. The
repeated single-output ensemble predicts the first few days
closely but gets eluded most when true observations drop.
The persistence baseline takes an average position. To review
a case with high cycles, we show the forecasts for Switzerland
(Figure 7). This country is grouped in the high-low quadrant,
with high importance of periodicity and low importance of
trend. We see that most of our methods only slightly capture
the periodic pattern of the data, except for the repeated single-
output method, where the prediction is much better. The deep
learning methods are able to predict some periodicity but

2https:// github.com/AutoML4covid19/Forecasting
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do so too low. Finally, to show a combination of trend and
cycles, we show the results for the United States of America
in Figure 8. This shows a similar situation as the low-high
quadrant, where periodic patterns are somewhat captured by
most methods and baselines but not as strong as the repeated
single-output ensemble. In cases like these, we see that the
persistence baseline can be difficult to beat if the observations
on the day before the test period are close to the average of
the true observations later.

This shows that compared to other baselines, our repeated
single-output ensemble and the multi-output ensembles using
place visit mobility data are quite strong in the 2020 sce-
nario. While the persistence baseline outperforms for 20 of
the 58 countries, it fails with time series data that exhibits
strong patterns of periodicity or trends. The other baselines
perform worse than our methods. Our repeated single-output
ensemble is strong when cycles are apparent but fails when
the true observations suddenly change. In the 2021 scenario,
all baselines are performing better than our methods. Our
methods are not adapted to the concept drift in this scenario.
Due to the change in the normalising factor, old patterns
learned may obfuscate the new ones. We demonstrate how
to address this using the concept drift adaptation techniques
mentioned in Section IV-C.

D. Q3: DRIFT ADAPTATION

We aim to understand if adapting for concept drift helps
in improving COVID-19 forecasting accuracy using this
AutoML approach. The answer of Q2 showed that our meth-
ods performed worse than the baselines in 2021, while they
were better than most in 2020. This may be a result of con-
cept drift. This section shows the results of our experiments
adapting our methods to this drift.
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FIGURE 5. Forecasts of the different methods for Estonia in the 2020 scenario. VI and B prefixes denote our methods and

baselines.

In our experiments, the simpler baselines — persistence
and the ARIMA wavelet — use only the new data for their
predictions. The persistence baseline uses just the last obser-
vation seen before the start of the test period, and the ARIMA
wavelet baseline relies on an assumption of no missing val-
ues. As there is a gap between datasets, this is not the case for
the second scenario. To be fair, using the deep learning base-
lines compared non-adapted models with models retrained
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on the new data. As Figure 10a shows, the retraining was
detrimental to their performance. Therefore, in the subse-
quent comparisons, we thus only consider the deep learning
baselines using the full dataset.

As we can only effectively adapt for drift in the 2021 sce-
nario due to a lack of a drift detection mechanism,
we show only results for 2021 in this section. We com-
pare all drift adaptation strategies previously introduced in
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FIGURE 6. Forecasts of the different methods for Sweden in the 2020 scenario. M and B prefixes denote our methods and

baselines.

Section I'V-C for all of our ensembles and use different mobil-
ity data sources in Figure 10b. This leads to 20 combinations
considering different mobility sources, adaptation strategies
and forecasting approaches. This figure shows some dis-
tinguishable groups of methods. The best methods are all
multi-output ensembles adapted using the partial refit strat-
egy. The best two of this group — the ensemble using place
visits mobility features and the ensemble using combined
mobility features — outperform all methods using different
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adaptation strategies on a significant level. The next group of
methods consist mainly of the multi-output ensemble using
only mortality features. For this ensemble, changes in perfor-
mance with different drift adaptation strategies are smaller
than for the ensemble using mobility features, but a partial
refit still yields the best performance. The last group consists
of multi-output methods using mobility features and drift
adaptation strategies other than the partial refit strategy. These
strategies do not go well together. The repeated single-output
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FIGURE 7. Forecasts of the different methods for Switzerland in the 2020 scenario. M and B prefixes denote our methods

and baselines.

ensemble is the only method that does not improve by adapt-
ing to drift. The non-adapted version of this approach is sig-
nificantly better than all its adapted counterparts. Still, its
performance is ranked worse than all other partial refit
methods.

We also compare the ensembles using the partial refit drift
adaptation strategy with the baselines in Figure 10c. This
figure shows that all multi-output ensembles using the partial

VOLUME 10, 2022

refit strategy outperform all baselines. In this scenario, the
ARIMA wavelet baseline is the strongest but performs sig-
nificantly worse than the multi-output ensembles using place
visits mobility data or combined mobility data. The deep
learning methods are in the same group as the persistence and
ARIMA wavelet baseline and are within a critical distance
of the partial refit multi-output ensemble using mortality
data. However, they are all significantly outperformed by all
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FIGURE 8. Forecasts of the different methods for the united states of America in the 2020 scenario. M and B prefixes

denote our methods and baselines.

multi-output ensembles using mobility features. We show the
RMSE of the baselines and our methods using the partial refit
drift adaptation strategy for all countries separately in Table 4.
This table shows that the multi-output ensemble using place
visits features has a lower RMSE than all other methods and
baselines for 22 of the 26 countries and lower RMSE than
the strongest baseline for the other four countries. To give
a notion of the quality of forecasts of the adapted methods,

94732

we show that the country of Romania in Figure 9, grouped
in the low-low quadrant with irregular true observations in
the test set but some indication of trend and periodicity. The
sudden drops and spikes are quite difficult to anticipate for
all baselines, as well as for our methods not using mobility
features. The ensembles using these features, however, while
not exactly predicting the magnitude of the extreme values,
can predict where spikes and drops will occur.
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FIGURE 9. Forecasts of the different methods for Romania in the 2021 scenario. M and B prefixes denote our methods and

baselines.

Drift adaptation may seem a lot more impactful for our
AutoML-based approaches than for baselines. We are per-
forming hyperparameter optimisation to ensure the best mod-
els are configured on the provided training data. However,
as the concept changes, this approach will lead to a model
that over-fits the older part of the data. Consequently, this
approach performs much worse on new data compared to
baselines with average performance on all data.

VOLUME 10, 2022

This experiment has shown that adapting to concept drift
can indeed help to improve the accuracy of COVID-19
forecasts using an AutoML approach. This is specifically
the case for our multi-output ensembles using the partial
refit strategy. This strategy entails keeping the ensembles
trained using the old dataset but updating the model weights
using the new data. This way, old knowledge is used, but
the emphasis is placed on the newer data. This strategy
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FIGURE 10. Nemenyi plots showing the comparative performance of baselines and our methods when exposed to drift based on RMSE. Methods on
the left have a lower average rank and are thus comparatively better than methods on the right. When methods are linked with a horizontal bar, they
are within critical distance, meaning there is no significant difference between average ranks. M and B prefixes denote our methods and baselines.

works especially well when combined with mobility data
features.

VII. LIMITATION OF THE STUDY

We found that when the pandemic is still novel, our meth-
ods are outperformed by baselines as simple as persistence.
However, when the pandemic has progressed for just shy of a
year in many countries, our ensembles are on par with the best
baselines. Even later, when concept drift occurs due to a shift
in data normalisation and possibly mutation of the virus, our
methods significantly outperform the baselines, especially
when using mobility data along with mortality data. Our work
has shown that our modified version of auto-sklearn does
not perform as well as simple baselines within the first few
months of the pandemic but gains importance as time pro-
gresses. After a little less than a year, we have gained enough
data to be able to capture most cycles and trends occurring in
the time series. Only when trends suddenly change are our
predictions eluded. Additionally, we discovered that when
concept drift occurs by a change in data normalisation or
possibly a mutation of the virus, refitting the models trained
on the older data enables a major performance boost, espe-
cially when (unchanged) mobility data is used alongside the
mortality data.
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Another limitation of our work is that the best moments to
adapt the ensembles over time are not detected automatically.
Current AutoML systems use large batches of data at the
same time to train their models. If these batches are too large,
however, chances are the concept drift slips in undetected.
A proper trade-off should be made between how much data
is used in order to learn the data patterns sufficiently and to be
able to detect concept drift within the used data. Future work
can address this issue further.

Finally, we want to note that due to a lack of availability of
the COVID-19 mortality data, we were only able to use the
countries in Europe for our scenario in 2021. For the coun-
tries outside of Europe that were used in the 2020 scenario,
we were thus not able to test the drift adaptation strategies.
It would be interesting to see whether or not the partial refit
adaptation improves forecasts consistently for these countries
as well.

VIil. CONCLUSION

In this work, we adapted the AutoML framework of
auto-sklearn to COVID-19 forecasting. We used mortality
data and mobility data collected from 26 European countries
to construct automatically configured ensembles of regres-
sion models. We compared the performance of a multi-output
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TABLE 3. RMSE on 2020 forecasts. Countries are grouped by quadrant: Low trend - low periodicity, low trend - high periodicity, high trend - low
periodicity and high trend - high periodicity. Our methods are abbreviated to MO for multi-output and RSO for repeated single-output. d denotes
mortality data, mtm mode of transport mobility, pvm place visits mobility and cm combined mobility. Our methods and baselines are denoted with M and

B, respectively. All Baselines only use mortality data.

Country Trend | Periodicity M: MO (d+mtm) M: MO (d+pvm) M: MO (d+cm) M: MO (d) M: RSO (d) B: GRU B: Bi-LSTM B: Persistence B: ARIMA wavelet
Cambodia 0 0 0.324 £0.26 0.113£0.11 0.112 £ 0.41 0.134 £ 0.5 1.081 £0.47 1.527 £ 0.69 1.613 £0.93 0.0 £ 0.0 0.0+£0.0
New Zealand 0 0 0.214 £ 0.09 0.164 £ 0.03 0.24£0.16 0.183 £ 0. J8 0.312+£0.13 0.443£0.2 0.468 4 0.27 0.0+ 0.0 0.044 £ 0.0
Taiwan 0 0 5 1.368 £ 0.21 1. 5661068 22031 1.0 2.326 + 1. 51 0.0 +0.0 0.0+0.0
Thailand 0 0 0.789 + 0.76 3 § 0.0 + 0.0 0.069 + 0.0
Vietnam 0 0 21.704 + 2.11 (\ 929 + 2.22 0.0 +0.0 0.027 + 0.0
Philippines 0 0.065 37+ 1.48 44.848 :t 3. 7r 24.354 + 0.0 24.766 £ 0.0
Malaysia 0 0.094 3.094 + (l 49 3.003 0.2 R 3.507 £ 0.0 3.045 4+ 0.0
Colombia 0 0.177 18.422+5.74 18.461 + 2.12 37.756 £ 9.76 13.733+ 0.0 20.206 £+ 0.0

United Arab Emirates 0 0.192 1.542+0.03 1.55 £0.04 1 538 £+ 0. 04 2. 784 +0.43 2.202 £0.27 2 2.601+0.0 1.707 £ 0.0
Luxembourg 0 0.393 4.64 £0.09 4.578 + 0.06 4.596 +0.11 4.575+0.14 3.139+0.04 5.798 £ 0. 25 X . 5 7/6 +0. 39 3.459 +£0.0 5.942 4+ 0.0
Ireland 0.01 0.396 4.12£0.04 4.107 £ 0.06 4.106 +0.04 5.096 £ 0.44 3.941+0.04 3.952 £0.28 4.206 + 0.26 4.1154+0.2 4.683+0.0 4.767+0.0
Norway 0.012 0.24 5.268 £0.28 5.214 £0.03 5.229 4+ 0.09 5.275 £ 0.06 5.083 £0.14 5.51 +0.16 5.547 4+ 0.06 5.574 +0.07 5.023+£0.0 5.388 + 0.0
Mexico 0.017 0.493 254.896 + 6.76 261.954 + 6.74 254.052 + 7.02 271.527 £ 9.76 220.226 + 5.88 269.197 + 19.2 273.764 £+ 16.14 266.958 £ 0.0 280.753 £ 0.0
Slovakia 0.03 0.127 11.894 +0.33 11.699 £ 0.27 11.681 + 0.31 11.003 £+ 0.35 28.148 £1.18 15.386 + 2.81 16.646 + 1.31 11.567 £ 0.0 14.947 £ 0.0
Ukraine 0.086 0.416 113.98 £ 16.53 108.103 £ 9.72 117.986 +9.88 104.972 £ 3.33 99.257 £ 8.93 89.113 +£ 4.4 77.413 £ 4.69 89.445 £ 0.0 115.374 £ 0.0
Uruguay 0.086 0.342 0.964 £ 0.06 0.901 + 0.02 0.95 £ 0.07 1.738 £0.32 1.229 £ 0.15 0.861 +0.14 0.892 4+ 0.05 0.911 £ 0.05 0.816 £ 0.0 0.987 £ 0.0
Australia 0.11 0.231 4.64 £ 1.64 3.726 + 1.31 4.139 + 1.59 1.745 £ 0.46 1.653 £ 0.69 1.386 £ 0.65 1.337 £ 0.32 0.768 + 0.33 0.183+0.0 1.169 £ 0.0
Singapore 0.15 0.206 0.189 £ 0.02 0.184 4+ 0.0 0.213 4 0.04 0. 188 +0.05 0.449 £0.14 0.437 £ 0.09 0.404 + 0.06 0.372 4 0.22 0.183+0.0 0.185 =+ 0.0
Israel 0.202 0.399 10.061 + 0.37 2 9.887 4 1.11 9.258 +0.17 1(\ 796 £ 0.73 10.45 + 0.47 9.265 4 0.0 52 + 0.0
Lithuania 0.241 0.447 6.71+0.26 711+ 1.09 12.863 £ 0.0 72+ 0.0
Morocco 0.245 0.347 45.571 + 8.02 Z 649 + 4.21 22.927 £ 0.0 8+ 0.0
Portugal 0.37 0.192 38.94+23 27.444 £4.15 20.63 +2.33 24.611 £ 2.47 12.823+0.0 58.075 £ 0.0
Latvia 0.408 0.079 5.365 £ 0.15 5 079 £ 0.13 4.334+0.14 7.384£0.78 8 406 +0.23 8.402 4+ 0.22 5.301+0.0 8.057 + 0.0
Estonia 0.445 0.212 1.97 +0.06 1.878 £0.04 2 135 + 0.1 U7 2.206 £0.19 2.704 £0.16 2.764 +0.05 2.795 4+ 0.04 2.415+0.0 2.538 £ 0.0
South Korea 0.455 0.369 21.509 + 6.14 30.694 £ 2.55 26.501 £ 6.29 2.682 +£4.94 6.6+ 1.77 2.582 £ 0.53 2.631 +0.32 2.62 £0.5 2.456 £ 0.0 2.666 + 0.0
Chile 0.027 0.805 27.169 £ 2.22 282424213 30.626 £ 1.79 2 21.631 £ 1.72 19.341 £ 4.56 23.722 £ 2.98 24.41 4+ 3.59 22.029 £0.0 28.134£0.0
United Kingdom 0.07 0.853 251.505 + 16.72 258.507 £ 12.04 251.626 £ 11.91 .94 : 109.637 + 14.68 132.277 £8.29 140.575 £9.42 207.986 £ 123.94 171.946 £ 0.0 165.891 £ 0.0
Romania 0.079 0.692 69.74 £+ 3.57 69.141 £ 2.29 70.848 + 3.24 8) 681 £ 3 87 50.042 £ 13.85 48.347 £ 3.75 48.273 + 4.38 52.004 £ 3.65 31.5174+0.0 85.367 £ 0.0
Switzerland 0.124 0.961 76.182 £ 0.91 5. 178 +0.96 76.266 £ 1.14 45.287 £ 1.61 79.577 £ 6.88 79.954 £5.4 86.021 £ 5.29 68.277 £ 0.0
Spain 0.18 0.763 160.769 + 6.49 £ 152.177 £ 7.53 195.637 £ 42.67 256.755 £ 23.31 202.185 =+ 22.46 225.704 £ 26.23 4
Finland 0.253 0.655 3.705 £ 0.06 588 4 0.05 4.126 £ 0.33 4.125 + 0.08 4 068 i 0.13
Brazil 0.307 0.86 488.395 £ 119.58 57 + 21.69 159.886 + 4.99 177 092 + 48.35 3
Austria 0.32 0.507 .061 + 3.54 31.384 +0.62
Slovenia 0.329 0.504 31.084 £ 0.39 4T3+ 0.56 26.694 £ 0.78
Italy 0.345 0.675 377.614 £ 6. 377.787 £ 12.51 368.746 + 18.21 120.312 +£10.63
Argentina 0.43 0.522 132.72 + 113.227 £ 12.98 109.479 £ 20.22 71.224 +12.32 lll 14 +10.95
Netherlands 0.482 0.821 19.903 + 1.05 19.314 + 1.23 20.167 £+ 1.07 19.877 £ 0.97 14.642+1.88 33. 042 +15.65 59.044 +33.14
Turkey 0.542 0.22 47.786 £ 10.72 70.413 £8.15 65.061 £10.08 85.431 £ 4.68 106.219 £ 6.99 120 463 £7.31 105.313 £5.26 99.52 +6.44 85.707 £ 0.0 98 375£0.0
Denmark 0.584 0.331 415 £ 1.77 5.163 £0.79 4.928 +1.34 2.611+0.19 5.614 £0.37 4.401 £ 0.51 3.695 + 0.59 4.033 +0.49 5.908 0.0 4.155 4+ 0.0
Croatia 0.656 0.173 35.543 £ 0.76 33.915 + 0.68 35.118 £1.28 35.618 + 1.08 21.968 +1.29 37.474 £ 3.13 41.186 £ 3.02 39.38 4+ 2.02 18.214 £ 0.0 44.293 £0.0
Indonesia 0.688 0.11 42.742 £ 3.47 39.192 4 2.04 41.117 £ 4.13 29.683 £ 2.3 91.937 £ 22.59 33.238 +£4.93 33.08 + 13.98 64.922 4 18.61 36.467 £+ 0.0 33.889 £+ 0.0
Greece 0.724 0.246 43.401 £ 2.23 33.947 £ 2.59 38.571 £ 4.3 49.063 £ 3.85 26.908 +3.79 56.176 £ 3.47 55.67 + 3.92 X 52.971 £0.0 78.198 + 0.0
Saudi Arabia 0.768 0.046 23 £ 1.66 4.237 £ 1.16 3.655+ 1.6 12.391 £ 1.52 2.178 + 3.29 16.871 + 4.64 +10.69 6.483 + 0.0
Egypt 0.781 0214 105.698 £ 23.23 156.058 + 18.68 148.257 + 62.07 19.453 + 3.692 + 1.43 . 6.199 £ 0.0
Hungary 0.847 0.401 84.779 £ 2.38 85.435 + 1.53 64.936 + 97.269 + 5.26 306 + 3.68 45.008 + 0.0
Belgium 0.883 03 49.054 + 2.04 49.351 + 4.44 18.248 +0.73 8+ 6.77 76.276 + 0.0
Sweden 0.93 0.397 22.359 £ 0.81 21.747 £ 0.45 21 728 +1.04 58.301 £ 1.72 52 hlh +4.85 29.065 + 4.84 20.231 + 0.0
Poland 0.544 0.964 2! 72+ 6.01 2‘)2 4()1 +5.9 296.392 +5.24 323.275+ 7.28 176.458 + 10.86 249.192 +12.89 258.842 + 20.09 177.653 £ 0.0 336.678 £0.0
France 0.614 0.939 318.124 + 3.07 307.682 + 1.77 317.085 + 10.58 314.669 + 7.31 246.63 +£10.1 348.501 + 23.55 322 253 £ 21. 44 549.614 + 0.0 340.719 £ 0.0
Canada 0.641 0.619 34.69 £2.4 35.479 £+ 2.64 39.937 £6.61 30.814 £ 9.16 22.733 +£5.28 32,413 £5.61 25.238 +2.88 34.042£0.0 38.337 £0.0
Czechia 0.667 0.7 55.133 £2.78 51.139 + 4.7 54.091 £ 3.25 74.659 + 6.59 28.585 + 1.99 63.597 + 2.87 71.543.33 59.95+0.0 38.404 £ 0.0
Bulgaria 0.692 0.961 82.844 + 4.64 75.533 + 2.66 75.813 £ 3.9 93.925 £ 2.1 66.24 + 1.58 92.185 + 2.88 99.703 £ 3.4 97.31+3.2 61.91+0.0 112.458 £ 0.0
South Africa 0.702 0.562 41.611 £ 1.38 40.015 + 2.25 40.762 £+ 1.02 54.057 + 3.66 64.248 + 4.18 83.199 + 8.97 82.814+6.24 76.28 4.3 52.798 £0.0 51.024+ 0.0
Japan 0.761 0.538 15.024 & 1.66 13.146 £ 1.41 14.559 4 10.23 31.725 £ 6.67 12.679 £2.21 13.494 £1.53 14.486 + 2.61 16.445 £ 0.0 19.981 £ 0.0
India 0.763 0.606 421.055 £ 101.89 516. 0 3 £ 53.29 116.945 £ 113.52 156.634 £ 40.38 p 84 153.11 | 220.584 £ 150.57 4 76.175 £ 0.0 72.2214+0.0
United States. 0.776 0.856 1128.432 £ 16.48 1119.815 £ 17.78 507.74 + 69.26 5 73 £ 45.44 770.861 £ 0.0 1142.181 £ 0.0
Germany 0.787 0.892 119.003 £ 14.04 170.97 & 39.81 105.301 £ 15.5 13 205.695 £ 0.0 296.785 + 0.0
Russia 0.901 0.904 300.119 = 41., i[) 103.954 + 13.42 290.375 + 36.73 119.652 + 32.09 184.501 + 30.43 179 461 =+ 26. 22 105.053 = 0.0 228.057 £ 0.0

TABLE 4. RMSE on 2021 forecasts. Countries are grouped by quadrant: Low trend - low periodicity, low trend - high periodicity, high trend - low
periodicity and high trend - high periodicity. Our methods are abbreviated to MO for multi-output and RSO for repeated single-output. Between
parentheses a d denotes mortality data, mtm mode of transport mobility, pvm place visits mobility and cm combined mobility. All our methods in this
table use the partial refit drift adaptation strategy. M and B prefixes denote our methods and baselines. All baselines only use mortality data.

Country Trend | Periodicity || M: MO (d+mtm) | M: MO (d+pvm) | M: MO (d+cm) M: MO (d) M: RSO (d) B: GRU B: LSTM B: Bi-LSTM B: ARIMA wavelet
Netherlands | 0.131 0.329 3521+ 1.13 1.493 £ 0.59 1,617 £0.21 2.062£4.78 | 6.791+10.73 6.822 = 2.01 0524 £2.12 | 11.094%2.75 341£0.0
Treland 0.134 0.401 7.953 + 1.04 4.522 4+ 1.68 6.701+£0.87 | 7.149+1.18 9.234 +2.16 9.048 £ 0.1 8.914 4 0.03 8.924 £ 0.03 8991 £ 0.0 9.076 & 0.0
Luxembourg | 0.162 0.245 0.273 £ 0.06 0.148 + 0.06 0.17 £ 0.02 0.233£0.18 0.355 £ 0.33 0.394 £ 0.07 0.415 4 0.12 0.317 £ 0.23 0.183 £ 0.0 0.197 £ 0.0
Finland 0.17 0.327 0.575+0.1 0.456 £ 0.15 0.452+0.08 | 0.692+0.19 3.312 £ 6.24 1.596 + 0.29 1.066 =+ 0.2 1.161 + 0.48 0.577 £ 0.0 0.538 & 0.0
Bulgaria 0.179 0.485 8.285 £ 0.86 5169+ 1.5 6.295 £ 0.68 7.472+£2.93 9.259 + 3.26 15.689 + 2.81 20.819 £4.71 9.402+0.0 11.425 £ 0.0
Czechia 0.186 0.283 5.515 £ 0.79 3.377+1.07 | 44384052 | 5202+4.58 8.428 £ 8.47 5.609 £ 0.11 5.726 £ 0.15 7.87+0.0 34.826 £ 0.0
Estonia 0.193 0.166 0.589 £ 0.11 0.354+0.16 0.401+0.05 | 0.712+0.63 0.965 + 1.11 0.878 £ 0.14 1.057 +0.32 1.164 +0.19 1.897 0.0 1.001+0.0
Portugal 0.261 0.325 2.334+0.23 1.666 + 0.55 1.845+0.22 | 2.093+0.38 4567 +£5.75 2.866 % 0.26 2.265 + 0.42 2.314 £ 0.38 4.262 +0.0 8.485 £ 0.0
Denmark | 0.274 0.366 0.606 =+ 0.06 0.453 +0.13 0.483+£0.06 | 0.577 +0.32 2.387 + 8.36 1.802 = 0.69 1.007 +0.24 0.953 + 0.3 0.894 % 0.0 0.68 = 0.0
Austria 0.292 0.247 4.842 £ 0.53 2.758 + 0.93 4.01+0.5 4422419 6.489 + 14.79 5.111 + 0.26 5.516 £ 0.13 5.367 +0.11 6.499 £ 0.0 5.298 £ 0.0
Sweden 0416 0.25 1.716 £ 0.66 1.034+0.35 1.047+£0.52 | 2.526 £ 2.55 5.757 £ 7.73 3.383 £ 0.86 3.145 + 1.43 3.111 £ 0.61 2.214 0.0 1.315+0.0
Slovenia | 0.473 0.482 1.58 +£0.2 0.918 +0.31 1.31+0.16 1.501 + 0.49 2.029 + 1.18 1.883 +0.19 1.978 +0.22 1.802+0.2 2.041 £ 0.0 2.229 £ 0.0
Croatia 0.474 0.292 3.3024£0.25 2.413+0.76 2.67+0.33 3.092 +1.22 5.442 4+ 1.63 3.633 +0.24 3.345 4+ 0.08 3.453 +£0.16 5.037+0.0 4.0134+ 0.0
Romania | 0.477 0.467 63.826 £ 7.55 | 36.134+£13.75 | 46.98+6.63 | 55.867 £10.61 | 91.926 £11.95 94.0 + 1.68 90.818 £3.26 | 89.342+4.48 || 150.26 £0.0 163.263 +0.0
Norway 0.118 0.94 856 £ 0.33 043£0.23 0.407 £0.09 | 0.663 £0.37 1.629  3.29 0.932 £ 0.29 0.726 £ 0.08 0.742 £0.14 3817 £ 0.0
Spain 0.156 0.7 13.513 + 4.21 7.995+2.57 | 10.909+0.97 | 14.79+13.25 | 30.488 +36.4 43.406 + 9.38 374701 | 40.028 £20.67 || 116.214 £ 0.0
Hungary | 0378 0.616 6.036 & 0.94 4.052 +1.51 4.201£0.63 | 5616+7.08 | 11.781+5.08 6.742 £ 0.86 6.704 4 0.81 6.568 + 0.68 5.837 £ 0.0 6.736 & 0.0
Latvia 0.509 0.434 2918 £0.34 1.898 + 0.56 2.286 £0.27 2.774 £ 0.53 3.347+0.8 3.769 + 0.85 4.879 + 0.64 6.132 + 0.57 3.873+0.0 4.72+ 0.0
Greece 0.532 0.095 3.813 £ 0.28 3.18 +1.62 3.071+041 | 3519+4.39 6.398 £ 5.56 7.523 +0.93 9.158 + 2.65 8.664 +3.11 5.276 = 0.0 7.744 £ 0.0
Lithuania | 0.568 0.321 1.628 +0.33 1.224 +0.54 1.13+0.16 | 3.587+0.83 1.866 + 1.5 4.751 4 0.64 7.971 £ 1.13 7.095 + 0.6 4.923+0.0 1.654+0.0
Belgium | 0.596 0.368 945 £ 0.32 1.249 +0.56 1.262 £ 0.13 1.498 £ 4.5 4.98 +14.22 2.791 £ 0.53 2.053 £ 0.18 1.839+0.16 3.578 £ 0.0 3.011£0.0
Italy 0.703 0.451 13.932 +2.45 9.706 + 3.6 10.891 + 1.65 | 13.791+31.52 | 21.27+35.81 15.193+1.22 | 14.187+4.06 | 13.793+2.12 | 47.583+0.0 30.964 £ 0.0
Slovakia 0.71 0.073 3.573 £ 0.51 1.743 £ 0.62 2.311+0.28 | 4.964 +2.33 3.796 + 4.49 3.405 + 0.35 3.428 £ 0.55 3.164 +0.12 5.345 + 0.0 655 & 0.0
Germany | 0.678 0.787 20831 £4.96 | 14.051£5.01 | 19.016 £2.04 | 38.147 £ 15.76 | 56.778 £43.63 || 68.280 £20.63 | 71.063 £ 18.43 | 71.303 £ 25.66 || 54.82£0.0 39.678 £ 0.0
Poland 0.729 0.754 17.484 +4.12 11.615+4.83 | 10.994+1.2 | 30.884+ 12.08 | 26.258 +£20.74 || 117.077 +£22.76 | 51.8214+20.34 | 39.409 £ 9.1 84.46 0.0 23.468 + 0.0
France 0.751 0.788 15.152 £ 4.72 7.8+3.31 10.671 £1.06 | 15.311 +£27.73 | 46.287 £ 43.61 19.97 £ 5.69 14.783 £ 3.07 17.883 £ 5.86 34.267 £0.0 27.228£0.0

ensemble and a repeated single-output ensemble and fur-
ther combined these with concept drift adaptation strategies.
We evaluated the performance of our ensembles based on
root mean squared error compared to five different baselines
found in recent COVID-19 forecasting literature.

Overall, our work has demonstrated the potential of devis-
ing AutoML solutions for COVID-19 forecasting, as well as
using open mobility data to guide predictions. Our experi-
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ments have shown that it is possible to increase the fore-
casting accuracy by using mobility features in addition to
mortality features. Our experimental results also suggest that
place visits mobility data is more informative than the mode
of transport mobility data; this may be due to the fact that the
place visits data is less aggregated as opposed to the mode
of transport set. Nevertheless, using either of these sets can
improve forecast quality. We also found that when concept
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drift occurs, due to a shift in data normalisation and possibly
virus mutations, it is necessary to incorporate concept drift
adaptation techniques into our AutoML methods in order to
obtain useful predictions. When adapted, our multi-output
methods using mobility data significantly outperform the
baselines we have considered in our study.

Our best-performing ensembles utilised the concept drift
adaptation strategy of refitting the ensembles once drift has
occurred. Automatically, finding the best moments to adapt
the ensembles over time is an interesting direction for future
research.

APPENDIX
See Tables 3 and 4.
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