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aInstitute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; bLeiden Institute of Advanced Computer Science 
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ABSTRACT
Remote sensing (RS) is now a standard tool used for grassland monitoring thanks to the availability 
of data at an unprecedented spatial and temporal resolution. The approaches to monitor grass
lands often rely on the use of vegetation indices (e.g. NDVI) and empirical models trained on field 
data collected in tandem with the RS data. The best combination of models and features is often 
found by ad-hoc experimentation by the expert. This “classic” approach does not necessarily result 
in the best possible model. Automatic machine learning (AutoML) allows to automate this 
procedure by identifying the best possible pipeline in a data-driven manner. This study assesses 
the applicability of two distinct AutoML algorithms – AutoSklearn and AutoGluon – to monitor 
grass height from RS data and to systematically compare them to “classic” RS approaches. Grass 
height was estimated from Landsat ETM+ and OLI for a well-known conservation area as a case 
study. The “classic” RS approach emulated all possible ad hoc decisions by comparing all combina
tions of bands and vegetation indices against a naive use of the AutoML systems. While model 
selection and optimization are automated within AutoML models, for the “classic” RS approach, we 
used Bayesian optimization for hyperparameter tuning. We found that AutoML methods out
performed “classic” methods with the test error varying between ~1.73 cm ± 0.02 and ~1.78 cm 
± 0.03 while for the “classic” methods it varied between ~1.84 cm ± 0.03 and ~2.81 cm ± 0.02. In the 
case of the “classic” methods, our exhaustive exploration of the possible feature combinations 
showed that while vegetation indices were always selected for the best models, which index got 
selected depended on the algorithm. The performance of AutoML compared to “classic” RS 
approaches clearly demonstrates the ability of these methods to quickly and effectively identify 
high-performing models. However, as this work focused on a single case-study, the results cannot 
be directly generalized to other study areas. Nevertheless, it provided a number of insights into 
future research opportunities to improve the use of AutoML in RS.
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Introduction

Remote sensing (RS) offers the ability to monitor eco
system processes and services (Pettorelli et al. 2018; 
Shih, Stow, and Tsai 2019; Belgiu and Drăgut 2016) 
and is a natural choice for monitoring due to its ability 
to monitor at high spatial and temporal resolution 
(Reinermann, Asam, and Kuenzer 2020; Craglia et al.  
2017). RS has been applied to various parameters and 
types of ecosystems such as to monitor above ground 
biomass (AGB) (Yang et al. 2018), functional traits 
(Wang et al. 2019b), species (Marcinkowska-Ochtyra 
et al. 2018), ecological invasions (Schulze-Brüninghoff, 
Wachendorf, and Astor 2020), or livestock forage 
(Wijesingha et al. 2020).

In general, RS approaches to monitor AGB rely on 
the use of well-established relationship between 

vegetation indices (e.g. normalized difference vege
tation index or NDVI) and either opt to use general
ized linear models (GLM) or machine learning 
regressions (MLR) to predict biomass (Xie et al.  
2009). Some of the most common MLR algorithms 
used for this task are support vector machines 
(SVM) (Wang et al. 2019a), random forests (RF) 
(Mutanga, Adam, and Cho 2012; Wang et al. 2016; 
Wang et al. 2019a), K-nearest neighbors (KNN) 
(Dusseux et al. 2014; Zhu et al. 2017), Bayesian 
regressions (Tang, Ali, and Feng 2020; Xie et al.  
2020), and artificial neural networks (ANN) (Taravat, 
Wagner, and Oppelt 2019). The high variety in 
methodologies, algorithms, and model optimization 
(if any) between the various applications to estimate 
biomass hampers its reproducibility.
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This lack of reproducibility is a problem in the field 
of RS (Balz and Rocca 2020; Frery, Gomez, and 
Medeiros 2020; Colom et al. 2020). In particular, 
when using machine learning algorithms, there is 
a lack of precise description of either pre- and post- 
processing steps or model hyperparameters. Another 
factor complicating reproducibility is the common 
use of indices (Huang et al. 2021; Pôças et al. 2020; 
Guerini Filho, Kuplich, and Quadros 2020) as surrogate 
features alongside or instead of using the spectral 
bands to represent expected or well-known relation
ships between spectral properties and AGB (Gao et al.  
2020; Derakhshan, Cutter, and Wang 2020). Many of 
the decisions on the selection of bands and/or vege
tation indices are based on ad-hoc experimentation 
by the expert which does not always result in the best 
possible or most parsimonious models (Stromann 
et al. 2019; Maxwell, Warner, and Fang 2018; 
Georganos et al. 2018). Likewise, the use of machine 
learning procedures is highly dependent on machine 
learning knowledge which hinders their generaliza
tion, as well as expending valuable resources and 
time (He, Zhao, and Chu 2021; Maxwell, Warner, and 
Fang 2018; Khatami, Mountrakis, and Stehman 2016). 
Often there is no guarantee that the best possible 
machine learning pipeline is selected given that the 
RS expert might be biased toward the algorithms and 
processing pipelines that have been successful pre
viously. Less optimal choices in terms of the choice of 
indices, machine learning algorithms or their hyper
parameters may not only affect reproducibility but 
also the applicability of the same algorithm in 
a different location or task (Yang and Shami 2020; 
Colom et al. 2020). Considering the reproducibility 
crisis (Baker, 2016) and increasing efforts in the scien
tific community for making both data and software 
more easily findable and accessible (Wilkinson et al.  
2016), these are aspects that need to be better 
accounted for.

One approach toward reproducibility is to auto
mate the parts or the entire procedure by using 
automated machine learning (AutoML) (Xin, Zhao, 
and Chu 2021). These approaches have been shown 
to outperform humans/experts in competitions and 
to offer high quality results with minimal machine 
learning expertise (Xin, Zhao, and Chu 2021; 
Hanussek, Blohm, and Kintz 2020). Most advanced 
AutoML approaches focus on solving the so-called 
Combined Algorithm Selection and Hyperparameter 

Optimization (CASH) problem (Thornton et al. 2013) 
which, as the name motivates, automates the search 
of the best algorithm and its hyperparameters with 
the objective of minimizing the error of the task at 
hand.

There are a number of different AutoML systems 
available such as AutoSklearn (Feurer et al. 2015), 
H2O (LeDell and Poirier 2020), TPOT (Olson et al.  
2016), Auto-WEKA (Chris et al. 2013) and AutoGluon 
(Erickson et al. 2020) which vary not just in the 
strategy to optimize the models but often are spe
cific to the underlying machine learning library (e.g. 
AutoSklearn is built for scikit-learn). Currently, there 
are no “off-the-shelf” AutoML systems specific to RS 
applications, but there is an increasing interest on 
adapting these methods for RS (Salinas et al. 2021). 
While AutoML has recently been explored for RS 
applications (Salinas et al. 2021; Tedesco et al. 2021; 
Koh, Spangenberg, and Kant 2021; Li et al. 2022), 
there has not been a direct comparison against the 
“classic” RS approach emulating the decision- 
making of an expert.

Our research objective is to compare “classic” RS 
approaches, using vegetation indices, for estimating 
AGB against the AutoML approach. For this, we focused 
on a case study on the well-known Oostvaardersplassen 
nature reserve (OVP) (Staatsbosbeheer 2021) in the 
Netherlands by using field measurements of grass 
height and remote sensing data from the Landsat 
Enhanced Thematic mapper (ETM+) and the 
Operational Land Imager (OLI) data.

This research provides one of the first insights into 
the potential of AutoML systems for remote sensing 
and discusses the possibility of adapting these sys
tems to specific remote sensing tasks by integrating 
field expertise with more advanced machine learning 
approaches.

Methods

Overview

The general approach of this research is visually sum
marized in Figure 1. The first step consisted of gather
ing grass height field data and acquiring all possible 
Landsat ETM+ and OLI observations that were within 
14 days of the sampling events and to filter any data 
based on the QA_Pixel band to select only pixels 
captured under clear sky conditions.
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The second step consisted of preparing the data to 
be used in the machine learning pipelines both for 
both approaches. We compared the AutoML 
approach against the expert-based “classic” approach 
by considering all possible combinations of bands 
and vegetation indices commonly used for the pur
pose of AGB monitoring. For this step, a sample of 
50% of the data was used for hyperparameter tuning 
of the “classic” approach, as well as for developing 
pipelines in AutoSklearn.

For the model performance evaluation, we used an 
80/20 approach with 20% of the data never being 
used on any of the model training procedures. The 
mean absolute error (MAE) distribution was calculated 
from the training and test data using a repeated k-fold 
cross-validation approach with 100 repetitions of 10 
k-folds which has been shown to provide a better 
estimate of the error and variance than bootstrapping 
or just a single cross validation (Kim 2009). To ensure 
the maximum comparability between all these differ
ent steps of hyperparameter tuning, pipeline creation 
and repeated cross validation, the same data was used 
for all models. Finally, the distribution of the MAE of 
each model approach was obtained and the perfor
mance of the models compared.

Study area and data sources

Study area and field data
The Oostvaardersplassen nature area is managed 
by Staatsbosbeheer (Staatsbosbeheer 2021). The 
area is grazed by cattle, horses, and red deer 
which were introduced in the 1980s and 1990s 
(Cornelissen et al. 2014). The area is fenced off 
and there are no large predators. Up to 2018, the 
large herbivore numbers were controlled by food 
supply, severity of the winter and competition. 

Under these conditions, the large herbivores 
altered the vegetation in a dramatic way 
(Cornelissen et al. 2014). Within a period of 
15 years, the diverse landscape, consisting of 
grasslands, tall herbs, reed, shrubs, and trees, 
was transformed into a homogeneous landscape 
dominated by short grazed grasslands. As a result, 
biodiversity decreased. In 2018, the management 
of the large herbivores changed. The numbers of 
the large herbivores are controlled to a lower 
level in order to create a diverse landscape and 
to offer room for more wetland-related bird spe
cies. To understand the effects of the changes in 
management not only on wetland birds but also 
on the large herbivores, there is a need for mon
itoring the available biomass (Cornelissen et al.  
2014). Grassland biomass is monitored in the 
Oostvaardersplassen to ensure that enough food 
is available for the resident large herbivores and 
wintering geese and is collected by measuring 
sward height in preset transects (shown in 
Figure 2) which were used for this research. 
Samples were collected in intervals of 30 or 
50 m depending on the transect. Our data were 
collected between May 2013 and November 2017 
but not all could be used due to either sky con
ditions or lack of enough high-quality remote 
sensing data. Table 1 shows a summary of the 
dates where the RS acquisitions aligned with the 
fieldwork data. For measuring the grass height, 
a representative sample was selected at each sam
pling location and grass height was measured 
using a disc except when the presence of tall 
herbs (e.g. thistles and ragworts) impeded 
a proper measurement in which case we used 
a ruler to directly measure the grazed grass 
height.

Figure 1. Overview of the research approach. The green color refers to minimal preprocessing steps such as data selection and 
extraction of the pixel values for each field sample. Orange shapes denote two main modeling approaches: “classic” (above) and 
AutoML (below). Blue refers to the model performance evaluation using a repeated k-fold approach. Finally, gray refers to the 
comparison between the results from both approaches.
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Remote sensing data
We opted to use Landsat ETM+ and OLI, because their 
long-term availability and temporal resolution were 
sufficient for our purpose. Transect locations were 
transferred to a shapefile and then used to extract 
the pixel values from Landsat. All Landsat ETM+ (on 
board Landsat 7) and OLI (on board Landsat 8) surface 
reflectance data products were collected from the 
Google Earth Engine (Gorelick et al. 2017). Both 
Landsat 7 and 8 have a 16-days repeat cycle at the 

equator, but when used together, the repeat cycle is 
halved at 8 days (Murphy et al. 2016).

Given that there are slight differences in terms of 
the wavelengths as seen in Appendix 1, we opted to 
use only those bands which are equivalent between 
both sensors. Satellite observations closest in time to 
the field sampling data were collected using a time 
window of ± 15 days. These were filtered to consider 
only one satellite observation per field sample per 
time taking also in consideration the quality flags for 
cloud cover and scanline error in the case of Landsat 
ETM+. Coincidently, the study area is at the intersec
tion between two different Landsat overpass rows: 
024 and 023 and, arbitrarily, we opted for row 024 
and only used row 023 when row 024 was not avail
able, yielding a total of 2427 samples of which 1943 
(~80%) were used for training and 484 (~20%) were 
used for validation (see Table 2).

“Classic” approaches commonly use individual 
bands (as selected above) and vegetation indices, 
based on combinations of bands. We tested four 
indices that are commonly used for AGB estimation 

Figure 2. Study area showing the division between the grassland and wetlands of the Oostvaardersplassen. Field data were collected 
along pre-defined transects with vegetation height being measured every 30 or 50 m.

Table 1. Summary of the data used in this research.
Field sample date Field/RS samples

07/05/2013 137
07/06/2013 170
08/07/2013 112
09/08/2013 206
12/09/2013 5
16/01/2015 125
16/04/2015 139
03/06/2015 164
10/07/2015 356
21/12/2015 141
16/09/2016 215
08/11/2016 37
14/06/2017 327
25/07/2017 117
28/08/2017 14
01/11/2017 162
Total samples: 2427

Not all field samples could be used due to weather or and/or missing remote 
sensing data due to the scanline error of Landsat ETM+. This table shows 
how many samples were available for both field and RS for each field 
sampling date.

Table 2. Summary of total RS samples used per each sensor for 
both training and validation of the models.

ETM+ OLI ALL

Training 1408 535 1943
Validation 351 133 484
Total 1759 668 2427
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(Garroutte, Hansen, and Lawrence 2016; Huang, Chen, 
and Cosh 2009; Ullah et al. 2012) alongside B1 to B5 
and B7 (B2 to B8 in OLI): 

Normalized Difference Vegetation Index ðNDVIÞ¼
B4 � B4
B4þ B4 

Enhanced Vegetation Index ðEVIÞ¼
B4 � B4

B4þ 6� B3 � 7:5� B2þ 1 

Soil Adjusted Vegetation Index ðSAVIÞ¼
B4 � B3

B4þ B3þ 0:5
�ð1þ 0:5Þ

Normalized differencewater index ðNDWIÞ¼
B4 � B5
B4þ B5 

where B5, B4, B3, and B2 correspond to the short- 
wave infrared, near-infrared, red, and green bands of 
the ETM+/OLI sensors. For more details on each band, 
see Appendix 1, and the final dataset used in this 
research is made available in Appendix A2.

Algorithms

“Classic” approach
This approach for pixel-based classification refers to 
the common methods that are used in remote sen
sing consisting of testing single and/or multiple mod
els with hyperparameter tuning and expert-based 
feature selection (Reza, Mountrakis, and Stehman  
2016; Maxwell, Warner, and Fang 2018). To emulate 
how expert RS scientists approach the problem of 
AGB estimation (Chen et al. 2019; Zhang et al.  
2020b; Ali et al. 2015; Phiri et al. 2020), we opted to 
test some of the more commonly used algorithms 
used with a focus on optical data (Ji et al. 2021; 
Pham et al. 2020; Tang, Ali, and Feng 2020; Taravat, 
Wagner, and Oppelt 2019; Phiri et al. 2020).

The algorithms selected were generalized linear 
models (GLM) (Barrachina, Cristóbal, and Tulla 2015; 
Marildo, Mora Kuplich, and De Quadros 2020), sup
port vector machines (SVM) (Wang 2019; L. Chen 
et al. 2019), random forests (RF) (Chen et al. 2018; 
Wang et al. 2016), k-nearest neighbors (KNN) 
(Dusseux et al. 2014; Zhu et al. 2017), Bayesian 
regression (BR) (Xie et al. 2020; Tang, Ali, and Feng  

2020), and artificial neural networks (ANN) (Vafaei 
et al. 2018; Yang et al. 2018).

AutoML approach
Two AutoML pipelines – AutoSklearn (Feurer et al.  
2015) and AutoGluon (Erickson et al. 2020) – were 
chosen because they represent different approaches 
to deal with machine learning automation: 
AutoSklearn aims to select and identify the best 
pipeline(s) for a specific machine learning application 
(Feurer et al. 2015) while AutoGluon uses sequential 
stacking of machine learning algorithms which can 
minimize the need for hyperparameter tuning 
(Erickson et al. 2020). In the next section, we provide 
a more detailed explanation of both these 
frameworks.

AutoSklearn
AutoSklearn (Feurer et al. 2015) is an AutoML pipeline 
built on top of the scikit-learn API (Pedregosa et al.  
2011) that uses Bayesian optimization for hyperpara
meter tuning and algorithm selection. The system 
consists of three main components: (1) meta- 
learning, (2) machine learning pipeline, and (3) 
ensemble construction (see Figure 3). The meta- 
learning component of AutoSklearn consists of start
ing the model pipeline with parameters that were 
tested in other similar datasets (Feurer et al. 2015). 
Meta-learning, therefore, assists in finding the optimal 
solution quicker by reducing the hyperparameter 
space to be tested, being more robust against random 
effects and with a lower variance of the error.

The machine learning pipelines automatically con
figured by AutoSklearn consist of a combination of 
three different tasks: data preprocessing; feature pre
processing; algorithm selection & hyperparameter 
tuning (Feurer et al. 2015). In terms of data prepro
cessing, AutoSklearn uses methods built in scikit- 
learn for preprocessing data (e.g. one-hot encoding, 
imputation, rescaling) (Pedregosa et al. 2011). 

Figure 3. Overview of the autosklearn automl system adapted from Feurer et al. (2015). The use of meta-learning to speed up the 
fitting procedure is optional and the proposed ensemble weights are calculated based on an ensemble approach proposed by 
Caruana et al. (2004).
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Regarding the feature preprocessing, AutoSklearn 
tests several procedures that potentially improve 
the fitness of the models such as decomposition 
methods (e.g. PCA, SVD), polynomial expansions, 
feature clustering, among others (see Suppl. 
Materials Feurer et al. 2015 for an extensive descrip
tion). The algorithm selection tests the 15 base scikit- 
learn algorithms (Pedregosa et al. 2011) including 
searching for the best possible hyperparameter for 
each. Finally, AutoSklearn uses a model ensemble 
approach (Feurer et al. 2015; Caruana et al. 2004) 
which consists of leaving part of the data out as 
validation set during training to internally test and 
validate new model pipelines iteratively. Their 
ensemble weight is based on their impact on the 
chosen evaluation metric. All analyses are based on 
AutoSklearn version 0.11.1.

While it is apparent that AutoSklearn has the 
potential to be more computationally intensive 
than the “classic” approach, this might not be 
necessarily true. The entire model pipeline is opti
mized using a Bayesian optimization approach 
and – although many aspects of its processing 
can be customized – the total time spent in opti
mization is the only parameter that the user needs 
to set (time_left_for_this_task). We configured the 
total time spent in training with increasing time 
(30, 180, 300, and 600 s) which results in more 
time being available for testing different model 
pipelines. The implication of using Bayesian opti
mization is that not all models/configurations have 
to be tested but instead AutoSklearn is able to 
quickly focus on the models/configurations with 
more potential improvement instead of having to 
test all (or a very large number of) model/ 

configurations. We ran AutoSklearn with and with
out meta-learning to test how using the model 
library already available with the algorithm did 
improve (or not) the model performance.

AutoGluon
AutoGluon was developed as an open-source project 
by the Amazon Web Services and it approaches the 
AutoML problem from a different perspective com
pared to most of its predecessors (Erickson et al.  
2020). The main difference is in the use of sequential 
stacking of various machine learning models with 
limited hyperparameter tuning (Figure 4). The first 
layer (base) is composed of the models trained on 
the input data using a predefined sequence of models 
which are then used as features for the next layer 
(Figure 4). This process is repeated n times depending 
on the time budget and preset configuration by the 
user. This AutoML framework is fundamentally based 
on a multilayer stack ensemble approach to perform 
better than single models (van der Laan, Polley, and 
Hubbard 2007). The algorithms currently used within 
AutoGluon are neural networks, lightGBM, catboost, 
random forests, xgboost, and k-nearest neighbors 
which is a significantly smaller number of algorithms 
than what is available in AutoSklearn. Finally, the 
ensemble selection approach consists of selecting 
models based on their impact on performance 
(Caruana et al. 2004) as AutoSklean also uses. To 
avoid overfitting of the models, AutoGluon uses 
a repeated k-fold bagging approach on a validation 
dataset and the model hyperparameters can be auto
matically fine-tuned using Bayesian optimization. In 
this case, the user can also configure many aspects of 
the model such as selecting only specific models or 

Figure 4. AutoGluon multilayer stack ensemble strategy adapted from Erikson et al. (2020). The first base layer uses the input data and 
the models as input to the next stack layer. This process is repeated in n successive layers. Hyperparameter tuning is not 
recommended to avoid overfitting.
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adding custom instances but the main parameter 
relates to the total time being used for training the 
models (time_limit) which is the total time provided 
for AutoGluon to find an ensemble. Because 
AutoGluon trains model pipelines in succession 
(with hyperparameter even being optional), it can 
find high performance results even with small com
putational effort. On the other hand, also because of 
the approach of successively training models in 
a preset order, it is more of a black-box approach.

Experimental design

The dataset was randomly divided into a training 
(80%) and test dataset (20%) as shown in Figure 5. 
The cross-validation used 10 folds only of the training 
data and was repeated 100 times with different ran
dom samples of the training data to ensure a good 
estimate of the mean error and is adapted from com
monly used approaches (Wang et al. 2019a). This 
means that in each iteration, nine folds were used 
for training and the remaining fold was used to esti
mate the training error while the test error was per
formed on the left-out dataset (20%) (see Figure 5). 
This random sampling of the data was performed only 
once to ensure that every model used the same data 
for both training and validation and thus ensure 
a fairer comparison between the models.

We tested all possible feature combinations for 
both the GLM and MLR approaches – as may be 
selected by an expert – against the AutoML algo
rithms where no decision regarding feature selection 
is made. The total number of possible model struc
tures was defined by all combinations of six bands 
and four vegetation indices, leading to a total 1023 
possible model structures.

To limit the negative effect of autocorrelation on GLM 
models, multicollinearity was evaluated through 
a combination of the Pearson’s correlation and 
Variance of Inflation Factor (VIF) and only model struc
tures with a lenient VIF <10 were tested (Stine 1995). As 
a consequence, only 165 of the total possible 1023 
models were deemed acceptable in the case of GLM. 
For the remaining models in the “classic” approach each 
of the 1023 possible feature combinations was tested.

In the case of MLR, hyperparameter tuning was 
performed using Bayesian optimization for 50 itera
tions for each of the 1023 possible feature combina
tions. We found no specific recommendation on the 
number of iterations that should be used, but during 
the initial tests, we observed that model performance 
stopped improving around between 20 and 30 itera
tions for most models and therefore we considered 50 
iterations to be sufficient. This procedure was imple
mented using the scikit-optimize (0.8.1) package. The 
hyperparameter space is given in Appendix A3 and 
was based on previous RS research or, if no clear 
guidelines were available, based on non-RS research 
(Yang and Shami 2020; Belgiu and Drăgut 2016; 
Taravat, Wagner, and Oppelt 2019; Zhuo et al. 2016). 
A single random subsample of 50% of the data was 
used for hyperparameter tuning of each independent 
model structure. Model performance was based on 
the mean absolute error (MAE) based on the test 
dataset with the Mann–Whitney U test being used to 
test if there was a significant difference between the 
accuracy of the best models.

Results

Classic vs AutoML results

The MAE of only the best models is shown in Table 3 
while the final results for all possible model features 

Figure 5. Overview of the experimental setup. 80% of the training data was used to generate a repeated k-fold estimate of the training 
error (100 repetitions of 10 folds, one being left out for training error estimates). The remaining 20% of the data was not used for any 
training procedure. To ensure comparison, the same data were used for each different model and iteration.
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and time budgets is provided in Appendix D. Both 
AutoML approaches had better accuracy than any of 
the “classic” approaches with AutoSklearn (without 
meta-learning) being the best overall with ~1.73 cm 
mean absolute error and both AutoSklearn (with 
meta-learning) and AutoGluon closely behind with 
an error of 1.78 cm (Table 3). It should be noted that 
the mean grass height of the entire dataset is of 
~5.08 cm and therefore the error margins obtained 
are still significant in relation to the actual grass 
height variation.

It was found that there was a significant difference 
between all the tested models (p < 0.001) which 
implies that the AutoML approaches were signifi
cantly better than the classic approach.

Classic approach
To emulate any decision made by a remote sensing 
expert, we tested all possible (and reasonable) combina
tions of features (e.g. spectral bands plus NDVI is com
monly used). While this section provides a summarized 
version of the results, the entire dataset summarizing 
the model performance for both the classic and AutoML 
approach is provided in Appendix D.

The best model structures (and coinciding MAE) 
are shown for all linear models and classic machine 
learning algorithms in Table 3. Overall, the machine 
learning algorithms performed better than the linear 
models and showed consistently better predictive 
ability irrespective of the model structure.

The best overall GLM had the feature combina
tion of NDWI+B1+ B2 and a test error of ~2.71 cm, 
while the 165th model which had the structure B1 
+ B5 had a test error of ~3.31 cm. Therefore, in the 
case of linear models, it appears that feature selec
tion played a significant role in improving the 
model performance.

The best MLR was the KNN with the model struc
ture EVI+B1+ B2+ B3+ B5 and a test error of 1.84 cm, 
while ANN yielded the worst results (Table 3). When 
compared to the linear model, only the RF and KNN 
performed better on the test set while GLM used 
a more parsimonious model with only two bands 
and one vegetation index.

Figure 6 provides an overview of the tested 
models and the variation in terms of the test 
error for the different feature combinations. 
Variation in MAE decreases for all models when 
selecting the best performing feature combina
tions. This suggests that although feature selec
tion is important, multiple combinations of 
features can produce a similar result. Indeed, 
when looking at the best 25 models for each 
algorithm there were a total of 104 different fea
ture combinations which were only three times 
shared by three different algorithms and one 
time shared by two different algorithms 
(Table 4). In all other cases, each feature combina
tion was used by only one of the six algorithms.

Likewise, in the case of the best 50 models, out of 
220 different feature combinations, only 58 times was 

Table 3. Best overall models for each approach. 
Approach Algorithm Model Structure / Time budget Error type MAE (cm) σ

Test 2.71 0.02

Training 2.99 0.26

Test 2.38 0.04

Training 2.65 0.28

Test 1.99 0.01

Training 2.22 0.22

Test 1.84 0.03

Training 2.12 0.23

Test 2.62 0.01

Training 2.94 0.24

Test 2.81 0.02

Training 3.09 0.26

Test 1,78 0,03

Training 1,83 0,20

Test 1,75 0,01

Training 1,83 0,21

Test 1,73 0,02

Training 1,84 0,21

Classic

AutoGluon

AutoSklearn (with meta-
learning)

AutoSklearn (without meta-
learning)

600s

300s

600s

AutoML

Generalized linear model NDWI+B1+B2

Random forest B1+B2+B3+B4+B5+B7

Artificial neural network EVI+SAVI+B1+B2+B3+B4+B5

Support vector machine NDVI+EVI+SAVI+NDWI+B2

K-nearest neighbour EVI+B1+B2+B3+B5

Bayesian regression NDVI+EVI+NDWI+B1+B2+B3+B4+B5+B7

The green shading highlights the best overall model which is AutoSklearn without meta-learning and with 600 s of training time.
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the same combination used by two to four different 
algorithms (see Appendix D). In the case of the best 
10 models, only once the feature combinations were 
shared between two different algorithms (see 
Appendix D). This implies that in the case of MLR, 
different models select different features and can 
lead to similar results. Therefore, interpreting that 
a specific feature (e.g. NDVI) plays a critical role in 
improving model accuracy can be the result of 
chance.

Figure 7 summarizes how commonly different fea
tures were selected by the different models for the 10, 
25, and 50 best model structures. In general, features 
in the visible range were most often selected. In 
particular, the B2 (Green) was used almost 100% of 
the cases for GLM, RF, KNN, BR, and ANN. The excep
tion to this was SVM, which did not show any pre
ference for any feature. The use of vegetation indices 
was not associated with the best models in most 
cases, except for KNN where EVI was used over 85% 

Figure 6. Distribution of the test error using different feature combinations: All, the best 50, 25 and 10. This visualization aims to 
summarize how much variation occurs depending on the model structures used. The data used for this plot is provided alongside this 
manuscript.

Table 4. Model structures shared by two or more algorithms for the 25 best results.
Model structure ANN BRR KNN RF SVM

EVI+B1+ B2+ B3+ B4+ B5 x x
EVI+B1+ B2+ B3+ B5+ B7 x x
EVI+NDWI+B1+ B2+ B3+ B4+ B5+ B7 x x
NDVI+B1+ B2+ B3+ B4+ B5 x x
NDVI+EVI+B1+ B2+ B3+ B5 x x
NDVI+EVI+B1+ B2+ B3+ B5+ B7 x x
NDVI+EVI+NDWI+B1+ B2+ B3+ B5 x x
NDVI+EVI+SAVI+B1+ B2+ B3+ B4+ B5 x x
NDVI+EVI+SAVI+B1+ B2+ B3+ B5 x x
NDVI+EVI+SAVI+B1+ B2+ B5 x x
NDVI+EVI+SAVI+NDWI+B1+ B2+ B3+ B5 x x
NDVI+SAVI+NDWI+B1+ B2+ B3+ B4+ B5 x x
NDWI+B1+ B2+ B3+ B4+ B5 x x
NDWI+B1+ B2+ B3+ B4+ B5+ B7 x x
SAVI+B1+ B2+ B3+ B5 x x
EVI+B1+ B2+ B3+ B4+ B5+ B7 x x x
NDVI+EVI+SAVI+B1+ B2+ B3+ B5+ B7 x x x
NDVI+EVI+SAVI+NDWI+B1+ B2+ B3+ B4+ B5+ B7 x x x
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of the time for the top 50 models and BR which used 
EVI or NDVI in its top 10 and top 25 best models.

AutoML frameworks
While both AutoML models produced the most accu
rate results, AutoSklearn needed more time to pro
duce a model when compared to AutoGluon 
(Figure 8). Only AutoGluon was able to produce 
a model ensemble with 30 s of time budget for train
ing. This is somewhat expected as while AutoSklearn 
relied on Bayesian optimization to address the CASH 
problem, AutoGluon attempts to avoid it by using 
a multilayer stack ensemble approach. In both cases, 
there is only minimal improvement/difference 
between the increasing time budgets. This implies 
that both frameworks can efficiently find a good set 
of models for estimating grass height from remote 
sensing data.

To further understand if there were significant pat
terns within AutoSklearn pipelines, we explored if 
there are any particular models and/or processing 
steps that are consistently selected (see Figures 9, 
10, 11). This analysis is only relevant for AutoSklearn 
where Bayesian optimization is being used to define 
the best pipelines which is not the case in AutoGluon. 

In the latter, the approach is to use a multilayer 
stacked ensemble where models are trained in 
a predefined succession and retrained with minimal 
hyperparameter tuning to avoid overfitting.

For both AutoSklearn experiments, either when using 
meta-learning or not, tree-based algorithms such as 
extremely randomized trees, gradient boosting, decision 
trees, and random forests played a significant role. As 
the time budget increased, more algorithms were tested 
and their models were added to the ensemble. 
However, it is clear that when using meta-learning, 
there is a smaller variation in the ensemble weights 
with increasing time budgets (Figure 9). This is expected 
because meta-learning is based on a set of previously 
validated pipelines/parameters which are used to initi
ate the fitting procedure and guide the next steps of the 
Bayesian optimization. The best overall model pipeline 
was the one with a 600s time budget without meta- 
learning which was a combination of KNN with mostly 
tree-based algorithms (Figure 9, right). Given that the 
KNN also was the best performing algorithm from the 
classic approach, it seems that this model is particularly 
fit for this task.

Further exploration of the feature preprocessing 
methods applied by AutoSklearn in function of the 

Figure 7. Relative use of each feature by the 10, 25, and 50 best model structures. The relative use represents the ratio between the 
number times a feature was used by the total possible number of model structures (10, 25, or 50).
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Figure 9. Aggregated ensemble wait attributed by AutoSklearn to each algorithm for each time budget. AutoSklearn can use multiple 
versions of the same algorithm with different sets of hyperparameters and preprocessing steps. The figure above shows the sum of 
weights attributed to each algorithm for visual simplicity.

Figure 8. AutoSklearn and AutoGluon test error for increasing time budgets. For both AutoML frameworks we can observe that there 
is minimal increase in performance irrespective of allocated time budget for training. The exception is that only in the case of 
AutoGluon, a solution was obtained for the minimum time of 30 s.
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time budgets is shown in Figure 10, allowing a visual 
exploration of any patterns in preprocessing. Overall, 
no apparent preference for a specific feature prepro
cessing step was found (Figure 10) although without 
meta-learning resulted in more variation of between 
the algorithms being used given different time bud
gets. This is not unexpected given that the use of 
meta-learning implies that initial pipelines used to 
start the optimization procedure are similar for each 
time budget iteration.

To further investigate if there are specific patterns 
of data preprocessing steps in AutoSklearn we sum
marized the different algorithms being used in func
tion of the time budget in Figure 11. Data 
preprocessing is divided into two groups of algo
rithms which are based on the feature type: catego
rical and numerical. In our case, the categorical data 
refer to the Landsat sensor used (ETM+ or OLI) and 
given that we used almost 3 times more ETM+ data 
than OLI data (see Table 2) it is not surprising that 
AutoSklearn tested the use of minority coalescence 
(Figure 11, top).

Data preprocessing applied to numerical data con
sists of imputation (to deal with missing data) and 

rescaling which applies scaling to the input values 
before proceeding. Imputation was excluded from 
our analysis given that our data was prepared so 
that there would be no missing values. Regarding 
rescaling, Figure 11 (bottom) shows once again that 
when not using meta-learning there is higher varia
bility of the algorithms being tested. Nevertheless, in 
either case, there is no apparent reliance in any parti
cular data preprocessing algorithm for rescaling even 
if there is higher diversity of algorithms being tested 
when not using meta-learning (Figure 11, bottom).

Discussion

Overall, our results showed that both AutoML algo
rithms performed significantly better than classic RS 
approaches in estimating grass height (Table 3). 
Although feature selection and model hyperparameter 
selection is commonly based on expert knowledge or 
previous experience in RS (Maxwell, Warner, and Fang  
2018), we opted for an exhaustive test of all feature 
combinations and hyperparameter tuning to exemplify 
the “classic” RS approach. This allowed us to compare 

Figure 10. Aggregated feature preprocessing usage per time budget with and without meta-learning. Different settings of the same 
feature preprocessing can be used by AutoSklearn in different pipelines and these were aggregated by method and percentage of 
times used per time budget.
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the AutoML algorithms against all decisions made by an 
RS expert regarding feature selection and ensured that 
we selected the best possible model in terms of the 
mean absolute error. While AutoML approaches are 
hardly applied in RS (see recent examples for UAV 
phenotyping of wheat (Koh, Spangenberg, and Kant  
2021) and neural architecture search (Zhang et al.  
2020a; Peng et al. 2021; Wang et al. 2021), they have 
been shown to surpass human expertise in other fields 
(Hanussek, Blohm, and Kintz 2020). By simulating what 
could be expert decisions in our experiment, we also 
showed that AutoML surpassed human expertise for 
our case. Hence, there is an opportunity for further 
research and particularly on the adaptation of AutoML 
pipelines for RS tasks (Salinas et al. 2021).

Our exhaustive testing of the impact of feature selec
tion for the classic approach showed that feature selec
tion plays an important role in model performance (see 
Table 4 and Figure 7). In itself, this is not unexpected as 
feature selection has been shown to be significant for 
model performance previously (Georganos et al. 2018; 
Stromann et al. 2019), but in our case, we also observed 
a significant variation in the features being selected. This 

lack of consistency in the feature combinations can be 
partly explained by the algorithms themselves using 
different parts of the data. Nevertheless, more consis
tency between different models would be expected as 
the relationship between infrared bands and vegetation 
indices with AGB is well established in the field of RS (Zhu 
et al. 2017; Xie et al. 2009; Wang et al. 2016) even if there 
is a significant variation in terms of the most significant 
bands (Wen et al. 2020).

Furthermore, our results showed minimal differences 
in terms of performance between the best 50 feature 
combinations implying that any of these best 50 struc
tures could be arbitrarily chosen without significant loss 
in performance. If the intention was to explore which 
bands/vegetation indices are contributing to a specific 
model, this would be problematic as a similar (or better) 
performing model with a different set of features can 
potentially be found. When summarizing the relative use 
of each specific feature, we found that some features 
were selected more often than others, with bands 1 to 5 
being chosen most of the times (Figure 7). At the same 
time, while vegetation indices were also commonly used 
in the model structure, we found that they were selected 

Figure 11. Aggregated data preprocessing for categorical (top) and numerical (bottom) inputs. As in the previous cases, different 
pipelines can use different versions of data preprocessing methods with different settings. These were aggregated into % of times 
used per time budget for visual simplicity.
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much less often (see Figure 7). This can be seen as 
contradictory to previous research which selected vege
tation indices based on the intuition they are the most 
useful to estimate AGB (Chen et al. 2018; 2019). On the 
other hand, it is expected that vegetation indices are 
highly correlated between themselves which can imply 
that one performing better than another for a given 
empirical experiment can be an arbitrary result.

The comparison of the two AutoML systems shows 
that while both AutoML frameworks produced the best 
results compared to the classic models, AutoGluon was 
able to produce a model quicker (see Figure 8). This is 
expected given that the AutoGluon strategy does not 
rely on testing different preprocessing steps or model 
hyperparameters but instead applies a stacking of weak 
learners approach which has been shown to produce 
highly accurate results (Dietterich 2000). Another differ
ence between these two frameworks lies in the informa
tion they provide regarding the model and processing 
steps used by each of them. In comparison, AutoSklearn 
offered a lot more information regarding the preproces
sing steps and model parameters than AutoGluon. This 
“extra” information produced by AutoSklearn allows 
experts to explore preprocessing steps and different 
model configurations that optimize performance and 
offer insights about the data and preprocessing steps 
as well as transparency regarding every step of the 
AutoML pipeline.

An interesting pattern regarding AutoSklearn 
observed in our case is that using meta-learning or not 
did not result in very different performances and it is 
somewhat visible that when using meta-learning, the 
model did not improve always for increasing time bud
gets (see Figure 8). Our hypothesis for this pattern is that 
AutoSklearn was not specifically designed for RS applica
tions which means that the model pipeline available for 
meta-learning are not necessarily the best possible, but 
future research could focus on adapting these AutoML 
pipelines to RS applications. In terms of data and feature 
preprocessing and algorithm selection, there was no 
particular preference. When using meta-learning, we 
observed more stability in the pipelines being tested 
(see Figure 9–11) which is expected (Feurer et al. 2015). 
Nevertheless, in our case, meta-learning did not offer 
a significant improvement in terms of model fitness. In 
summary, our results show that AutoML frameworks can 
be used to improve model performance in the RS and 
can offer further insights into the preprocessing 
pipelines.

Conclusions

This study successfully demonstrated the applicability of 
AutoML for RS of grass height using Landsat ETM and OLI 
data in the Oostvaardersplassen. Given the limited nat
ure of our training data, we do not consider that our 
models can be extrapolated to other locations without 
the inclusion of field data more representative of vegeta
tion height variation. Both AutoML frameworks outper
formed an exhaustive feature selection and 
hyperparameter tuning of commonly used ML algo
rithms for this task. Our exhaustive exploration of feature 
combinations (1023 different configurations) on the 
“classic” approach showed that while ML models benefit 
from combining bands with vegetation indices, the best 
performing combination varied per model. This lack of 
consistency between different models/feature combina
tions can be addressed by AutoML methods which 
allowed testing of a wider suite of possibilities and 
offer top performing result. Furthermore, the AutoML 
frameworks tested were not designed to address RS 
challenges or adapted to explore features in the RS 
domain. There is therefore an open research opportunity 
in the development of AutoML frameworks specifically 
for RS applications.
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Appendix 1: Landsat data description

Sensor Raw number Common denomination Wavelength (μm) Resolution (m) New band number

ETM+ 1 Blue 0.45–0.52 30 1
2 Green 0.52–0.60 30 2
3 Red 0.63–0.69 30 3
4 NIR 0.77–0.90 30 4
5 SWIR 1.55–1.75 30 5
6 Thermal 10.40–12.50 60 -
7 Mid-infrared 2.09–2.35 30 7
8 Panchromatic 0.52–0.90 15 -

OLI 1 Coastal aerosol 0.43–0.45 30 -

2 Blue 0.45–0.51 30 1
3 Green 0.53–0.59 30 2
4 Red 0.64–0.67 30 3
5 NIR 0.87–0.88 30 4
6 SWIR 1 1.57–1.65 30 5
7 SWIR 2 2.11–2.29 30 7
8 Panchromatic 0.50–0.68 15 -

9 Cirrus 1.36–1.38 30 -
10 TIRS 1 10.6–11.19 100 -

11 TIRS 2 11.50–12 − 51 100 -

The above table shows the bands used. Bold shows the selected bands on each sensor andthe new band number attributed to facilitate comparison of the 
results from both sensors.
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Appendix 2: Parameter spaces of MLR hyperparameter optimization

Algorithm Description Parameter Space References

Support 
vector 
machine

Kernel trick functions kernel Poly, rbf, 
sigmoid

(Shih, Stow, and Hsin Tsai 2019; Wang et al. 2016; Yang and 
Shami 2020)

Kernel coefficient gamma auto
Degree of polynomial kernel degree Int(1,3)

Penalty associated with training loss epsilon Real 
(0.0001,100)

Regularization parameter C Real 
(0.01,10,000)

Limit on solver iterations max_iter Int(100,1000)

Random 
forest

Number of trees n_estimators Int(50,1000) (Belgiu & Drăguţ, 2016; Mutanga, Adam, and Azong Cho 2012; 
Shih, Stow, and Hsin Tsai 2019; Wang et al. 2016; Yang and 
Shami 2020)

Maximum depth of a tree max_depth Int(1,50)
Minimum samples on internal node split min_samples_split Real(0,0.50)

Minimum samples required to be a leaf 
node

min_samples_leaf Real(0,0.50)

Maximum samples drawn to train base 
models

max_samples 0.5

K-nearest 
neighbor

Number of neighboring samples n_neighbors int(5,50) (Yang and Shami 2020; Zhu et al. 2017)

Leaf size parameter passed to nn 
algorithm

leaf_size Int(2,50)

Weighting function for sample distance weights uniform, 
distnace

Bayesian 
ridge  
regression

Shape parameter of the prior Gamma 
distribution over the alpha parameter

alpha_1 Real(1e−7,1) (Tang, Ali, and Feng 2020; Xie et al. 2020; Yang and Shami  
2020)

Inverse scale parameter for the prior 
Gamma distribution over the alpha 
parameter

alpha_2 Real(1e−7,1)

Shape parameter for the Gamma 
distribution over the lambda 
parameter

lambda_1 Real(1e−7,1)

Inverse scale parameter for the prior 
Gamma distribution over the Lambda 
parameter

lambda_2 Real(1e−7,1)

Artificial 
neural 
networks

Number of neurones on hidden layer hidden_layer_sizes Int(1,30) (Taravat, Wagner, and Oppelt 2019; Wang et al. 2016; Yang 
and Shami 2020)Type of neuron activation function activation identity, 

logistic, tanh, 
relu

Adaptive or non-adaptative learning rate learning_rate constant, 
invscaling, 
adaptive

The above table summarizes the sets of hyperparameters that were tuned for each of the“classic” machine learning models, the intervals and type of each 
parameter is alsoshown. The bibliographic references used to select these intervals is shown on therightmost column.
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Appendix 3

Appendix 4

Column name Description

Sampling Date Date of field data sampling
TransectID ID of transect

Distance Distance from transect start
grass_height Height field estimate
grass_height + error Height measurement error

RS image date Date of RS imagery acquisition
diffDay Difference between RS image and field sample (in days)

SensorType Sensor
PathRow Path/row of Landsat imagery

X_coord X coordinate of sample
Y_coord Y coordinate of sample#

B1 Reflectance for each band
B2
B3

B4
B5

B7
QA_Band Quality assessment value

NDVI Normalized difference vegetation index
EVI Enhanced normalized vegetation index
SAVI Soil adjusted vegetation index

NDWI Normalized difference water index

Appendix_03 Description

Model Model
Features Features used for the model
Validation type Validation type

MAE Mean absolute error
MAEsd Standard deviation of MAE

In case of AutoML
TimeBudget Time in seconds used for model optimization
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