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ABSTRACT In the context of the current COVID-19 pandemic, various sophisticated epidemic and machine
learning models have been used for forecasting. These models, however, rely on carefully selected archi-
tectures and detailed data that is often only available for specific regions. Automated machine learning
(AutoML) addresses these challenges by allowing to automatically create forecasting pipelines in a data-
driven manner, resulting in high-quality predictions. In this paper, we study the role of open data along
with AutoML systems in acquiring high-performance forecasting models for COVID-19. Here, we adapted
the AutoML framework auto-sklearn to the time series forecasting task and introduced two variants for
multi-step ahead COVID-19 forecasting, which we refer to as (a) multi-output and (b) repeated single
output forecasting. We studied the usefulness of anonymised open mobility datasets (place visits and the
use of different transportation modes) in addition to open mortality data. We evaluated three drift adaptation
strategies to deal with concept drifts in data by (i) refitting our models on part of the data, (ii) the full data,
or (iii) retraining the models completely. We compared the performance of our AutoML methods in terms
of RMSE with five baselines on two testing periods (over 2020 and 2021). Our results show that combining
mobility features and mortality data improves forecasting accuracy. Furthermore, we show that when faced
with concept drifts, our method refitted on recent data using place visits mobility features outperforms all
other approaches for 22 of the 26 countries considered in our study.
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INDEX TERMS Automated machine learning, time series forecasting, concept drift, COVID-19, mobility
data.

I. INTRODUCTION19

In December 2019, a coronavirus disease (COVID-19),20

caused by the severe acute respiratory syndrome coron-21

avirus 2 (SARS-CoV-2), emerged in the city of Wuhan,22

China. By January 2020, the World Health Organisation23

advised governments to prepare for active surveillance and24

case management [1]. For policymakers to respond ade-25

quately, the ability to accurately forecast the spread of the26

disease is essential. This has inspired many researchers to27

work on forecasting methods in response to the COVID-1928

pandemic based on available data. Such data may be in the29

form of the number of confirmed cases, deaths, hospitalisa-30

tions or vaccinations. Agencies such as the European Centre31
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for Disease Prevention and Control [2] have invested substan- 32

tial effort into consolidating such data sources. Furthermore, 33

several technology companies – including Apple, Facebook, 34

Foursquare and Google – have published data reflecting the 35

movement of people within a population. These data sources 36

are interesting with respect to COVID-19 forecasting, as the 37

movement of people is directly related to the spread of the 38

contagious disease. 39

Despite such efforts, Ioannidis et al. [3] claim that fore- 40

casting for COVID-19 has majorly failed. They argue that 41

draconian countermeasures have been taken on the basis 42

of incorrect modelling assumptions, poor data quality and 43

high sensitivity of estimates due to exponentiated variables. 44

Early models have built upon speculations while predict- 45

ing for entire seasons. As a result, many forecasting models 46

would only work well for isolated homogeneous populations 47
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but not for richer real-world scenarios. In this paper,48

we study to understand why forecasting COVID-19 is diffi-49

cult and how available open data and recent advancements in50

machine learning can be used to create accurate forecasting51

models.52

Constructing high-performancemachine learning pipelines53

is challenging. A forecasting task pipeline typically consists54

of many steps, such as data pre-processing, feature extraction55

and selection, and model fitting. For each of these steps,56

choices need to be made, and corresponding hyperparameters57

need to be tuned that may impact the accuracy of predictions.58

Manual tuning often relies on simplifying assumptions,59

which may not fully capture the underlying characteris-60

tics of the data. Automated machine learning (AutoML)61

is a recently growing field that enables users to construct62

high-performance classification or regression pipelines in a63

fully automated manner. AutoML has been demonstrated64

to extract competitive and high-quality models automati-65

cally in various applications, often outperforming manually66

tuned models. Successful AutoML frameworks include auto-67

sklearn [4], Auto-Keras [5] and Auto-WEKA [6].68

In this work, we approach the forecasting of COVID-1969

mortality as a time series regression task and explore how70

AutoML can be deployed for this goal. Specifically, we look71

into the role of different datasets and how to account for72

data drift when the underlying concept generating the data73

changes. We are forecasting COVID-19 substantially later74

than early work, such as [7], [8], [9]. This gives us the oppor-75

tunity to use methods that need more training data (e.g.,76

deep learning models) and would not be feasible in early77

forecasting scenarios. We adapt the well-known and freely78

available AutoML framework auto-sklearn [4] to the task79

of COVID-19 forecasting. Extending this framework, in this80

paper, we aim to investigate the usefulness of various disease81

and mobility datasets, analysing how they can best be used82

for COVID-19 forecasting. There are two main challenges83

to achieve this goal. The first challenge lies in the fact that84

auto-sklearn was not explicitly designed for the task of time85

series forecasting. Time series forecasting introduces extra86

parameters to set for instance to allow for suitable input win-87

dow sizes and forecasting horizons. The second challenge is88

that available AutoML frameworks such as auto-sklearn are89

designed for data with a stable data generation process. The90

pandemic, however, has a complex data generation process.91

As lock-down policies are applied, the virus mutates, or vac-92

cination campaigns modulate its spread, the underlying data93

generation process undergoes substantial changes. This type94

of concept drift necessitates adaptations to this framework in95

order to ensure high-quality forecasting results. Our contri-96

butions in this paper are as follows:97

• We adapt the auto-sklearn AutoML framework to the98

task of forecasting COVID-19 mortality data and intro-99

duce two AutoML forecasting variants for multi-step100

ahead time series forecasting.101

• We study how we can incorporate anonymised mobility102

data representing place visits and the use of different103

transportation modes. We also study to which extent 104

doing so permits more accurate forecasting. 105

• We extend this framework to take into account 106

non-stationarity and concept drift in the data by com- 107

paring the performance of three different drift adaption 108

strategies. 109

• We evaluate our methods on real-world datasets from 110

58 countries worldwide and against five baselines. 111

II. RELATED WORK 112

A. COMPARTMENTAL MODELS 113

Traditionally, epidemics are charted using compartmental 114

models, like the SIR model [10]. This model splits the popu- 115

lation of individuals in different compartments based on their 116

health status. At each time step, the flow of individuals tran- 117

sitioning from one compartment to the other is described by 118

differential equations, representing contact ratios and recov- 119

ery time. Given more knowledge about a given disease, more 120

complex compartmental models may be created by adding 121

more compartments that reflect that knowledge. The SEIR 122

model [11], for instance, extends the SIR model by injecting 123

the exposed compartment, holding people infected by the 124

disease but not yet capable of infecting others. 125

B. COMPARTMENTAL MODELS WITH CONTACT 126

NETWORKS 127

Basic compartmental models require the unrealistic assump- 128

tion that the population is homogeneous and every individual 129

has an equal amount of contact with every other individ- 130

ual. To become more realistic, compartmental models may 131

be extended with contact networks. Liu et al. [12] used a 132

multi-layered contact network – where each layer entails a 133

mode of contact – and an SIR model to simulate the prop- 134

agation of flu. They show that this approach gives more 135

insights about the underlying dynamics of the spread of dis- 136

eases. Balcan et al. [13], similarly used a multi-scale network 137

to simulate an influenza-like disease. Instead of individuals, 138

they used sub-populations as nodes and gravitational flow 139

derived from commuting and flight data as weights for the 140

edges introducing a form of spatial awareness to the com- 141

partmental models. 142

In order to create realistic contact networks, detailed 143

mobility datasets are needed. Ideally, these datasets encom- 144

pass the entire population of a region, detailing where and 145

how people have come in contact with each other. In real- 146

ity, datasets often summarise interactions and often present 147

samples of a population. Also, recorded interactions in these 148

datasets are not enriched with duration, or intensity [14]. 149

Contact networks where individuals are simulated as a basis 150

for the spread of diseases are called agent-based networks. 151

To create agent-based networks, one needs datasets con- 152

taining the movement patterns of individuals. For instance, 153

Aleta et al. [15] created an agent-based network using a 154

dataset containing place visits published by Foursquare 155

to simulate the spread of COVID-19 through a synthetic 156
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population in the Boston metropolitan area. While for some157

countries, the mobility data is detailed enough to create real-158

istic contact networks, for most, this is not the case. In many159

countries, mobility data is considered as personal data and160

should not be collected. In our work, we make predictions161

for a large number of countries. Instead of detailed mobil-162

ity data on the individual level, we use aggregated mobility163

data on a national level. This is not detailed enough to con-164

struct contact networks. However, such datasets can easily165

be shared and used as features for regressors and extracting166

general knowledge from global data that can be useful for167

forecasting.168

C. AUTOREGRESSIVE MODELS169

Another classic approach is to use autoregressive meth-170

ods. An autoregressive model is a regression model where171

the input variables are observations from previous time172

steps. ARIMA models were successfully deployed to fore-173

cast COVID-19. Kumar et al. [16] used the ARIMA model174

to analyse the trend of 15 countries during the first three175

months of the pandemic. Alzahrani et al. [17] compared the176

ARIMA model with the simpler AR, MA and ARMA mod-177

els making forecasts for four weeks for Saudi Arabia and178

found that ARIMA outperformed the others. Chakraborty179

and Gosh [9] extended an ARIMA model by adding a180

wavelet transformation on the residuals of the model. This181

improved the forecasts and was tested for Canada, France,182

India, South Korea and the UK on a forecasting range of ten183

days.184

D. DEEP LEARNING MODELS185

Recently, deep learning methods got applied to forecast epi-186

demics. One of such approaches is the work byWu et al. [18]187

who predicted flu in the United States using a combina-188

tion of CNN, RNN and residual links. They achieved a189

robust improvement over autoregressive models using mul-190

tiple real-world datasets. Aiken et al. [19] compared autore-191

gressive models with a GRU RNN to predict flu prevalence.192

They found that on larger prediction horizons, the RNN193

achieved significantly lower RMSE. Fu et al. [20] predicted194

influenza using an attention-based LSTM. One of the obser-195

vations they made was that the sequence length of their train-196

ing data highly influenced the performance of their model.197

Applied to COVID-19, many other work has been performed198

using LSTMs [8], [21], [22], [23]. Shahid et al. [24] perform199

a comparative study using a GRU, LSTM and Bi-directional200

LSTM. To train deep neural networks, one needs a lot of201

training instances. As for early epidemics, the number of202

instances is limited, and it may be challenging to create suf-203

ficiently detailed models. Typically, the architecture used has204

a great influence on the performance of the model and should205

be carefully constructed. In our work, this is not necessary206

as we use the underlying characteristics of the pandemic207

to automatically create our models. It is possible to auto-208

matically construct deep learning architectures via Neural209

Architecture Search, using for example, Auto-Keras [5] or210

Auto-Pytorch [25], but as these need large quantities of data, 211

the amount of data available in epidemics may be insufficient. 212

E. AUTOMATED MACHINE LEARNING METHODS 213

The creation of regression pipelines encompassesmany steps; 214

data pre-processing, feature pre-processing, hyperparame- 215

ter optimisation and algorithm selection. The best choice 216

of the algorithm, pre-processing step and further how to 217

set their hyperparameters, typically depends on the data at 218

hand. Therefore, it is difficult to select a single algorithm 219

to ensure that the best model is configured for a forecast- 220

ing problem. Different choices of these components may 221

vastly influence the predictive performance of the pipeline, 222

which is why we can benefit from making these choices 223

automatically. AutoML systems have recently addressed this 224

issue through developing techniques to automatically config- 225

ure high-performing machine learning pipelines. Sequential 226

Model Based Optimisation (SMBO) is a black box optimisa- 227

tion framework that has been used for the purpose of hyper- 228

parameter optimisation. Hutter et al. [26] used (SMBO) to 229

automatically optimise hyperparameters of machine learn- 230

ing algorithms. Sequential Model-based Algorithm Config- 231

uration (SMAC) [27] is a system that implements SMBO 232

and can be used for hyperparameter optimisation. This is 233

a general-purpose algorithm configurator, which makes it 234

possible to both select algorithms and tune their hyperpa- 235

rameters efficiently. Auto-WEKA [6] is an AutoML frame- 236

work around the WEKA software package using SMAC for 237

its configuration. This framework fully automated the cre- 238

ation and tuning of classification and regression pipelines. 239

Auto-sklearn [4] is an AutoML framework by Fuerer et al. 240

around the scikit-learn [28] Python package. This framework 241

includes meta-learning to warm start the configuration search 242

and creates ensembles of pipelines. In more recent updates, 243

this framework is updated with multi-output regression. This 244

option makes it suitable for forecasting with a range of mul- 245

tiple days. TPOT [29] is a tree-based pipeline optimisation 246

tool for AutoML. Similar to auto-sklearn, it is built upon 247

scikit-learn. Instead of using SMBO, TPOT uses genetic 248

programming for hyperparameter optimisation. H2O [30] is 249

another AutoML framework that uses the random search 250

for its hyperparameter optimisation and combines models in 251

stacked ensembles. Unlike auto-sklearn, H2O does not opti- 252

mise data and feature pre-processors, but only optimisesmod- 253

els. It is also possible to automatically construct deep neural 254

networks. Frameworks that support this are Auto-Keras [5] 255

and Auto-PyTorch [25], build Python packages. These frame- 256

works find solutions to neural architecture search (NAS), 257

where they aim to find the optimal neural network, minimis- 258

ing a loss function. Han et al. [31] used TPOT and H2O to 259

forecast COVID-19 mortality data from Ceará. Their study 260

found that TPOT outperforms regressionmodels not automat- 261

ically tuned, achieving a higher R2 score. Marques et al. [32] 262

compared models produced with H2O with an LSTM net- 263

work using data from the countries of Brazil, China, the 264

United States of America, Italy, and Singapore and found 265
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that H2O outperformed the LSTM in terms of MAE, MSE266

and R2.267

Among these frameworks in this work, we have selected268

to adapt auto-sklearn to the task of COVID-19 forecasting.269

As data is limited when forecasting the pandemic, using270

AutoML systems generating deep neural networks is unfea-271

sible. Among frameworks based on classic machine learning272

algorithms, H2O does not support the automation of data and273

feature pre-processors which are both key components for274

time series forecasting to configure the auto-regressive model275

and its window size automatically. TPOT and auto-sklearn276

are comparable to each other in creating full pipelines. How-277

ever, since TPOT relies on cross-validation to validate its278

pipelines, it is less suitable for time series forecasting tasks.279

The cross-validation scheme splits the data in k folds, train-280

ing the models on k − 1 folds and evaluating on the one281

that was left out. When the evaluation fold is earlier in282

time than the train folds, the model trains to predict past283

observations instead of the future one. Auto-sklearn sup-284

ports holdout sets as a validation scheme, ensuring we can285

train our models without relying on future data. We further286

compare our work with deep learning and auto-regressive287

methods.288

III. PROBLEM STATEMENT289

We view the forecasting of COVID-19 as a time series290

forecasting task. A time series holds discrete observations291

indexed over time. In our case, the rate over which the292

time series is sampled is constant due to the availability of293

daily case and mortality data. Considering a time series con-294

taining COVID-19 mortality numbers of length n as x =295

[x1, . . . , xn] with xi ∈ Rn, a time series segmentation win-296

dow of size w, a time step t and a forecasting horizon of297

size h, we want to use a segment of historical observations298

xt,w = [xt−w, . . . , xt ] from the time series up to observation299

xt to forecast future data points xt,h = [xt+1, . . . , xt+h].300

For the task of COVID-19 forecasting, the time series we301

consider are the mortality rate of a country, where xt denotes302

the number of new deaths at time step t . When we consider303

using mobility time seriesm = [m1, . . . ,mn] alongside mor-304

tality data x, we extend the notation to use a bivariate time305

series xmt,w = [xt−w,mt−w . . . , xt ,mt ] for the forecasting306

of [xt+1, . . . , xt+h]. In our approach, mt is a vector holding307

a number of features in terms of the percentual increase of308

mobility for a country in a given form, at timestamp t , such309

as the increase of time spent driving or the increase of time310

spent visiting recreational areas. This format is dictated by311

the mobility data provided by Apple [33] and Google [34],312

which we study in this work. To make comparisons between313

different countries, areas or cities possible, we normalise the314

mortality data by the size of its population N .315

Since the infectiousness of COVID-19 may change over316

time, for instance, due to mutations or vaccinations, the317

underlying concept generating the data may change. Vast318

changes to the concept are detrimental to the performance319

of machine learning algorithms. This change is known as320

concept drift. In Equation 1, we show a formal definition of 321

concept drift between two time steps t0 and t1 [35]. 322

∃X : pt0 (X ) 6= pt1 (X ) (1) 323

In this definition, pt0 is the joint distribution between the set 324

of input sequences X where {x,m ∈ X}. 325

We aim to address the forecasting task by formulat- 326

ing the Combined Algorithm Selection and Hyperparameter 327

(CASH) Optimisation problem [6]. Given a set of machine 328

learning algorithms A = A(1), . . . ,A(k) with hyperparam- 329

eter spaces 3(1), . . . , 3(k), we search the optimal algo- 330

rithm with optimal hyperparameter settings A∗λ∗ following 331

Equation 2. 332

A∗λ∗ ∈ argmin
A(j)∈A,λ∈3(j)

1
k
·

k∑
i=1

L(A(j)λ ,D
(i)
train,D

(i)
valid) (2) 333

Here L is the loss generated by algorithm A when trained 334

using set Dtrain ∈ X and validated using set Dvalid ∈ X . This 335

loss is the mean squared error between the forecast made by 336

algorithm A using xmt,w and with hyperparameter settings 337

λ (i.e., x̂t,h) and the true observations in the validation set 338

(i.e., xt,h), unseen by algorithm A. We are optimising a full 339

pipeline. Therefore, optimising A means that we are optimis- 340

ing the hyperparameters of a combination of pre-processors 341

P, features F and regressors R, or A = {P,F,M}. Part of 342

this process is internally optimising the input window size w, 343

which is a newly added feature pre-processing step for time 344

series forecasting. 345

IV. METHODS 346

As discussed in Section II, in this work, we extend auto- 347

sklearn to address the problem mentioned in Section III, 348

as it supports multi-output regression and holdout validation. 349

Furthermore, it supports automation of data and feature pre- 350

processing steps, which are both important for time series 351

forecasting to configure the auto-regressive model and set its 352

window size. 353

Still, as this system was not necessarily created to perform 354

time series forecasting, we add an additional variable input 355

window size as feature pre-processor and introduce a new 356

way to perform multi-step ahead forecasting. In this section, 357

we provide the details on the data used in this work and 358

how we adapted auto-sklearn to perform the forecasting task. 359

Finally, we specify how we adapt the auto-sklearn ensembles 360

when faced with concept drifts. 361

A. DATA 362

The data used for our predictions comes from three sources: 363

mortality data and mobility data representing two types of 364

mobility modalities: (i) the mode of transport and (ii) place 365

visits. Table 1 presents the meta-data of these sources. 366

1) THE MORTALITY DATA 367

This is collected by the European Centre for Disease Preven- 368

tion and Control (ECDC) [36], [37]. The data is split into two 369
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TABLE 1. Meta-data of data sources. The end dates marked with an asterisk (*) are not actual end dates, as these datasets are at the date of writing still
updated regularly.

sets, with the main difference being the period over which370

time series are collected and the number of countries. Both371

datasets hold the daily number of new cases and new deaths.372

Additionally, they provide the country population size of the373

previous year. For the first dataset, this is the population size374

of 2019, and for the second dataset, this is the population375

size of 2020. The ECDC 1 dataset has data from December376

31st, 2019 until December 14th, 2020. Not all countries have377

values at the start of the dataset, as COVID-19 was not first378

encountered in all countries at the same time. The data is379

provided for 214 countries from all around the world. The380

ECDC 2 dataset contains more recent data starting on the first381

of March 2021 and is still being updated daily. The data in382

this set is collected for 30 countries in the European Union.383

Both datasets are maintained and adjusted by ECDC when384

numbers are deemed inaccurate due to delays in reporting.385

We use the daily new deaths as part of our input and as386

truth value to evaluate our estimations. We do so because the387

reported deaths are likely to be more reliable than reported388

cases, as mentioned by [7]. To make sure the data is compa-389

rable between countries, we normalise the daily new deaths to390

depict the number of daily new deaths per 1,000,000 people391

within the population.392

2) THE APPLE MOBILITY TREND REPORTS [33] (MODE OF393

TRANSPORTATION)394

This data contains the percentual increase or decrease of the395

use of modes of transportation as compared with a baseline396

volume on January 13th, 2020. The modes of transportation397

specified are walking, driving and use of transit. However,398

this latter mode is not available for all countries. There-399

fore, in our features, we only use the increase or decrease400

in the use of walking and driving as means of transporta-401

tion. The dataset includes data starting from January 13th,402

2020. It holds data for 63 countries, excluding many African403

countries.404

3) THE GOOGLE COMMUNITY MOBILITY REPORTS [34]405

(PLACE VISITS)406

This data contains the percentual increase or decrease of407

place visits as compared with a baseline period from January408

3th to February 6th, 2020. The places are categorised in the409

following six categories: retail and recreation, grocery and410

pharmacy, parks, transit stations, workplaces and finally, res-411

idential. The dataset starts on February 15th, 2020. It holds412

data for 135 countries.413

4) COMBINED DATA 414

We merged the mortality data and the mobility data into two 415

combined datasets. The first combined dataset captures the 416

first year of the pandemic. We used the intersection of dates 417

and countries of the first ECDC dataset and both mobility 418

datasets. There were some missing values, which we imputed 419

by taking the average of the values 7 days before the miss- 420

ing data point and 7 days after the missing data point. This 421

way, the imputed value fits well between the previous and 422

next week and daily trends are preserved. For the country of 423

Serbia, the number of missing values exceeded 10%, which is 424

why we omitted it from the dataset. The resulting first com- 425

bined dataset contains data from February 15th, 2020 until 426

December 14th, 2020. The second combined dataset contains 427

data from March 1st, 2021 until July 10th, 2021. When com- 428

bining the mortality data with the mobility data for these 429

periods, there were no missing values to account for. The 430

first dataset includes 58 countries from all over the world. 431

The second dataset contains 26 countries from the European 432

Union. 433

B. FORECASTING STRATEGIES 434

Auto-regressive modelling is a common approach taken for 435

forecasting tasks. An auto-regressive model performs regres- 436

sion using past measurements in a time series to predict its 437

future timestamps. Many regression algorithms can be used 438

to create an auto-regressive model. Furthermore, the data can 439

be pre-processed in different ways within a machine learning 440

pipeline before being fed into the regression algorithm. In this 441

paper, we extend the auto-sklearn [4] AutoML framework to 442

achieve this goal. Auto-sklearn is a wrapper around the popu- 443

lar Python module scikit-learn [28]. Scikit-learn is a machine 444

learning library including a large set of algorithms that can 445

be used for regression and classification tasks, providing var- 446

ious ways to pre-process data, select features, fit models and 447

evaluate the results. 448

1) VANILLA AUTO-SKLEARN 449

Auto-sklearn automates the process of creating good 450

pipelines. Internally, it uses [27] SMAC, an SMBO frame- 451

work. SMAC constructs a surrogate model capable of 452

predicting the performance of an algorithm on the corre- 453

sponding hyperparameter space (in this case, the space of 454

all possible pipelines and hyperparameter settings). This 455

model selects a list of promising configurations, evaluated 456

on a validation set, based on their expected improvement 457
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FIGURE 1. The multi-output ensemble. This ensemble creates multiple predictions at once but has no access to meta-learning. Within the
framework, pipelines are constructed to form a forecasting ensemble. By feeding this ensemble test data predictions can be made.

FIGURE 2. The repeated single-output ensemble. This ensemble creates one prediction at each time step. To create predictions for a longer time
period, for each new time step the predictions of previous steps are used. It has access to meta-learning, but cannot use additional data sources
as input.

over the incumbent, the best-seen configuration. A local458

search is performed near these promising configurations459

to find configurations with higher expected improvement.460

In each iteration, the incumbent is updated to store the best461

found configuration. The best configurations are grouped462

together in an ensemble using ensemble selection [38]. This463

ensemble method iteratively adds the configuration with the464

highest ensemble performance gain on the validation set.465

Configurations grouped in the ensemble, each create their466

own forecast, which is averaged to create the ensemble fore-467

cast. The process of constructing an optimal pipeline can468

be warm-started using a meta-learning module. Before the469

search for good pipelines starts, the input dataset is compared470

with 140 datasets from the OpenML [39] repository. Then,471

configurations are selected which are known to perform well472

on similar datasets. In the rest of this section, we will explain473

different adaptations made to auto-sklearn. Auto-sklearn is474

not developed for modelling time series data, which is why475

we add a variable window size: a feature pre-processor that476

changes the number of days used as the input sequence. Addi-477

tionally, there are two ways we approach the multi-step ahead478

forecasting: via (i) multi-output regression and (ii) repeated479

single-output regression. We detail these additions in the fol-480

lowing parts.481

2) DEFINING A FORECASTING FRAMEWORK BASED ON 482

AUTO-SKLEARN WITH VARIABLE INPUT WINDOW SIZE 483

To predict the value of [xt+1, . . . , xt+h], we train the mod- 484

els with sequences of the time series in the form of 485

[xt−w, . . . , xt ]. In vanilla auto-sklearn this window size w has 486

to be determined by the user. This would mean that when 487

we use lags of the time series as features, the number of 488

lags is predetermined. When making predictions with differ- 489

ent regressors, not all parts of the time series may be rel- 490

evant and depending on the configuration, it can be good 491

to use a longer or shorter input sequence. This is why we 492

implement the variable window size feature pre-processor as 493

proposed in our earlier work [40]. This pre-processor has 494

the hyperparameter w that is optimised within auto-sklearn. 495

The pre-processor takes the input sequence with predeter- 496

mined static length and cuts off the first values, resulting in 497

an input sequence in the form of [xt−w, . . . , xt ]. The work 498

presented in [40] experiments on a large set of time series 499

tasks and showed that the variable window size had major 500

impact on the accuracy of the framework. We still need to set 501

a maximum value for the window size. As larger windows 502

limit the number of data instances we can use, we limit our 503

window size to a maximum of 30 days. By incorporating 504

the variable window size optimisation in auto-sklearn, it it 505
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possible to define a forecasting task in the following two506

ways:507

• Multi-output. Since version 0.8, auto-sklearn supports508

multi-output regression, such that forecasts with forecast509

horizon h > 1 may be performed without the need for510

training multiple models. We use this feature to define511

multi step-ahead forecasting in our method and refer to512

it multi-output. We show a schematic overview of this513

method in Figure 1. To make a multi-output prediction,514

separate regressors are fitted for each value of output.515

This means that each model consists of h regressors.516

As this output format was implemented much later than517

others, there is no meta-learning available for multi-518

output regression.519

• Repeated single-output. The repeated single-output520

forecasting scheme with a horizon of h > 1 is a model521

trained for single-output regression, but once it starts522

forecasting, its output is appended to the input sequence.523

For instance, when we want to predict the value of524

xt+2, we use the sequence [xt−w+1, . . . , xt , x ′t+1] as525

input. In this sequence, x ′t+1 denotes the prediction of526

value xt+1. Note that when we append values to the527

input sequence, we remove values at the start of the528

sequence. Each model uses one regressor. We show529

a schematic overview of how this approach is imple-530

mented in Figure 2. The advantage of this method over531

the multi-output regression method is that it benefits532

from meta-learning. However, as it is not trained specif-533

ically for forecasting multiple days in future, predic-534

tions further away may suffer from errors made earlier.535

Another disadvantage is that this method can not use536

external changing variables as input, as only one time537

series is predicted.538

3) AUTO-SKLEARN PARAMETER SETTINGS539

As tuning many hyperparameters requires lots of data540

instances to prevent overfitting, we put together the time541

series of all countries in the training dataset, as opposed to542

training separate models for separate countries. This way,543

we create a joint model capable of forecasting for many544

countries. We normalised the mortality data by the size of545

the population of each country. The mobility data depicts546

percentual changes inmobility, which does not require further547

normalisation to make comparisons between countries possi-548

ble. Tomake sure it handles individual countries well, we pass549

the country name as a categorical feature to each instance. For550

testing, we separate time series per country again. This way,551

we can compare the forecasting quality between countries.552

The default setting for resampling strategies is the use of553

cross-validation. The resampling strategy dictates what parts554

of the training data is used to validate the models. Applied555

to time series, cross-validation would mean that for most556

folds, future data is used to predict previous values. To negate557

this problem, we use a holdout set for validation. This set is558

situated at the end of the training set, just previous to the start559

of the test set, to be sure that the ensemble model generated 560

by auto-sklearn can’t learn future information. This is whywe 561

also disable shuffling. This keeps the temporal integrity of the 562

data intact and ensures that the holdout validation set consists 563

of the last dates in the train set. As an optimisation metric, 564

we use the mean squared error to evaluate the performance 565

of the pipelines. This ensures that the regressor line tries to 566

fit the set of data points as close as possible. To ensure our 567

ensembles are fully trained on the data, we refit the ensembles 568

on the full train and validation set after validation is finished. 569

This means that while the pipeline stays the same, the models 570

are updated with both the train and validation set. This way, 571

we make sure that there is no gap in knowledge just before 572

the forecasting starts. 573

C. DRIFT ADAPTATION 574

For the pandemic problem, it is important to consider the 575

changes in the data generation process that lead to concept 576

drifts in data. On the one hand, there may be a concept drift 577

caused by the fact that in 2021, many countries in Europe 578

started their vaccination programs. Furthermore, lock-downs, 579

mutations in the disease and changes in healthcare can lead to 580

additional concept drifts in the data. On the other hand, we use 581

two mortality datasets, separated in time, each normalised 582

with a different population size (the country population num- 583

bers have slightly changed from 2020 to 2021). Currently, 584

auto-sklearn has no drift detection mechanism. 585

Celik and Vanschoren [41] created several concept drift 586

adaptation mechanisms for automated machine learning 587

frameworks. It is not trivial to use any drift detection meth- 588

ods during training models with autosklearn. This requires 589

dynamically training multiple models to monitor the drift. 590

However, autosklearn works with a predefined number of 591

training instances to create a single model and cannot dynam- 592

ically detect drift in consecutive windows of training data. 593

As training a single autosklearn ensemble with sufficient 594

complexity takes multiple hours, creating many ensembles 595

for drift detection can quickly increase the time needed 596

beyond feasibility. While in the problem of COVID-19 fore- 597

casting, we can safely assume that drift exists in data, fur- 598

ther research can study how automatic drift detection tech- 599

niques can be incorporated directly in autosklearn. We imple- 600

ment three methods based on the work of Celik and Van- 601

schoren [41] that do not use drift detection to cope with 602

concept drift. For each of the methods, we first construct 603

ensembles using the old dataset. The drift adaptation strate- 604

gies can be viewed as a forget mechanism, discarding old 605

information in varying degrees. Depending on the mag- 606

nitude of the concept drift there can be merit for each 607

method. In our experiments, we study the performance of 608

these approaches in forecasting. The methods are explained 609

below: 610

• Full refit. The full refit method keeps the models trained 611

on old data and after drift occurs uses the full combina- 612

tion of both datasets to refit the ensembles. This method 613

places most emphasis on older data in comparison with 614

94724 VOLUME 10, 2022



J. Tetteroo et al.: Automated Machine Learning for COVID-19 Forecasting

the others, as it trains the original models on the older615

data and uses it for refitting.616

• Partial refit. The partial refit method also keeps the617

models trained on older data, but after drift occurs,618

it uses only the new dataset to refit the ensembles. This619

method still uses the older data in the form of ensembles,620

but the models are only updated with new data, placing621

more emphasis on the newer data.622

• Retrain. The retrain method discards the ensembles and623

constructs new ones with the new dataset. This method624

forgets the old data altogether and only uses new data625

for its predictions.626

V. EXPERIMENTS627

Our goal is to answer the following questions with our exper-628

iments (all resources for reproducing this research and results629

are available online1):630

• Q1: How does the use of mobility data as features631

improve COVID-19 forecasting accuracy using our pro-632

posed AutoML approach?633

• Q2: How does this framework perform in COVID-19634

forecasting compared to baselines?635

• Q3: Does adapting for concept drift help to improve636

COVID-19 forecasting accuracy using this AutoML637

approach?638

Based on the data sources available and the change in the639

population numbers used for normalisation, we use two sce-640

narios to address these questions.641

A. FIRST SCENARIO: 2020642

The first scenario uses 58 countries from all over the world.643

We use an evaluation period of 30 days starting on 15 Novem-644

ber 2020. The training data comprises time series data645

between 15 February 2020 and 14 November 2020, of which646

the last 30 days are used as a holdout validation set for our647

models.648

B. SECOND SCENARIO: 2021649

The second scenario uses 26 countries from the European650

Union. This scenario has an evaluation period of 30 days,651

starting July the 11th in 2021. Depending on the drift adap-652

tation technique, the way the data is used changes. In case653

of no adaptations, we use the data between 15 February654

2020 and 14 December 2020, as well as between 1 March655

2021 and 10 June 2021 as train data, of which the last 30 days656

are used for holdout validation. When refitting on the full657

dataset, we train between 15 February 2020 and 14 Decem-658

ber 2020, of which we use the last 30 days for validation.659

Then, the data between 15 February 2020 and 14 Decem-660

ber 2020, as well as between 1 March 2021 and 10 June661

2021, is used to update the ensemble weights. When refitting662

on the partial dataset, we again train between 15 February663

2020 an 14 December 2020, of which we use the last 30 days664

for validation. Then, we update the weights using only the665

1https://github.com/AutoML4covid19/Forecasting

data between 1 March 2021 and 10 June 2021. Finally, when 666

retraining the ensembles fully, we disregard the 2020 data, 667

training only on data between 1 March 2021 and 10 June 668

2021, using the last 30 days for validation. 669

C. BASELINES 670

We selected the following baselines based on earlier research 671

in COVID-19 forecasting that use machine learning models 672

and can train models based on the dataset we have collected. 673

Compartmental methods (e.g., [15]) need specific data that is 674

not available for all regions. Therefore, we cannot compare 675

our methods with these: 676

• Persistence.The persistence baseline can give an idea of 677

the minimum performance expected. When forecasting 678

the window [xt+1, . . . , xt+h] each predicted value will 679

be xt , disregarding all previous values xi with i < t . 680

• ARIMAwavelet. The ARIMA wavelet model [9] is the 681

combination of an ARIMA model and a wavelet-based 682

forecasting model. It fits an ARIMA model on the 683

mortality data and then models the residuals via the 684

wavelet model. We use the model as implemented by 685

Chakraborty and Ghosh [9] for COVID-19 forecasting, 686

but increase the number of forecasting days to align 687

with the scenarios. The parameters of the ARIMAmodel 688

controlling the order of autoregression, the order of dif- 689

ferencing and themoving average are automatically con- 690

figured using a grid search and the Akaike Information 691

Criterion [42]. 692

• GRU, LSTM and Bi-LSTM. To compare our frame- 693

work with recurrent neural networks, we reproduce 694

the GRU, LSTM and Bi-LSTM as studied by Shahid 695

et al. [24] for COVDI-19 forecasting. In our compari- 696

son, all three architectures share the same architectures, 697

as chosen by [24] and shown in Table 2. We did, how- 698

ever, enlarge the batch size from 10 to 58 for the first 699

scenario or 26 for the second scenario, which are the 700

number of countries in the dataset. This allows the mod- 701

els to train for each country simultaneouslywithout them 702

being able to see future time steps. We also increased the 703

number of time steps used as input to 30 to match the 704

other ensembles and baselines in our comparison. 705

D. EXPERIMENTAL SET-UP 706

Our framework is built on version 0.12.1 of auto-sklearn. 707

Auto-sklearn requires users to define a maximum runtime. 708

All of our ensembles, multi-output or repeated single out- 709

put, were ran for 3 hours. For the training of every single 710

pipeline, we limit the runtime of auto-sklearn to a maxi- 711

mum of 10% of the total runtime, which comes down to 712

18 minutes. The majority of iterations, however, finish much 713

faster. This amount of time ensures that hundreds of models 714

are compared to create the resulting ensembles. We run auto- 715

sklearn in parallel on 8 cores, of an Intel(R) Xeon(R) CPU 716

of 2.1 GHz with 10 GB of RAM. As mentioned before in 717

Section IV, we use a holdout set as a validation strategy, 718
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TABLE 2. Hyperparameter settings for the GRU, LSTM and Bi-LSTM.

and make sure not to shuffle the data. As the internal perfor-719

mance metric, we use the mean squared error for evaluating720

the performance of models. We use the full default regres-721

sor and pre-processor search space and extend the feature722

pre-processor search space by adding the variable window723

size pre-processor. We limit the window pre-processor to a724

minimum of three days and a maximum of 30 days.725

As the Bayesian optimisation used by auto-sklearn is726

stochastic, one run of the framework may optimise towards727

a locally optimal configuration, thus not yielding the actual728

optimal configuration.We perform bootstrapping to gain con-729

fidence in our predictions by creating a distribution over730

results. For each estimator we make, we run our framework731

25 times. Repeating 1,000 times, we sample with replacement732

five ensembles from the 25 runs, of which we select the one733

with the lowest validation error. These 1,000 selected models734

form our bootstrap distribution used to evaluate the models735

on the test set. For each day within the forecasting hori-736

zon, we report on the mean forecast and the 95% confidence737

interval. We use our bootstrapping approach not only for our738

methods but also for the deep learning baselines.739

To evaluate our methods we use the root mean squared740

error as defined RMSE =
√

1
n

∑n
t=1(Yt − Ŷt )2. Here Yt741

denotes the true observation of our time series at time t and Ŷt742

the prediction of the model. As our ensembles create multiple743

predictions for each day, the daily average is used for Ŷt .744

VI. RESULTS745

In this section, we answer the questions stated earlier in746

Section V. In the figures and tables, we denote our methods747

with the prefixM and the baselines with the prefix B.748

A. Q1: MOBILITY FEATURES749

We initially aim to find answers to the question how does750

the use of mobility data as features improve COVID-19 fore-751

casting accuracy using our proposed AutoML approach? This752

will allow to identify the most informative source of data753

for forecasting. To do so, we study the role of incorporating754

different types of mobility datasets (i) mode of transport,755

(ii) place visits and (iii) their combination on the quality of756

our automatically configured models. We perform this analy-757

sis for both scenarios using 2020 and 2021 datasets and when758

partial refit concept drift adaptation is performed. Because we759

want to compare the predictive performance of our methods760

for many different countries, we rank their performance based761

on RMSE over all countries. These rankings come from a 762

bootstrap distribution of 1,000 resamples, based on 25 runs 763

per ensemble. A method that is consistently better than other 764

methods in most countries will be assigned a lower aver- 765

age rank. These average ranks will give an insight on how 766

well these methods perform compared to each other. For 767

comparing the ranks, we use Nemenyi test [43], a standard 768

test for inspecting the significant difference between average 769

ranks. This test defines a critical distance between average 770

ranks. Any method within a critical distance to another one 771

is not significantly different. A critical distance diagram or 772

a Nemenyi plot, such as those provided in Figures 3a and 3b 773

can be used to visualize these rankings and their significance. 774

In Figure 3a, we compare our multi-output ensembles 775

using different sources of mobility data and our repeated- 776

single output ensemble for the 2020 scenario. In this scenario, 777

the repeated single-output ensemble and the multi-output 778

ensemble using place visits mobility have the best perfor- 779

mance. The repeated single-output ensemble outperforms all 780

multi-output ensembles not using place visits data. When we 781

compare the samemethods for the 2021 scenario in Figure 3b, 782

we see that there is a drop in predictive power when using 783

place visits mobility features. In this scenario, the repeated 784

single-output and the multi-output ensemble using only mor- 785

tality features are better than the ensembles using mobility 786

features. The best mobility ensembles now use the combi- 787

nation of place visits and mode of transport, with place vis- 788

its ranking slightly higher than the mode of transport. The 789

drop in predictive power of the ensemble using place visits 790

mobility can be explained by the concept drift and changes 791

in data distribution in the second scenario. In this case, com- 792

plex models with more features will lose to simpler models. 793

In Figure 3c, we show the comparative performance of our 794

methods in 2021 with the partial refit adaptation strategy. 795

We found this strategy to be the best approach, as we will 796

detail when discussing the answer to Q3. The figure indicates 797

that mobility datasets can also show their power with proper 798

drift adaptation in the second scenario. This experiment has 799

shown that using mobility features can improve forecasts but 800

does not guarantee improvement. Of the mobility datasets 801

studied, the best results can be found using the place vis- 802

its data. This dataset holds more predictive power than the 803

mode of transport dataset. This may be due to their level of 804

abstraction. The place visits data holds six categories, 805

whereas the mode of transport has only two. Moreover, the 806

place visits categories specify groups of locations instead 807
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FIGURE 3. The comparative performance of our methods with varying mobility features using RMSE. A lower rank depicts a better performance. When
methods are linked with a horizontal bar, they are within critical distance, meaning there is no significant difference between average ranks. Our methods
are denoted with the prefix M.

of just an increase in activity. If more contagion happens at808

specific location groups, this can be picked up easier from the809

place visits data.810

B. Q2: COMPARISON TO BASELINES811

To place the previous results into perspective, we compare812

them to the baselines, answering Q2: How does this frame-813

work perform in COVID-19 forecasting compared to base-814

lines? We compare the performance of the methods over815

58 countries for 2020 and 26 countries for 2021.816

In Figure 4a, we show the results for the 2020 scenario.817

Here, the performance of the methods and baselines are close.818

The best baseline is the persistence baseline. Our best two819

ensembles perform slightly worse than the persistence base-820

line but outperform all other baselines significantly. Our other821

methods fall between our best methods and the other base-822

lines. A lower rank for more complex deep learning baselines823

compared to simpler models, such as a persistence baseline,824

in Figure 4a is explained by the lack of enough training data825

in the first year that is necessary for training these models.826

The predictive power of these models, however, improves as827

more data becomes available in the second year, as shown828

in Figure 4b. In Figure 4b, we show the comparison with829

baselines for the 2021 scenario. While in the previous sce-830

nario, the persistence baseline was stronger than the deep831

learning baselines, it performs the worst here. Our methods,832

however, are all performing worse than the baselines. In the833

next section, we show how we can regain the power of our834

automatically configured models and mobility features using835

the concept drift adaptation techniques.836

C. FINE-GRAINED ANALYSIS OF RESULTS 837

For deeper inspection of results per country, we show the 838

RMSE of all methods and baselines for the 2020 scenario in 839

the Appendix in Table 3. The table shows that for 20 out of 840

58 countries, the persistence baseline has the best forecast. 841

However, as the first five of these have no new deaths in the 842

test period, the persistence baseline wins in these by default 843

as there are no fluctuations in the time series. Our best method 844

for this scenario, the repeated single-output ensemble, scores 845

best for 21 of the 58 countries. Using this table, we would 846

further investigate if the performance of models depends on 847

the properties of the time series acquired from different coun- 848

tries. Notably, we look at the existence of (i) periodic patterns 849

and (ii) trends that point to the complexity of the time series. 850

In this table, we grouped countries based on the trend and 851

periodicity importance of the true values acquired using the 852

procedure explained in [44]. To compute this importance, 853

we split the true value time series Yt into its trend Tt , periodic- 854

ityPt and remainder seriesEt . Then, the trend importance can 855

be computed as 1− Var(Et )
Var(Tt+Et )

and the periodicity importance 856

as 1− Var(Et )
Var(Pt+Et )

. These measures range from 0 to 1, allowing 857

us to group the countries into 4 quadrants. We indicate values 858

lower than 0.5 as low and higher than 0.5 as high. When writ- 859

ing about quadrants, we mention trend importance first and 860

periodicity importance second. The low-high quadrant, thus, 861

has low trend importance and high periodicity importance. 862

The table shows that for the low-low quadrant, the persis- 863

tence baseline often has the lowest error. When there is high 864

periodicity importance in both the low-high and the high- 865

high quadrants, our repeated single-output ensemble proves 866
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FIGURE 4. Nemenyi plot showing the comparative performance of our methods compared to the baseline methods using RMSE. None of the methods use
drift adaptation techniques. A lower rank depicts better performance. When methods are linked with a horizontal bar, they are within critical distance,
meaning there is no significant difference between average ranks. M and B prefixes denote our methods and baselines.

to be quite strong. In the high-low quadrant, there is no clear867

winner.868

Zooming in on countries within these quadrants, we can see869

what patterns our methods are capable of capturing. We show870

that the countries of Estonia, Sweden, Switzerland and the871

United States as respectively an example of irregular pat-872

terns in the low-low quadrant, an important trend in the high-873

low quadrant, clear cycles in the low-high quadrant and a874

combination of an important trend and clear cycles in the875

high-high quadrant (similar graphs of all countries are avail-876

able online2). For Estonia (Figure 5), we see that none of877

the baselines is able to capture the unsteady pattern of the878

true data. Our multi-output ensembles using mobility data879

also have difficulty here, but they get closer than the base-880

lines. The repeated single-output ensemble predicts a rising881

trend with cycles, with rising uncertainty as time progresses.882

For Sweden (Figure 6), an example with high trend impor-883

tance, all methods are performingworse than persistence. Our884

multi-output ensembles predict the rising trend too weakly885

and the downward trend too late. The deep learning baselines886

estimate an upward trend where in reality, it drops later. The887

repeated single-output ensemble predicts the first few days888

closely but gets eluded most when true observations drop.889

The persistence baseline takes an average position. To review890

a case with high cycles, we show the forecasts for Switzerland891

(Figure 7). This country is grouped in the high-low quadrant,892

with high importance of periodicity and low importance of893

trend. We see that most of our methods only slightly capture894

the periodic pattern of the data, except for the repeated single-895

output method, where the prediction is much better. The deep896

learning methods are able to predict some periodicity but897

2https://github.com/AutoML4covid19/Forecasting

do so too low. Finally, to show a combination of trend and 898

cycles, we show the results for the United States of America 899

in Figure 8. This shows a similar situation as the low-high 900

quadrant, where periodic patterns are somewhat captured by 901

most methods and baselines but not as strong as the repeated 902

single-output ensemble. In cases like these, we see that the 903

persistence baseline can be difficult to beat if the observations 904

on the day before the test period are close to the average of 905

the true observations later. 906

This shows that compared to other baselines, our repeated 907

single-output ensemble and the multi-output ensembles using 908

place visit mobility data are quite strong in the 2020 sce- 909

nario. While the persistence baseline outperforms for 20 of 910

the 58 countries, it fails with time series data that exhibits 911

strong patterns of periodicity or trends. The other baselines 912

perform worse than our methods. Our repeated single-output 913

ensemble is strong when cycles are apparent but fails when 914

the true observations suddenly change. In the 2021 scenario, 915

all baselines are performing better than our methods. Our 916

methods are not adapted to the concept drift in this scenario. 917

Due to the change in the normalising factor, old patterns 918

learned may obfuscate the new ones. We demonstrate how 919

to address this using the concept drift adaptation techniques 920

mentioned in Section IV-C. 921

D. Q3: DRIFT ADAPTATION 922

We aim to understand if adapting for concept drift helps 923

in improving COVID-19 forecasting accuracy using this 924

AutoML approach. The answer of Q2 showed that our meth- 925

ods performed worse than the baselines in 2021, while they 926

were better than most in 2020. This may be a result of con- 927

cept drift. This section shows the results of our experiments 928

adapting our methods to this drift. 929
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FIGURE 5. Forecasts of the different methods for Estonia in the 2020 scenario. M and B prefixes denote our methods and
baselines.

In our experiments, the simpler baselines – persistence930

and the ARIMA wavelet – use only the new data for their931

predictions. The persistence baseline uses just the last obser-932

vation seen before the start of the test period, and the ARIMA933

wavelet baseline relies on an assumption of no missing val-934

ues. As there is a gap between datasets, this is not the case for935

the second scenario. To be fair, using the deep learning base-936

lines compared non-adapted models with models retrained937

on the new data. As Figure 10a shows, the retraining was 938

detrimental to their performance. Therefore, in the subse- 939

quent comparisons, we thus only consider the deep learning 940

baselines using the full dataset. 941

As we can only effectively adapt for drift in the 2021 sce- 942

nario due to a lack of a drift detection mechanism, 943

we show only results for 2021 in this section. We com- 944

pare all drift adaptation strategies previously introduced in 945
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FIGURE 6. Forecasts of the different methods for Sweden in the 2020 scenario. M and B prefixes denote our methods and
baselines.

Section IV-C for all of our ensembles and use different mobil-946

ity data sources in Figure 10b. This leads to 20 combinations947

considering different mobility sources, adaptation strategies948

and forecasting approaches. This figure shows some dis-949

tinguishable groups of methods. The best methods are all950

multi-output ensembles adapted using the partial refit strat-951

egy. The best two of this group – the ensemble using place952

visits mobility features and the ensemble using combined953

mobility features – outperform all methods using different954

adaptation strategies on a significant level. The next group of 955

methods consist mainly of the multi-output ensemble using 956

only mortality features. For this ensemble, changes in perfor- 957

mance with different drift adaptation strategies are smaller 958

than for the ensemble using mobility features, but a partial 959

refit still yields the best performance. The last group consists 960

of multi-output methods using mobility features and drift 961

adaptation strategies other than the partial refit strategy. These 962

strategies do not go well together. The repeated single-output 963
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FIGURE 7. Forecasts of the different methods for Switzerland in the 2020 scenario. M and B prefixes denote our methods
and baselines.

ensemble is the only method that does not improve by adapt-964

ing to drift. The non-adapted version of this approach is sig-965

nificantly better than all its adapted counterparts. Still, its966

performance is ranked worse than all other partial refit967

methods.968

We also compare the ensembles using the partial refit drift969

adaptation strategy with the baselines in Figure 10c. This970

figure shows that all multi-output ensembles using the partial971

refit strategy outperform all baselines. In this scenario, the 972

ARIMA wavelet baseline is the strongest but performs sig- 973

nificantly worse than the multi-output ensembles using place 974

visits mobility data or combined mobility data. The deep 975

learning methods are in the same group as the persistence and 976

ARIMA wavelet baseline and are within a critical distance 977

of the partial refit multi-output ensemble using mortality 978

data. However, they are all significantly outperformed by all 979
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FIGURE 8. Forecasts of the different methods for the united states of America in the 2020 scenario. M and B prefixes
denote our methods and baselines.

multi-output ensembles using mobility features. We show the980

RMSE of the baselines and our methods using the partial refit981

drift adaptation strategy for all countries separately in Table 4.982

This table shows that the multi-output ensemble using place983

visits features has a lower RMSE than all other methods and984

baselines for 22 of the 26 countries and lower RMSE than985

the strongest baseline for the other four countries. To give986

a notion of the quality of forecasts of the adapted methods,987

we show that the country of Romania in Figure 9, grouped 988

in the low-low quadrant with irregular true observations in 989

the test set but some indication of trend and periodicity. The 990

sudden drops and spikes are quite difficult to anticipate for 991

all baselines, as well as for our methods not using mobility 992

features. The ensembles using these features, however, while 993

not exactly predicting the magnitude of the extreme values, 994

can predict where spikes and drops will occur. 995
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FIGURE 9. Forecasts of the different methods for Romania in the 2021 scenario. M and B prefixes denote our methods and
baselines.

Drift adaptation may seem a lot more impactful for our996

AutoML-based approaches than for baselines. We are per-997

forming hyperparameter optimisation to ensure the best mod-998

els are configured on the provided training data. However,999

as the concept changes, this approach will lead to a model1000

that over-fits the older part of the data. Consequently, this1001

approach performs much worse on new data compared to1002

baselines with average performance on all data.1003

This experiment has shown that adapting to concept drift 1004

can indeed help to improve the accuracy of COVID-19 1005

forecasts using an AutoML approach. This is specifically 1006

the case for our multi-output ensembles using the partial 1007

refit strategy. This strategy entails keeping the ensembles 1008

trained using the old dataset but updating the model weights 1009

using the new data. This way, old knowledge is used, but 1010

the emphasis is placed on the newer data. This strategy 1011
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FIGURE 10. Nemenyi plots showing the comparative performance of baselines and our methods when exposed to drift based on RMSE. Methods on
the left have a lower average rank and are thus comparatively better than methods on the right. When methods are linked with a horizontal bar, they
are within critical distance, meaning there is no significant difference between average ranks. M and B prefixes denote our methods and baselines.

works especially well when combined with mobility data1012

features.1013

VII. LIMITATION OF THE STUDY1014

We found that when the pandemic is still novel, our meth-1015

ods are outperformed by baselines as simple as persistence.1016

However, when the pandemic has progressed for just shy of a1017

year in many countries, our ensembles are on par with the best1018

baselines. Even later, when concept drift occurs due to a shift1019

in data normalisation and possibly mutation of the virus, our1020

methods significantly outperform the baselines, especially1021

when usingmobility data along with mortality data. Our work1022

has shown that our modified version of auto-sklearn does1023

not perform as well as simple baselines within the first few1024

months of the pandemic but gains importance as time pro-1025

gresses. After a little less than a year, we have gained enough1026

data to be able to capture most cycles and trends occurring in1027

the time series. Only when trends suddenly change are our1028

predictions eluded. Additionally, we discovered that when1029

concept drift occurs by a change in data normalisation or1030

possibly a mutation of the virus, refitting the models trained1031

on the older data enables a major performance boost, espe-1032

cially when (unchanged) mobility data is used alongside the1033

mortality data.1034

Another limitation of our work is that the best moments to 1035

adapt the ensembles over time are not detected automatically. 1036

Current AutoML systems use large batches of data at the 1037

same time to train their models. If these batches are too large, 1038

however, chances are the concept drift slips in undetected. 1039

A proper trade-off should be made between how much data 1040

is used in order to learn the data patterns sufficiently and to be 1041

able to detect concept drift within the used data. Future work 1042

can address this issue further. 1043

Finally, we want to note that due to a lack of availability of 1044

the COVID-19 mortality data, we were only able to use the 1045

countries in Europe for our scenario in 2021. For the coun- 1046

tries outside of Europe that were used in the 2020 scenario, 1047

we were thus not able to test the drift adaptation strategies. 1048

It would be interesting to see whether or not the partial refit 1049

adaptation improves forecasts consistently for these countries 1050

as well. 1051

VIII. CONCLUSION 1052

In this work, we adapted the AutoML framework of 1053

auto-sklearn to COVID-19 forecasting. We used mortality 1054

data and mobility data collected from 26 European countries 1055

to construct automatically configured ensembles of regres- 1056

sion models. We compared the performance of a multi-output 1057

94734 VOLUME 10, 2022



J. Tetteroo et al.: Automated Machine Learning for COVID-19 Forecasting

TABLE 3. RMSE on 2020 forecasts. Countries are grouped by quadrant: Low trend - low periodicity, low trend - high periodicity, high trend - low
periodicity and high trend - high periodicity. Our methods are abbreviated to MO for multi-output and RSO for repeated single-output. d denotes
mortality data, mtm mode of transport mobility, pvm place visits mobility and cm combined mobility. Our methods and baselines are denoted with M and
B, respectively. All Baselines only use mortality data.

TABLE 4. RMSE on 2021 forecasts. Countries are grouped by quadrant: Low trend - low periodicity, low trend - high periodicity, high trend - low
periodicity and high trend - high periodicity. Our methods are abbreviated to MO for multi-output and RSO for repeated single-output. Between
parentheses a d denotes mortality data, mtm mode of transport mobility, pvm place visits mobility and cm combined mobility. All our methods in this
table use the partial refit drift adaptation strategy. M and B prefixes denote our methods and baselines. All baselines only use mortality data.

ensemble and a repeated single-output ensemble and fur-1058

ther combined these with concept drift adaptation strategies.1059

We evaluated the performance of our ensembles based on1060

root mean squared error compared to five different baselines1061

found in recent COVID-19 forecasting literature.1062

Overall, our work has demonstrated the potential of devis-1063

ing AutoML solutions for COVID-19 forecasting, as well as1064

using open mobility data to guide predictions. Our experi-1065

ments have shown that it is possible to increase the fore- 1066

casting accuracy by using mobility features in addition to 1067

mortality features. Our experimental results also suggest that 1068

place visits mobility data is more informative than the mode 1069

of transport mobility data; this may be due to the fact that the 1070

place visits data is less aggregated as opposed to the mode 1071

of transport set. Nevertheless, using either of these sets can 1072

improve forecast quality. We also found that when concept 1073
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drift occurs, due to a shift in data normalisation and possibly1074

virus mutations, it is necessary to incorporate concept drift1075

adaptation techniques into our AutoML methods in order to1076

obtain useful predictions. When adapted, our multi-output1077

methods using mobility data significantly outperform the1078

baselines we have considered in our study.1079

Our best-performing ensembles utilised the concept drift1080

adaptation strategy of refitting the ensembles once drift has1081

occurred. Automatically, finding the best moments to adapt1082

the ensembles over time is an interesting direction for future1083

research.1084

APPENDIX1085

See Tables 3 and 4.1086
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