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Abstract

Toxicological information as needed for risk assessments of chemical compounds is

often sparse. Unfortunately, gathering new toxicological information experimentally



often involves animal testing. Therefore, simulated alternatives, such as Quantita-
tive Structure-Activity Relationship (QSAR) models, that use known toxicity values
to infer the toxicity of a new compound, are preferred. Indeed, the European Union
allows chemicals emitted into the environment to be registered with aquatic toxic-
ity information via simulated experiments. These aquatic toxicities are calculated
by considering the impact of a given chemical on different aquatic species. Aquatic
toxicity data collections, thus, consist of many related tasks - each predicting the tox-
icity of new compounds on a given species. Since many of these tasks are inherently
low-resource, i.e., involve few associated compounds, this is a challenging problem.
Meta-learning, a subfield of artificial intelligence, enables the utilization of information
captured across tasks, leading to more accurate models. In our work, we benchmark
various state-of-the-art meta-learning techniques for building QSAR models, focusing
on knowledge sharing between species. Specifically, we employ and compare transfor-
mational machine learning, model-agnostic meta-learning, fine-tuning, as well as mul-
titask models. Our experiments show that established knowledge-sharing techniques
outperform single-task approaches. Based on our results, we recommend the use of
multitask random forest models for aquatic toxicity QSAR modelling, which matched
or exceeded the performance of other approaches and robustly produced good results
in low-resource settings. This model functions on a species level predicting toxicity for
multiple species across phyla with flexible exposure duration and on a large chemical

applicability domain.

Synopsis: In a bid to reduce animal experiments, we analyse the performance of state-of-
the-art Quantitative Structure-Activity Relationship (QSAR) regression models on sparse
aquatic ecotoxicity datasets. Further, the impact of the amount of data to build these

models is investigated.



Introduction

With the advent of machine learning, the field of Cheminformatics has flourished by using
data science techniques on physical-chemical problems. One such problem is the modelling of
the bio-activity related to molecular compounds. Known as Quantitative Structure-Activity
Relationship (QSAR) modelling, the field aims to reduce the need for in vivo - in organism
- and in wvitro - in test tube - experiments via cost-effective in silico simulated approaches.
The research in this field has been motivated for decades by the aim of reducing experiments
that are expensive in terms of life, cost, and time (see, e.g., Cherkasov et al.!).

QSAR models relate chemical structures to their biological activity in a given target
domain, from full organisms to specific proteins and even to specific genes. The biological
activities which QSAR models aim to predict are manifold and domain-specific. Toxicity
can be measured by the impact a compound has on the mortality, reproduction, mobility
or growth of certain species. Our work specifically addresses the toxicity causing mortal-
ity in aquatic species. The prediction of aquatic toxicity as a biological activity has its
prevalent use in risk assessment for environmental protection. With the increasing amount
of industrial chemicals being used and developed, the European Union Regulation for the
Registration, Evaluation, Authorisation and Restriction of Chemical Substances (REACH)
requires an investigation into the aquatic toxicity of a chemical released into the environ-
ment, for instance through QSAR models.? Due to this regulation, there is a strong need for
better-performing aquatic toxicity QSAR models, that predict the toxicity of chemicals on
various aquatic species such as water flees (so-called Daphnia), algae and fish.

The scientific community has developed methods that enable sharing of knowledge across
datasets; these methods are commonly referred to as meta-learning.® While various defini-
tions of meta-learning have been proposed, in this paper we adopt a definition that views
meta-learning in its broadest sense, i.e., learning across a single task. We will discuss and
benchmark several methods that fall under this broad definition of meta-learning.

One example would be multitask learning, where multiple tasks are learnt jointly using



a single predictive model, enabling that model to utilise knowledge across tasks.

We believe the use of these techniques could be beneficial in utilising and predicting
the many low-resource tasks inherent to aquatic toxicity. We, therefore, investigate state-
of-the-art knowledge-sharing approaches to QSAR modelling and apply these methods to a
species-level aquatic toxicity model predicting for multiple species across phyla with flexible
exposure duration.

In this article, we aim to model the toxicity of many aquatic species individually in a
generally applicable model which makes no restrictive assumptions on its chemical input.
Considering recent research on meta-learning in QSAR modelling, 10 state-of-the-art mod-
els representing recent developments are adapted and applied for aquatic toxicity prediction.
Via a dataset collection gathered from ECOTOX, consisting of 24 816 assays, 351 separate
species, and 2674 chemicals, we carry out a general comparison of the QSAR models with
internal and external validation. We also simulate low-resource situations by artificially
down-sampling the datasets to few assays per species, or few species to share knowledge
between. We compare single-species models and multi-species models and assess the benefit
of using meta-learning techniques. Finally, we provide useful knowledge to future QSAR
developers by investigating the impact of low-resourced situations on the modelling tech-
niques, and we recommend QSAR models to use for aquatic toxicity. All our results are

made publicly available via a Git repository.*

Problem Statement

This section elaborates on the problem of predicting aquatic toxicity tackled in our work and
addresses the domain-specific OECD test guidelines that are used to generate the toxicity
data used in ecotoxicological risk assessment, and that therefore guide the QSAR model

development.



Aquatic Toxicity Problem

With the aim of reducing animal testing, in silico tools should be able to predict the toxicity
of a compound after a specific exposure duration and for the species that it is tested on.
Representing the aquatic ecosystem, regulatory tools may as a minimum provide toxicity
levels for three representative groups: ‘acute fish toxicity’, ‘acute daphnid toxicity’, and
‘alga toxicity’.>°

We aim to build generally applicable QSAR models that predict the toxicity of chemicals
across phyla on a species level using training data of all species; therefore, any meta-learning
approach should determine which data from related species should be used in modelling
the toxicity of compounds on a target species. Our QSAR models are aimed at having
a large applicability domain for compounds, they should be able to produce reasonably
accurate predictions across a large variety of chemicals. Many QSAR problems are simplified
into binary classification tasks, predicting whether a specific compound is toxic or not via
manually chosen thresholds. In contrast, our work builds regression models, which directly
predict the real-valued concentration of a chemical at which 50% of a given species dies —
the LC50 (Lethal Concentration 50% mortality) endpoint.

Furthermore, we predict toxicities across variable exposure durations. Our model thus
predicts acute and chronic toxicities for species across phyla, leveraging more data across
different exposure duration whilst training the models.

Moreover, a model with adaptable exposure duration on the species level could in theory
also be used for modelling species sensitivity distributions, which relate the concentration of
a compound to the percentage of aquatic species (in a given ecosystem) that will be affected
by that concentration.”

To build our aquatic toxicity models, we make use of the fact that QSAR tasks have very
similar structures. The issue of aquatic toxicity prediction is split into many (often sparse)
tasks: each task refers to a unique target species for which the effect is to be measured (see

Figure 1).



For each species, several toxicity responses have been measured; these data provide the
basis for our machine-learning approach.

While we aim to learn across tasks, the problem setup is defined in such a way that the
unlabelled test instances (chemicals) for which we want to predict the LC50 values have not
been observed for any of the other species before.

This poses a more challenging learning problem, where the learning algorithm has to
generalize across structural properties of the molecule. This problem setup has the practical
implication that we can predict the LC50 values for newly identified chemicals that have
never before been tested on a given target species.

In summary, the proposed models are formally solving the following problem: given a
set of chemicals C' = Clrgin U Clest, Where Chrgin N Crese = 0, a compound ¢ € Chrgin, a
duration d € Rt and a target species s € S, predict the lethal concentration of a new
compound ¢pe € Chest for 50% of s € S after time duration d. Each compound is represented
by a molecular embedding and physical-chemical features, whereas for each target species,

taxonomical information on its phylum and class group is available.

OECD Validation Principles

With the heightened relevance of the QSAR models in the REACH legislation, the need for
validated QSAR models of high quality has grown. Addressing this, the OECD principles®
present requirements that QSAR models fit for regulatory applications should adhere to.
Although our work does not aim to present a model for regulatory purposes but rather aims
to inform future development, we address these principles here.

First, to ensure that researchers can assess the potential use of a validated QSAR model, a
well defined endpoint should be specified. In our work, we address endpoints in the category
of ecological effects, which are included in the endpoints needed for regulatory assessment,?
more specifically the E/LC50 is used as the endpoint to be predicted. These endpoints are

addressed in a ‘general (Q)SAR model(s) based upon a common toxic effect’® of aquatic
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Figure 1: Aquatic toxicity QSAR tasks: The setup of the individual aquatic species tasks.
The image shows how the tasks can be used for meta-learning: using the data in the training
tasks to utilise additional data for the test task. Meta-learning methods can differ in the
way these utilise the training task data.

species.

To define when a QSAR model may validly be employed, any QSAR model should in-
clude a description of the domain of applicability defined in the chemical structure space.
This domain should be determined systematically to ensure that a model is not forced to
extrapolate into unintended domains and is ideally defined prior to building a training set.
Our work, however, addresses the issue that QSAR models are used outside of their appli-
cability domain for low-resource datasets, which would not have enough resources to build a
single task model on. Hence, we deliberately aim to develop a generally applicable model on
given datasets by including different experimental durations and all applicable chemicals.

It is important to note that the training set of a QSAR model always induces a domain
of applicability.® Although measuring the domain of applicability is left as future work, it
is interesting to note that toxicological datasets have natural biases. Under the REACH
programme, for instance, chemicals of over 1 ton production volume need to be registered

with toxicological information.® Hence, datasets include biased information on chemicals



that are produced at higher volumes, whereas chemicals under the threshold avoid testing,
although their acute toxicity may be more concerning.®

Further, validated QSAR models need to be reproducible and transparent. To address
this, we describe all employed algorithms, datasets and chemical descriptors and make these
publicly available via a Git repository.# In our work, black box models, specifically neural
network models, are employed that are not transparent but are permitted via the OECD
guidance document.

Finally, the performance of a QSAR model must be measured and validated soundly,
paying special attention to robustness and predictive capacity. To assess the stability of
predictions, we build partial models via cross-validation.® The predictive capacity of our
model is seen by its performance when extrapolating to an external held-out test set. All
models are exclusively evaluated on the real-world challenge of predicting the toxicity of

previously unseen chemicals, i.e., chemicals not used for training.

Related Work

In this section, we review work on QSAR-modelling specific for predicting aquatic toxicity, as
well as advances in various types of meta-learning (including multitask learning) for QSAR-

modelling in general.

QSAR models for predicting Aquatic Toxicity

One of the simplest QSAR models proposed by the United States Environmental Protection
Agency (USEPA) is ECOSAR - a regulatory model that uses a linear relationship between
chemicals and their toxicity based on the octanol-water coefficient of the chemical. Based
on building different linear regressions on groups of chemicals, ECOSAR is a non-species-
specific tool for aquatic toxicity. Unfortunately, large safety factors need to be added to the

predictions for their use in risk assessment.®



With the rise of machine learning, aquatic toxicity models, like other branches of QSAR
modelling, have started using machine learning models built for singular tasks. Using ma-
chine learning models, the Toxicity Estimation Software Tool (T.E.S.T.) developed by the
USEPA is a deployed set of QSAR predictors.® Among other toxicity and physical-chemical
attribute predictors, T.E.S.T. implements acute aquatic toxicity QSARs on three species,
representing fish, daphnia and algae,® utilising various methods, including hierarchical mod-
elling and ensembles. Vega'? extends multiple linear regressions from T.E.S.T. but also
implements more complex models.!® Zhou et al.!! compares the performance of different
open-source tools in classifying acute fish and daphnid toxicity.

Various extensions to these regulatory models have been proposed. Wu and Wei'? ap-
plied multitask learning to a toxicity context, including oral rat toxicity and aquatic toxicity.
Although the T.E.S.T. baseline compares well against the new methods, the multitask neu-
ral network and a combination of this method and gradient boosting trees perform well.!?
Alternatively, Lunghini et al.'® proposed to build a model for toxicity prediction of fish,
daphnids, and algae, respectively, associating all assays only with the high-level category,
such that the species of an assay cannot be determined anymore.

Considering available datasets from literature, all data points for a model were acquired
using the same experimental setup, but instead of focussing on a single species per model,
multiple species per high-level category were considered. Their model was shown to outper-
form ECOSAR, T.E.S.T., and Vega on a previously unseen industrial set of toxicity data.
In contrast to these high-level models, Sheffield and Judson!'# built an ensemble learner on
a species level, predicting the toxicity of fish only.

Singh et al.® propose a model that is trained on a given species but can extrapolate to
different species in different classes. As such, the training set used consists of a single algae
species, whereas the model is tested on an external set of said algae species, as well as on an

unseen algae, daphnid and fish species, respectively.



Learning across tasks

Machine learning models typically require an abundance of labelled data. Meta-learning
attempts to address this issue by asking how to learn to learn tasks? For this, meta-learning
borrows intuition from how humans learn and solve problems. Instead of learning each task
independently and anew, humans approach each challenge with prior knowledge. 1

With the success of transfer learning techniques in, e.g. natural language processing
or image analysis, its potential use in QSAR modelling has been recognised.!%!” Erhan
et al.*® first used a multitask neural network in their work on collaborative filtering. More
specifically, they propose casting biological targets as users, molecular compounds as items,
and the resulting biological activity as ratings. Dahl et al.' utilised multitask learning to
predict both biochemical (in test tubes) and cell type (in cell cultures) assays. Ramsundar
et al. 2% predicted binary biological activity using ‘massively’ multitask neural networks built
on over 200 tasks with over 40 million experimental values and varying endpoints. Sadawi

1.2! used multitask learning via random forest models previously shown to be effective

et a
in single-task cases.?? Using a subset of the ChEMBL dataset collection,?® the tasks in their
work concern the prediction of inhibitory and potency effects on target proteins; specifically,
they predicted the concentration of compounds that results in a biological effect on the

1.24 proposed a transformational machine learning

target protein. More recently, Olier et a
approach, which takes inspiration from multitask learning, transfer learning and ensemble
learning. Using data from the ChEMBL dataset collection,?® they predict multiple inhibitory
effects on various target proteins. The approach aims to learn multitask-specific compound
representations. This representation shares knowledge between all tasks, by encapsulating
the general consensus on biological activity.

Our work aims to build a generally applicable species-level model to predict toxicity on
‘any’ aquatic species. Although Gajewicz-Skretna et al.?® reported in a study for classifying

aquatic toxicity that models built on a local chemical compound space performed better

than ones for large chemical spaces, they agree with the added value of large models. Re-
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cent research has also evaluated the use of graphical features for compounds(e.g.
et al. 28, however, found that ‘descriptor-based models outperform the graph-based models in
the predictions of a variety of molecular properties in terms of predictive accuracy and com-
putational efficiency’ Hence, molecular fingerprints in combination with physical-chemical
attributes are used in our work.

To the best of our knowledge, this study is the first to build a generally applicable multi-

species aquatic toxicity model across phyla for flexible exposure duration and on a large

chemical applicability domain.

Data

This section presents the dataset used to make our QSAR aquatic toxicity models, of which
the pre-processed version is available in our git repository.* The ECOTOXicology Knowl-
edgebase is a source for locating single chemical toxicity data for aquatic life, terrestrial
plants and wildlife, which is maintained by the USEPA.2°

Using the ECOTOX data as integrated in the OECD QSAR toolbox,3’ a subselection of
the entire database was created for modelling purposes. The final dataset used for modelling
contained 24 816 aquatic toxicity values (LC50) altogether, for 351 different aquatic species
and 2674 chemicals. Species are described only by their taxonomic position in classes and
phyla, whereas chemicals have more descriptive features. The data is sparse, as many species
have few chemicals tested on them (see Figure 2).

For our purpose, we have selected all experimental data that was represented as LC50 in
the database, i.e., those concentrations giving 50% mortality at the end of the (indicated)
test duration. We kept LC50 read-outs for all test durations, but we averaged the toxicity
values that were produced using the chemical, the same species and identical test duration.
Therefore, in the end, only one LC50 value was generated for any specific combination of

chemical, species and test duration. This was considered necessary, as otherwise, some chem-
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icals/species/duration combinations would be overrepresented and thus bias model training.
As aquatic toxicity values have been gathered over decades in various laboratories, causing

variation among experimental values, Lunghini et al.'® reported that the ecotoxicological

dataset qualities heavily impact model performance — a concern also found in other work. 3132
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Figure 2: Dataset sizes and drug counts in the retrieved dataset. Both axes are on a log-
scale.

Endpoint

The toxicity endpoint — the target variable — to be predicted by our models is the concen-
tration of a chemical needed to trigger a certain toxic effect; here, we have selected 50%
mortality (LC50, lethal concentration 50%), on one specific aquatic species, and after a
specific test duration.

The LC50 values are standardised to “ units where possible and dropped wherever not.
Due to the spread of the LC50 target, we predict the real-valued log,,(LC50). Endpoints
that indicate bounds (more than, less than, and in between) are disregarded. Higher bounds

are due to detection limits of the toxicity experiments when, e.g., no more of the substance

12



can be dissolved into the water, or when it is not practically useful to test with higher
concentrations. The data with bounded LC50 values could serve as a very useful validation

set for toxicity models.

Preprocessing

Each database entry contains the concentration of a specific toxicity endpoint (in our case
LC50), which corresponds to a unique combination of species, chemical and duration. Ex-
periments performed under the same experimental conditions (same chemical, same species,
same duration) multiple times, are averaged into one result using the empirical mean, as
suggested by the REACH guidance document.® We note that by combining multiple toxicity
targets for the same experiment, the variance of the experiments is no longer captured, and
noise can be added to the data.

Each of the 351 species is grouped into taxonomies via 20 classes and 9 phyla. With
the large majority of species belonging to either the Chordata or Arthropoda phylum, this
dataset is well suited for predicting the endpoints needed for chemical regulation.® As the
toxicity is to be predicted on a species level, any subspecies of a species were combined into
one species via their empirical mean.

It was ensured that the chemicals are uniquely identified via their SMILES (Simplified
Molecular-Input Entry-System) representation. The SMILES were examined to ensure that
chemicals not suited for modelling were removed. In this process, SMILES referring to
inorganic chemicals (metals or metal salts) and metallo-organic chemicals were excluded. The
presence of metals or metal salts is often responsible for the majority of the observed toxicity.
Other chemicals that could not be represented by a single SMILES (e.g., mixtures or natural
extracts) were also omitted. To ensure that the SMILES representation is consistent for all
chemicals, Kekulé SMILES are used, as produced by the Open-source QSAR-ready chemical
structure standardization workflow3? The consistent SMILES representation ensures that all

chemical descriptors and fingerprints are derived in the same fashion — regardless of how the
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original SMILES was created (e.g., the SMILES produced by the OECD QSAR Toolbox).
Although it is common to specify one experiment type (and one exposure duration)
to use for modelling, our work aims to build a large applicability domain model, enabling
the methods to learn across various duration times. Thus, similar to the work of Sheffield
and Judson,'* all experimental setups are included in the dataset and are defined by their
duration. With this, short-term (acute) and long-term (chronic) toxicity can be modelled
together. As acute and chronic periods vary for each species, the duration is a real-valued
feature. Duration values are converted into days wherever possible and disregarded wherever
a duration is not specified. In the light of building a generally applicable model with few

restrictions, no outlier removal was performed.

Chemical Descriptors

Although recent research has evaluated the use of graphical features for compounds, our
work uses chemical embeddings based on Jiang et al.’s finding that descriptor-based mod-
els outperform graph-based models in the predictions of a variety of molecular properties
in terms of predictive accuracy and computational efficiency’.?® We thus rely on chemical
fingerprints and relevant physical-chemical properties.

Fingerprints are embeddings that aim to capture two-dimensional chemical structures.
Our work uses circular fingerprints called extended connectivity fingerprints (ECFP), which
were specifically designed for QSAR modelling.3* Our work uses the original 1024-bit binary
ECFP4 fingerprints, which aim to capture precise atom environment sub-structural features
with a radius of 2.3* The fingerprints are calculated from their SMILES representation using
the open-source RdKit.3?

As certain physical-chemical attributes may also yield important information on a molecule,
relevant physical-chemical attributes were gathered from PaDEL.3® The attributes gathered
were suggested by a domain expert, and include constitutional and hydrophobic attributes.

We performed simple feature selection, as well as added missing value indicators, in case

14



PaDEL did not have the values for a given chemical.

Finally, the structural properties included are counts of atom types, rings, hydrogen
bond donors, acceptors, as well as the molar refractivity, polarizability, ionization energy
and topological polar surface area of the molecule.

Attributes that are expected to be specifically related to aquatic toxicity are the logarithm
of the octanol-water partition coefficient, logk,, or log P, the octanol/air partition coefficient
KOA, and the pH dependent octanol-water distribution coefficient, logD5.5 and logD7.4, in

addition to the vapour pressure and the water solubility of a molecule.

Methodology

In this section, the QSAR solutions we considered are elaborated further. We put addi-
tional care into optimizing the hyperparameters of each method, which is detailed in the

1'37

supplementary material.3” The solutions were implemented using Scikit-learn,® Pytorch?’

and deepChem.4°

Single-task Models

The single-task models approach each dataset individually without using any knowledge of
other datasets. As such, they cannot make use of data on other species or their taxonomies.
Single-task Mean

The single-task mean model predicts the mean of training set toxicity values for a given
species in training. This is considered a simple baseline: Any model that utilises additional

information should be able to outperform this prediction.
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Single-task Random Forest

Random forest models are ensemble models that predict the consensus value across multiple
decision trees. 42 Other toxicology studies have found them the best performing single-task
model.?? Independent random forest models are fitted for each species using the molecular

descriptors and the exposure duration as features, as illustrated in Figure 3a.

.»-»
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(a) Single-task Model: fitted on data from a sin- ) Multitask Model: fitted on data from all
gle target species spec1es with additional taxonomic info.

Figure 3: Schematic overview of random forest models. The endpoint value is represented
as ‘Y’

Multitask Learning Models

The multitask learning models learn the separate tasks jointly to share knowledge between
them during training. These models can utilise data from different species and make use
of features capturing taxonomic information, i.e., species, phyla, and class as categorical

variables.

Multitask Mean

The multitask mean predicts the mean toxicity value of all species seen in training.
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Multitask Random Forest

In the multitask random forest model, a single random forest is trained on data from all
species, with additional taxonomic information making it possible to give different predictions
for different aquatic species (see Figure 3b). The higher-order taxonomy levels may improve

the model’s performance if similar species respond similarly (Sadawi et al.).

Multitask Stacked Ensemble Learner

Sheffield and Judson proposed the stacked ensemble learner, which creates an ensemble
from different models by learning how to best combine their predictions. They used linear
regression to combine three base models: support vector regression, gradient boosted trees
and a random forest. All base learners use the molecular descriptors, taxonomic information

and exposure duration.

Py || Random Forest .I
Gradient Boosted Trees m
~

Support Vector Regressor

Linear Regression

Figure 4: Stacked Ensemble Learning: base learners are combined into one consensus value.

Multitask Neural Networks

We consider two distinct neural network architectures.

One Output Node. The neural network is trained on all of the tasks, but uses only one
node in the output layer, see Figure ba. In addition to chemical descriptors and exposure
duration features, including the taxonomic information allows predicting a different toxicity

value for different species. We refer to this model as neural network.

Multiple Output Nodes. The multitarget neural network predicts the toxicities of all

n tasks using n output nodes, see Figure 5b. This allows the neural network to share
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Figure 5: Multitask Neural Networks

the internal feature extraction and representation part embedded in the hidden layers of
the neural network, whereas the task-specific dependencies can be captured in the weights

toward the task-specific output nodes.
Transformational Machine Learning
= «dap <
g 07 16 .. 17 03]
09 1.7 .. 23 08
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(a) Transformational Embedding: rep- (b) Final model: Train a single-task
resentation of a chemical is the toxicity = model using transformational embed-
predicted by all of the single models. dings as chemical features.

Figure 6: Transformational Machine Learning.?*

Transformational Machine Learning (TML)?* combines aspects of ensemble-, multitask-,

and transfer learning. It can be split into two parts:

18



1. Create a shared representation of the compound: A single-task random forest is fitted
for each target species. Once all single-task models have been built, they predict the
toxicity of a specific compound for all species, as shown in Figure 6a. These predictions

are then placed in a vector, which will be our representation for the compound.

2. Build final single-task models: A single-task random forest model is fitted for all target
species, respectively, but the input features are now the representations from Step 1,
see Figure 6b. By training a single-task random forest for a given species, the model

can learn to use the general consensus over similar species in the vector.

We use two models: the one described above (TML) and one aggregating this prediction

with the single-task random forest model trained in the first step (TML Stacked).

Fine-tuning

Fine-tuning techniques are a simple way to perform transfer learning with neural networks. 43
First, a neural network is trained on all tasks to extract knowledge from the input features
and build an internal representation; then, (a selection of) the weights are adapted to the
final task. In our case, a neural network is trained on all species, before the head of the

network is trained on the given aquatic species.

Model Agnostic Meta-Learning

Model Agnostic Meta-Learning (MAML)* is a model-agnostic transfer learning technique.
We use it with a neural network. The initialization weights of a standard neural network are
random values and require a substantial amount of training data to adapt for a given task.
MAML aims to encapsulate knowledge from related tasks into good initialisation parameters.
It observes which weights worked well for related tasks to suggest initial weights that can

be quickly adapted to a new task. In contrast to fine-tuning, which adapts weights found

19



optimal for all tasks to a single-task, MAML aims to find initialisation weights that allow

for quick adapting to all tasks,*® as illustrated in Figure 7.

(O <

ga g

Parameter 6,

16 o

Parameter 6,

Figure 7: Intuition behind MAML:* Let the model used have initialization parameter
vector f. The blue points show the optimal configuration of initialization parameters

§(1)7§(2)7§(3)7g(4) for specific species tasks 1-4. MAML aims to find 6", such that the op-
timal configuration for each task can be reached equally fast.*

Experiments

In the following, we examine the prediction quality of QSAR algorithms on new chemical
compounds for which no observations (assays) were used during training. For our experi-
ments, therefore partition the ECOTOX dataset uniformly at random into training chemi-
cals, which are used for training our models, and test chemicals, which are used for assessing
their quality. This scheme is illustrated in Figure 8, with test assays shown in dark blue;
duration times are omitted for simplicity.

We address the following research questions:

R1 What is the average prediction performance of the previously discussed (hyperparam-

eter optimized) QSAR algorithms on previously unseen chemicals?
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Figure 8: Training vs testing data: The rows represent chemicals, whereas the columns
represent the study species. Our training and testing data consist of disjoint subsets of
chemicals.

R2 How does the performance of the models (both single-task and multitask) increase

when exposed to more data from the target species?

R3 How does the performance of the models increase when more data from other species

(to learn across datasets) is available?

Prediction performance is measured in terms of the root mean squared error (RMSE)

where g; is the predicted and y; is the true label for the i-th out of the n test assays over which
the metric is being computed. The performance error is calculated per species/ chemical/
fold and averaged over all species/ chemicals/ folds.

In addition, a Friedman test“% is used according to the suggestion by Demsar*” to deter-
mine the statistical significance of performance differences among multiple algorithms. We
test whether and to what extent any pair of algorithms statistically differ in performance;

we refer to our supplementary material for details.
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Average Prediction Performance of QSAR Algorithms

To properly assess the prediction performance of the QSAR algorithms, we proceeded as
follows. According to the above splitting scheme, we allocated 80% of the chemicals for
training and 20% for testing; we call the respective portions of the ECOTOX dataset the
internal and external folds. Then, two types of experiments were conducted. The first
assesses the predictive capacity of each hyperparameter-optimised QSAR algorithm trained
on the internal fold when extrapolating to the external fold.

The second experiment assesses the stability of each QSAR algorithm via cross-validation.
To this end, the chemicals contained in the internal fold were partitioned into 5 disjoint and
equally sized sub-folds (each one containing 20% of the chemicals). We built 5 hyperparameter-
optimised partial models that exclude a sub-fold from the training set to subsequently pre-
dict.

This process was repeated three times with different partitions, yielding 15 estimates for

each QSAR algorithm.

Results

Figure 9 shows different RMSE performances of the QSAR algorithms. Plot 9a and 9b
show the RMSE of the hyperparameter-optimized algorithms on the external test fold, once
aggregated across species and once across (test) chemicals. These numbers, therefore, give
an unbiased estimate of the out-of-sample prediction performance of the models.

The best-performing methods are the multitask random forest and the stacked ensembling
method. Aggregating over chemicals, their mean test RMSEs are 1.07 and 1.08, respectively.
The differences between the techniques are mostly statistically significant; we refer to the
supplement for details.

Predictions with an RMSE of less than 1 are within a factor 10 of the original LC50
value (before applying the log-scale), which makes such models useful for various applications

when certain error margins are applied, including risk-assessments of regulators; refer to the
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supplement for a derivation.

The results in plot 9b show that the median RMSE of several methods is indeed below
1, so at least for a significant portion of chemicals, the methods can be considered to work
acceptably or even very well: The two previously mentioned techniques are the only ones
with a 25% quantile below 0.5.

Plot 9¢ summarises, for each of the algorithms, the 15 validation results of the internal
hyperparameter optimisation procedure; it hence reflects the stability of the performances
(narrow boxplots indicate high stability of the procedure and thus that the results in Plot
9a and 9b are close to the true average results). Plot 9c¢ underlines that these results can be
considered largely stable. For most methods, the performance only changes marginally with
the chemicals selected for training. The only exception is MAML, which is too unstable for

use, but does not perform competitively under any observed condition anyway.

External Validation: General comparison of QSAR modelling methods: RMSE over species External Validation: General comparison of QSAR modelling methods: RMSE over chemicals
Multitask Mean Multitask Mean
Single Task Mean

Multitask RF
Single Task RF
Stacking Ensemble
T™ML

TML Stacked
NN-1 Output
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Finetuning Top
MultitargetNN
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(a) RMSE across species.

2
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(b) RMSE across chemicals.

Internal Validation: General comparison of QSAR modelling methods: RMSE over cross validation folds
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(c) RMSE on internal folds.

Figure 9: Comparison of Prediction Performances (RMSE) of different algorithms.
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Prediction Performance as a Function of Number of Assays
Experiment Setup

Addressing research question R2, we now study the effect of more data on the target species.
For this, we utilise learning curves for each of the algorithms.*® First, the ECOTOX database
was randomly uniformly split using 90% of the chemicals for training and 10% for testing.
We then identified all species for which at least 128 training assays were available (with
the goal to form reasonably long useful learning curves). The 35 species that satisfied this
criterion are called the study species. For the remaining species (with few assays), training
assays were moved into an auxiliary data set, and test assays were removed entirely from
the data set. Finally, learning curves in the form of RMSE as a function of the number of
training assays (per species) were computed.

We built the learning curves as follows: For each anchor (training set size) s € {|v/2"] |n €
{2,...,14}}, all of the QSAR algorithms were trained using the training assays and then the
RMSE was computed on the test assays. The number of assays used at s was s for each
model in a single-task learner and 35 - s (with s samples from each of the 35 study species)
for multi-task learners. The assays used at previous anchors were included in the following
anchors, e.g., the assays used at the anchor utilizing 5 assays were also used for training at
the following anchors utilizing 8, 11, 16 assays and so on. To reduce the effect of selecting
the assays in a certain order, we built not only one but three such curves with different assays
order and then averaged.

With this, we now elaborate on how the models perform when more data is being pre-
sented in two different settings. In the first case, only assays from the 35 study species were
used for training. In the second case, all the (10200) assays from the auxiliary data set
(remaining species) were used in addition during training at each anchor. Figure 10 shows

a schematic overview of both setups.
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Figure 10: Study Setup: Using 35 study species in our train and test set, a harsh low-resource
situation is simulated with the training set containing only the downsampled species, whereas
the second scenario adds the remaining assays from other species to the training set too.

Results

The plots in Figure 11 show learning curves without (left) and with (right) auxiliary data
available for training. In the top row, the RMSE is computed for each species, and the curves
aggregate the species-wise errors, whereas the bottom row aggregates over chemicals.

Lines show mean values and shaded areas the 90% confidence bands computed from 1000
bootstrap samples.

Looking at the left plots, it can be seen that the advantage of the two multitask methods
— i.e., the multitask random forest and ensemble stacking — are rather independent of the
number of assays used for training. The curves are constantly below the others, so these
two algorithms are constantly the best choices, no matter how many training examples are
being used.

An even more important observation is that all curves are significantly dropping through-
out the entire interval under study, including the 128 anchor. A first implication is that all
the QSAR algorithms indeed exhibit an ability to learn to predict LC50 from the ECOTOX

data (otherwise curves would plateau immediately). Second, the fact that curves keep drop-
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Figure 11: Learning curves showing the effect of downsampling the study species without
(left) and with (right) auxiliary species available for training. Once grouped over species
(top row) and once over chemicals (bottom row).

ping significantly at anchor 128 suggests that it might be fairly possible to predict LC50
even with a satisfactory RMSE below 1.0 if more assays were available.

The right plots suggest that auxiliary assays are advantageous if and only if very few
species-specific assays are available. The general observation across all multi-task learning
algorithms is that the learning curves start off better but decrease less steeply. The first
implication is that, if less than roughly 20 training assays are available for a species, it is
likely that the random forest or stacking ensemble can benefit from the auxiliary assays. In
those common, low-resource cases, using a neural network (with or without finetuning) will
do better than learning only with the assays from the study species alone. However, the
second implication is that, if more assays are available for the study species, it seems better
to ignore auxiliary assays, since they seem to slow down the learning process. This holds at

least for random forests and stacking ensembles, both of which show better performance at

26



the 128 anchor when no auxiliary species are being used. Additionally, TML is dependent
on all of its single-task models’ performances, as well as the length of its representation here.
If so many assays are available and if a neural network is used, the auxiliary species should
be used, and the network should not be fine-tuned on the study species. However, given the
slope of the learning curves, with 128 assays or more, it seems best to just use a random

forest or stacking ensemble without auxiliary assays.

Prediction Performance as a Function of Number of Species

In this learning curve experiment, we investigate research question R3: to what extent does
the number of species included in the training sets affect the performance of multi-task
models?

First, the ECOTOX database was split as outlined previously, using 75% of the chemicals
for training and 25% for testing. Second, we identified all the species for which there are at
least three chemicals among the test assays.

The resulting 180 species are the study species; this set happened to be disjoint from
the 35 previous study species. Third, to assure a reasonable number of training instances,
among the remaining species, we identified the ones with at least 64 training assays. The
resulting 64 species (coincidentally, there were 64 species as well) are called the auziliary
species. The assays for all the other species were discarded.

To determine the learning curves, we proceeded as follows. First, the number of assays
per auxiliary species was down-sampled to 64. This was done, because the number of samples
per auxiliary species varied from 64 to over 1000, so a change in a performance curve could
have been attributed to the fact that many data samples were added to the training set,
and not primarily to the addition of additional species to infer knowledge from. Second, a
random permutation of the auxiliary species was created. Third, for each study species, the
RMSE for each QSAR algorithm was computed on the test assays when using the respective

training assays and the 64 training assays from each of the | /27| first auxiliary species, where
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n € {1,2,...,12}, for training. The experiments were repeated over 3 different pseudo-random
number seeds, inducing different down-sampled auxiliary datasets and different permutations

of the auxiliary species. The general experimental setup is schematically shown in Figure

12.

Test Chemicals ‘ 64 Auxiliary Species/ Datasets:

QSAR Model
| Sample: 0, 2, 4, ..., 64

Train Set Chemicals |

1 out of 180
study species

Figure 12: Meta-learning curve: Iterating over 180 study species, a study species with its
training and test set, is selected. Sampling 0,2,4...,64 auxiliary species into the training set,
a new QSAR model is built. With this, the impact of adding more species to aid in learning
a study species is shown.

Results

Figure 13 shows the performances, with the left plot aggregating over species and the right
over chemicals. Note that single-task models have been omitted, as they do not make use of
additional data.

To answer the research question R2, we observe that the benefit of additional training
assays from other species is only significantly beneficial for NN with one output unit and
for Finetuning-Top. The curves of the other algorithms have a shallow improvement or
even partially deteriorate (e.g., Multitask RFs when averaging over species). For these two
algorithms, the additional data though does have a rather interesting effect. At the highest
anchor (64 additional species), Finetuning-Top achieves the best results when averaging over
species, and the NN with one output is not outperformed when averaging over chemicals.

More importantly, both algorithms still show significant learning progress at that point

on the curve. In other words, one might conjecture that adding assays from additional
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Figure 13: Meta-learning curves showing the effect of adding more auxiliary species to the
training set of a study species. Results averaged over species (left) and chemicals (right).

species would lead to overall results superior to those of other learners and possibly lead to
results below the 1.0 RMSE threshold.

However, these assessments must be viewed with caution. The test matrix for the defined
over the test chemicals and the 180 study species is extremely sparse, which has several
side effects. Firstly, TML is now working consistently better than on the 35 study species
of the previous learning curve even though it only marginally improves with increasing
additional training assays from other species. Hence, TML behaves very differently on the
species/chemical combinations analysed in this experiment than in the previous one.

Secondly, the two previous best models (multitask random forest and stacking ensemble)
also perform very well in this setup when averaging over chemicals, but not when averaging
over species. This is caused by a single chemical for which prediction qualities are low for most
species, and, due to the sparsity of test data, this has a high influence when averaging over
species, but a low influence when averaging over chemicals — in other words, the results are
very sensitive to the species/chemical combinations used for training and testing respectively
(details can be found in the supplementary material).

A further hypothesis addressing these differences may be different instance weightings
between single- and multi-task models. To achieve a generally good performance, a multitask
model aims to predict the majority of assays well. Due to the large differences in the number

of assays with a certain chemical or species, the multitask model may aim to predict the
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largest groups of chemicals or species better. A single-task model, however, could concentrate
on each species more equally, as a separate model is built for each task. The single-task
models optimize for good performance over species, whereas when the models are averaged
over chemicals the single-task models are not as good as the multitask model. Future work
should investigate how the choice of evaluation affects the relative order and, further, it
may be interesting to experiment with instance weighting explicitly by weighting training
instances whilst building a model.

Overall, the results motivate future work in which the selection of species and chemicals
is studied further. Learning across certain more related tasks (species or chemicals), that
were more carefully selected, may further benefit model performance. An alternative could
be adding more detailed, scaled-task-relatedness measures to replace the categorical species
taxonomies.

In the sense of meta-learning, this could motivate a context-based approach, in which the
learning algorithm itself is chosen based on the properties of the species and/or the chemicals
for which training instances are available or predictions need to be made, as is done in the

work of Olier et al..??

Discussion

Our work has addressed modelling LC50 values (mortality rate in 50% of the experiments) of
different aquatic species, specifically using a collection of well-known sparse ecotoxicological
datasets.

To make predictions for species with few assays, we explore the use of different machine-
learning techniques to leverage additional data from other species.

We pay special attention to addressing domain-specific requirements via the OECD prin-
ciples, and we evaluate the models in a setting where we make predictions for the toxicity

of species for a chemical that has not been seen before for any of the other species. This
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is motivated by the fact that this is the most common use-case of toxicological predictions,
which can be readily applied when a new chemical needs to be evaluated.

Based on our experiments, for this problem setting, we advise the use of the multitask
random forest model. Its performance is stable, as seen in the internal validations, and
the performance is good on external validations, both averaged over chemicals and species.
Furthermore, the multitask model also performs well in simulated low-resource situations.
When looking at the general datasets consisting of all assays, there is no statistical evidence
that the multitask random forest performs better than the single-task random forest. The
multitask random forest model has a lower performance error than its single task version
in 54% of unseen chemicals. However, when examining cases, in which there were less than
5 seen compounds for a species, the multitask random forest outperforms the single task
random forest in 80% of unseen chemicals. Extrapolating onwards from the learning curve
experiments, the neural network with one output unit seems promising with more assays
available.

As we believe that the inclusion of class and phyla information aids the multitask mod-
els, we hypothesise that a continuous distance measure between the species could further
enhance these models. Therefore, in future work, different, potentially more easily obtain-
able measures of target relatedness could be investigated. Furthermore, our investigation
into low-resource situations via learning curves has given more insight into individual ap-
proaches. A future investigation could evaluate the effect of selecting chemicals and species
with more care.

To conclude, we successfully present multitask models on a species level which predict
toxicity on flexible exposure duration and a large chemical applicability domain, showing
promising results for models with general chemical applicability as well as applicability across
phyla. With this research, we hope to not only take a step towards mitigating the need for
in vivo experiments but also hope to inspire the use of knowledge-sharing approaches for

other low-resource QSAR problems.
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Supporting Information Available

Supplementary Material:

Hyperparameter Optimisation,
Statistical Significance between algorithms on the average prediction performance
The influence of data sparsity in the learning curve performances

Performance on real low resource tasks
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