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Abstract. How do we make sure that all citizens in a city can enjoy the
necessary amount of green space? While an increasing part of the world’s
population lives in urban areas, contact with nature remains important
for human well-being. As optional tree planting sites and resources are
limited, the best site to plant must be determined. Can we locate these
sites based on the popularity of nearby venues? How can we detect groups
of people who tend to spend time in tree deprived areas?
Currently, tree location sites are chosen based on criteria from spatial-
visual, physical and biological, and functional categories. As these criteria
do not give any insights into the number of people benefiting from the tree
placement, we propose a new data-driven criterion taking socio-cultural
aspects into account. We combine an LBSN mobility data set with a tree
location data set, both of New York, as a case study. Using the mobility
data we create a venue interaction network from which we extract venue
communities. These communities are then scored based on the number of
trees in the vicinity of their venues. Applying multi-objective optimization
theory, we combine the popularity of venues with the tree density of venue
communities to identify locations where planting a tree can benefit the
highest number of people and make the largest impact. 1

Keywords: Urban computing · tree planning · social network analy-
sis · community detection algorithms · mobility data · multi-objective
optimization

1 Introduction

As of 2018, 55% of the world’s population lives in urban areas, a number which
is projected to grow to 68% by 2050 [5]. The North-American continent stands
out in particular, where this number is already at 82%. While it is easy to point

? Both authors contributed equally to this project.
1 This work earlier participated and was selected for the Future Cities Challenge

co-organised by Foursquare at NetMob 2019. The work has not been published
elsewhere.
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out the economical reasons for moving to the city – at least at the first sight
[8] – there are certainly downsides attached to urban life. One of them is the
inescapable fact that cities, by definition [7], have a higher population density,
leading to more built-up areas and thus a scarcer supply of nature than in rural
areas. However, as Rohde and Kendle put it, “it is obvious from any casual
observation that many human beings do not like to be dissociated from the
natural world; as a nation we spend millions of pounds every year on garden and
household plants” [21]. Indeed, contact with nature does seem to be linked to
human well-being and positive emotional effects and is even said to strengthen
urban communities [13, 19]. Apart from socio-cultural benefits, urban greenery
can help to mitigate two characteristically urban problems: air pollution due to
traffic [14] and (extreme) warmth due to the urban heat island effect [17]. The
inclusion of parks and street trees in city landscapes is, therefore, an important
aspect of the urban planning process.

To date, socio-cultural arguments play a marginal if not non-existent role in
formal frameworks describing criteria for selecting potential tree planting sites.
The criteria in these frameworks do not account for the amount of people that
are accommodated by the newly planted trees. When following the established
criteria, trees may end up in places where they are beneficial to some people, but
its effects may not serve the majority of people, or may never reach the people
yearning for them most.

To tackle this problem, we propose taking a data-driven approach based on
available mobility data which allows considering an additional tree planning
criterion. Popular adoption of Location-Based Social Networks (LBSNs) has
allowed the collection of valuable data representing the movement of people
between venues. Data from the location technology platform Foursquare can be
used to construct a network of venues, with users moving between those venues.
Priority should be given to sites visited by many people and specifically by people
who tend to move between areas lacking trees.

We identify such locations by combining two ways of analyzing the structure
of a venue interaction network. By combining the knowledge about (i) venue
popularity, and (ii) venue communities with a low tree density, we can detect
popular venues within tree deprived communities and thus provide a prioritization
that can be used for site selection in the tree planning process, as schematically
shown in Figure 1. This prioritization can be embedded within the criteria of
established tree planning frameworks that currently lack this socio-cultural value
and insight.

Our paper makes the following contributions:

– We describe a novel criterion for potential tree planting site selection based
on network communities within a venue interaction network;

– We apply a concept from multi-objective optimization theory to combine
this criterion with venue popularity, based on network analysis of venue
interaction data from an LBSN;

– We apply this method to prioritize venues as potential tree planting sites in
New York City.
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Tree locations

Venue locations

Venue communities

Fig. 1: We combine three types of data (tree locations, venue locations, venue
communities) to determine a new criterion which can be used in selecting potential
tree planting sites.

The rest of this paper is organized as follows. Section 2 presents the related
work. We present our proposed data-driven tree-planning methodology in Section
3. In Section 4 we experiment with the method by implementing it for a specific
case in New York City. The results for this are discussed in Section 4.2. Finally,
Section 5 presents a number of concluding remarks.

2 Related work

Most of the work in the field of tree planning revolves around selecting appropriate
tree species for predetermined planting sites [23, 24]. This reflects the observations
by Spellerberg [24] and Pauleit [20] that tree planning is often – or at least has
been for some time – an afterthought in the urban design process and characterised
by pragmatism. According to an Australian survey, while the visual aesthetic of
trees and socio-cultural function of green spaces in the city seem to be important
motives for planting trees, the first motive only plays a small role in the tree
planning process [22] and the second motive is not reflected in the sparse body
of site selection criteria that we could find. The work by Amir and Misgav [2], in
which they aim to describe a complete tree planning decision framework, does
incorporate criteria on site selection. They define three useful criterion categories,
which are spatial-visual, physical and biological and functional. Criteria relating
to the socio-cultural function of green spaces, however, are missing. We observed
several works describing site selection criteria [10, 20], but those fall within the
category of physical and biological criteria that are essential for the survival of
the tree. Moriani [14] did use population density in their planting priority index,
but as they focused on the air pollution-reducing quality of trees, this still falls
within the category of functional criteria. We believe then, that the body of site
selection criteria is still incomplete and that we can contribute to this framework
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by introducing a new socio-cultural criterion which takes people movement into
account.

As a way to capture the general movement patterns of people within cities,
we utilize data collected by LBSNs. As defined by Zheng [25], social networks are
social structures that consist of individuals connected to each other via specific
types of interdependencies. In LBSNs these individuals are connected through
their shared experience interacting with the locations in the network. Oftentimes,
in LBSNs users announce their visit to venues through a so-called check-in option.
The check-in data can provide information about the movement of people between
a network of venues. The structure of such a network can be explored to find
underlying patterns. For instance, locations can be grouped based on the similarity
between user profiles [12]. Hung et al. [9] use these user profile similarities to find
user communities. Girvan and Newman [6], however, use clustering algorithms
on the full network to detect communities, eliminating the need for individual
trajectories. Noulas et al. in [18] has studied the spatial network of venues
derived from such data and proposed a variant of gravity mobility models using
inter-venue connectivity information. Most of these approaches have considered
studying the network properties of LBSN data without considering how such
information can be used in improving urban aspects. Recently, Arp et al. [3] have
shown how such data can be used in optimising the state of traffic within the
city. In this paper, we aim to study whether such data can be used for improving
decision making regarding the optimal allocation of resources, notably in this
case the green space, throughout the city.

3 Methods

In this section, we introduce our proposed method. First, we describe two separate
possible indicators and how they can be used to define objectives for planting
trees (Sections 3.1 and 3.2). Then, we argue that the best way to use them is by
combining them using multi-objective optimization theory (Section 3.3), thereby
forming the method we propose in this paper.

3.1 Venue popularity

A first possible approach to maximize the impact of planting a tree, is to plant it
near a place where many people pass by. From this perspective, the goal is to
find the venue that is maximally popular among visitors. To find this place we
compute the degree of all nodes in the undirected network graph G = (V,E,W ),
where nodes v ∈ V are venues and edges e = (v1, v2), e ∈ E movements of people
between two venues v1 and v2, with weight we ∈W as the number of movements
between the pair of venues. The degree of a node v is then defined as the sum of
the weights of the edges that are connected to it:

deg(v) =
∑

e∈{(u,v)|u∈adj(v)}

we (1)
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3.2 Venue community tree density

Although trees near popular venues may reach many people, we will still be
missing those who visit other venues. Naively, one might say that an additional,
or: parallel, objective could be to then look for venues that have the least trees
in the vicinity. This approach would, however, discard the reality that people
move about and that people are thus prone to visit multiple venues. A single
venue that has few trees in its vicinity might not be a major problem if the usual
crowd for this venue also regularly visits other venues that do have more trees in
the neighbourhood. Using LBSNs, we can actually use this observation in our
objective. To this end, we introduce a measure we call the tree density coefficient.
This measure intends to highlight groups of related venues that have a low tree
density, instead of single venues that have a low tree density. A relation between
venues, in this sense, is determined by people travelling often between those
venues.

Using graph theory parlance, these related venues can be discovered through
the task called community detection. A community is a group of nodes of which
the nodes are densely connected with each other, but much less with the rest
of the network [6]. To detect the communities, we use the Louvain community
detection algorithm [4]: a fast algorithm that is able to find communities with
high quality. The algorithm performs based on the optimization of modularity, a
measure that compares the density of connections within a community with the
density between communities. Modularity, as defined by Newman et al. [16], is
computed as in Equation 2:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (2)

Here, Aij is the adjacency matrix holding the number of edges between nodes
i and j, m the number of edges in the network, ki the degree of node i and δ(ci, cj)
a delta function that returns 1 if i and j are assigned to the same community
and 0 otherwise.

As it is computationally heavy to compute the modularity of a community,
the Louvain algorithm uses heuristics to approximate it. Therefore, it does
not necessarily return the best community layout. To gain confidence in the
robustness of our communities, we choose to run the algorithm 1,000 times in
our own experiments, to create a large number of community layouts.

To compute the tree density coefficient for a venue, we first count the number
of trees in the vicinity of the venues. We approximate this vicinity by creating a
grid of the city, thereby discretizing the geographic space into grid cells, where
each grid cell is 50 by 50 meters, calculated using Universal Transverse Mercator
coordinate system [11]. Each venue vi is mapped to a cell in the grid and is
assigned the number of trees in the cell as its venue tree density vtdi.

We compute the community tree density ctdi for a venue vi by averaging the
vtdi with the venue tree densities of all the other venues in its community Ci,
over multiple iterations k of the community detection algorithm:
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ctdk
i =

1

|Ci|
∑

vj∈Ci

vtdj , 0 < k ≤ kmax (3)

In the end, the tree density coefficient ci for a venue vi is its average community
tree density value over all iterations of the community detection algorithm:

ci =
1

kmax

kmax∑
t=1

ctdk
i (4)

3.3 Joining both objectives through multi-objective optimization

The two objectives discussed above, venue popularity and venue tree density, can
both be important in discovering the most suitable location(s) for one or more
new trees. Indeed, a venue with a low tree density coefficient could have only one
visitor, whereas other venues in the same community that have a similarly low
tree density coefficient could have many visitors. In this case, the latter venue(s)
would be more appropriate as a tree planting site. It is therefore important to
take both objectives into account. To achieve this, we borrow a method from
multi-objective optimization theory, namely the Pareto front.

We join the venue degrees, i.e. the popularity of venues, with community-
based tree density coefficients by detecting the set of venues that are Pareto
efficient, i.e., the venues that are found by minimizing the tree density coefficient
and maximizing the influence of the venue: the optimal trade-offs between the
two measures. Also called the Pareto frontier, the venues in this set meet our
criterion of helping most people needing trees. Tree planners could choose any
of the venues along the Pareto frontier, depending on their preference towards
either of the two measures.

4 Experiments

4.1 Data sources

City of choice: New York We conducted a case study to investigate the
implementation and workings of our criterion using real data. For this, we chose
to focus on New York City as data on both venue interactions and tree locations
were richly available.

We used two data sets to construct our criterion. We used venue interaction
data of New York, provided by Foursquare as part of the Future Cities Challenge
2019, to create the venue interaction network. To assign tree density scores, we
used a Street Tree Census data set [1]. In the remainder of this section we describe
the properties of the venue interaction data and street tree data set, respectively,
and how we processed them to implement our methods.
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Table 1: Description of New York data set (Foursquare).
Original After pre-processing

no. of venues (nodes) 17,975 15,803

no. of interactions (edges)
7,919,999

(directed, parallel)
248,597

(undirected)

Venue interaction data Foursquare City Guide is a mobile app that recom-
mends places to its users based on their likes or check-ins. The Foursquare venue
interaction data set comprises of two parts: venues and movements between them.
Venues in this set are locations people can visit. Venue coordinates are recorded,
as well as their name and a category. Movements are recorded when individuals
make consecutive check-ins at different locations.

The data set contains information on ten different cities around the world. As
we focused on New York in this case study, we used the New York data, but it
should be noted this study is applicable to any of the other nine cities, provided
we have access to a corresponding tree location data set. The data was collected
between April 2017 and March 2019.

As not all venues found in the movement data occur in the venue information
data, we considered only the venues with known locations for the construction of
the network. Additionally, we observed that some venues were only connected
within small subgraphs, ‘connected components’, of less than 3 venues and did not
have any edges to the large, main connected component in the graph. These 86
venues were omitted. In the end, we were able to use 15,803 of the 17,975 venues
in our analysis. We used this data to create a network where nodes were represent
venues and the edges represent movements between them. We combined the many
parallel interactions between venues into singular weighted edges between the
venues, where the edge weight denotes the number of interactions between two
given venues. Later, we used this data as input for both the detection of nodes
with high node degrees (see Section 3.1) as well as the Louvain algorithm (see
3.2). In Table 1, we provide a comparison between the original data set and the
pre-processed data set.

Street Tree Census The Tree Census data set contains information on street
trees in New York City and surrounding cities. It contains information on among
others the species and health of the trees, as well as their longitude and latitude.
As only street trees were counted, trees in parks were not taken into account in
the tree survey and are therefore not present in the data set.

As discussed in Section 3.2, we discretized the geographic space into a grid,
counting the number of trees per cell to obtain a measure for the tree density
around the location of each venue. To provide insight into the data, we show the
tree counts over grid cells in Figure 2.
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Fig. 2: The trees within part of the New York street tree dataset, discretized into
grid cells of 50 by 50 meters. Shown as a heatmap-like data plot using ‘FatFonts’
[15].

4.2 Results

Venue popularity We computed the venue popularity as the degree of each
node and observed that the distribution follows a power law (see Figure 3a),
as is generally the case in scale-free networks modeling natural phenomena. To
decide which venues would be interesting as a tree planting site according to this
method, one should prioritize venues with higher degrees.
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Fig. 3: The power law distribution of venue degrees (a) and distribution of tree
density coefficients (b).
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Venue community tree density We used the Louvain community detection
algorithm as implemented in the Python NetworkX package. We set the resolution
to 0.5 to find decently small communities. One such community lay out is shown
in Figure 5a.

As the communities are detected using the heuristic Louvain algorithm,
we averaged the community tree density of the venues over 1,000 runs of the
algorithm, each time possibly detecting slightly different communities in the
network, to obtain their tree density coefficients.

To find tree-deprived communities, we combined the locations of the venues
within the communities with the tree locations in the street tree data set. First,
we calculated the tree density for each venue. Then, the average tree density of
the venues in the community was computed and returned to each of those venues
as its community tree density.

We show the distribution of the tree density coefficient values in Figure 3b.
The distribution is slightly skewed to the right, which means most communities
are filled with trees. Some, however, would still benefit from planting more.
Prioritization for tree planting sites using this method should be given to the
venues with the lowest coefficients.

Fig. 4: The distribution of venues according to degree and tree density coefficient.
The Pareto frontier shows the venues with the optimal tree planting location
according to our criterion. Venue labels correspond with Figure 5b and Table 2.

Joining both objectives through multi-objective optimization To select
the most impactful planting locations, we combined both measures. This results
in the distribution of venues and associated Pareto frontier as shown in Figure
4. Here we minimize the tree density coefficient of the venues while maximizing
their degree. These venues are highlighted by the Pareto frontier and should be
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prioritized according to our new criterion. To indicate the locations of the venues
on the Pareto frontier, we show the venues on a map in Figure 5b and provide
additional insights into the data in Table 2.

It is noteworthy that one of the selected venues (venue H) is a rose garden,
amidst a park lush with trees. This is explained by the fact that the tree data
set contains only street trees and no park trees. Additionally, we found upon
inspection using Google Street View that some of the venues (most notably
venues A, B, D, G and H) do seem to be near a considerate amount of trees.
When inspecting these locations in the tree data base2, we see that there are
either only a few (venues B and G) or no trees (venues A, D, E and H) recorded
in the immediate vicinity of the venues. We see that along with park trees, trees
on private grounds are also not recorded.

(a) One of the 1,000 community parti-
tions.

(b) Optimal tree planting locations (see
Table 2).

Fig. 5: Map of New York City showing the optimal tree planting locations based
on community structures.

5 Conclusion

In this paper, we propose a novel criterion that can be used when selecting
potential tree planting sites. The nature of the criterion is socio-cultural, capturing
people movement between venues and tree-lacking (social) communities into one
measure. Having implemented the measure for a case study on New York City,
we show that the measure is applicable in the field and can be used to support
decision-makers by providing them with optional planting sites along a Pareto
frontier.

2 The tree database can be explored on a map at https://tree-map.nycgovparks.

org/, last visited 9 September 2020.

https://tree-map.nycgovparks.org/
https://tree-map.nycgovparks.org/


An Intelligent Tree Planning Approach 11

We want to note that our approach depends heavily on the quality of the
available data. Regarding the tree data, we see that some venues indicated by our
criterion as tree lacking seem to actually be in a green area. We believe that the
application of our method can be improved with a more detailed tree location
data set. Then, the criterion proposed in this paper can be a meaningful addition
to the established site selection criteria.

Regarding the venue communities, we are aware that the used data set includes
only venues selected and listed by Foursquare. Amongst those venues are major
train stations, schools and other public buildings. The movements between the
venues and hence also the venue communities used to find optimal planting
locations only represent people that are using Foursquare, other inhabitants are
not represented in the data. Unfortunately, full movement data is almost always
proprietary. We would like to mention that the venue network could also be
estimated based on other, more representative data.

We conclude that the newly introduced socio-cultural approach to finding a
tree planting site that benefits different communities of city dwellers is feasible
and can be easily implemented by urban planning organizations. Integration of
this approach depends on the availability of detailed records of existing trees and
movement data of city inhabitants.
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