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ABSTRACT

Hardness of Multi-Objective (MO) continuous optimization prob-

lems results from an interplay of various problem characteristics,

e. g. the degree of multi-modality. We present a benchmark study

of classical and diversity focused optimizers on multi-modal MO

problems based on automated algorithm configuration. We show

the large effect of the latter and investigate the trade-off between

convergence in objective space and diversity in decision space.
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1 INTRODUCTION

In (evolutionary) MO optimization the predominant goal is to ap-

proximate the global set of trade-off solutions as good as possible

w.r.t. convergence and diversity in objective space. Considering

unconstrained multi-objective problems (MOP) [5], there may be

multiple solutions in decision space with equal performance in

objective space. These multi-modal MOPs impose specific chal-

lenges on algorithms due to their characteristics in terms of lo-

cally efficient sets, ridges and basin structures. Important is the

distinction between multi-global and multi-local scenarios [8]: di-

verse solution sets in decision space map to the same images to

the Pareto-front in objective space or, alternatively, the former

might correspond to different local fronts in objective space. Of
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course, there might also be combinations of both. Classical evolu-

tionary MO algorithms (EMOAs) such as NSGA-II, SMS-EMOA and

MOEA/D have proven their performance with established param-

eter settings. Thus they can be used in an out-of-the-box manner

for classical MOPs. For algorithms that address multi-modal MOPs

there is not even an intuition of the achievable potential under a

good configuration of their parameters, apart from a configura-

tion study of MOEA/D on non-multi-modal MOPs [16]. This paper

takes a further step in this direction and brings together multi-

modal multi-objective evolutionary optimization with automated

algorithm configuration (AAC) [12].

Here, we specifically investigate multi-global performance with

the additional challenge that algorithms have to overcome the risk

of getting stuck in local structures, possibly induced by a multi-local

scenario. We show that MO algorithm ranking heavily depends on

parametrization. Experiments further reveal a strong need for con-

figuring for both maximum convergence in objective space as well

as maximum solution diversity in decision space simultaneously in

order to efficiently tackle multi-global optimization scenarios.

2 METHODOLOGY

Algorithms. Classical EMOAs concentrate on solution conver-

gence and diversity in objective space. They all neglect diversity in

decision space and thus may miss alternative global solutions of

similar quality. Multi-modal MOPs have been tackled by integrating

archiving, multiple populations, and niching techniques for pre-

serving diverse solution sets in decision space [8]. Another stream

of research exploit properties of landscape characteristics to move

along local structures [9, 10, 14, 19, 23] and preserve locally efficient

solutions [15]. Here, we pick representative approaches from each

class: NSGA-II, SMS-EMOA, MOEA/D as classical EMOAs, plus

Omni-Optimizer [7], MOLE [19] as an advanced implementation

of MOGSA [10], and HIGA-MO [23].

Instances. We use a subset of well-known benchmark function

collections: ZDT [25] consists of 6 bi-objective functions, each

having a specific property that hampers the capability of EMOAs

to address convergence and / or diversity. DTLZ [6] is an extension

of ZDT towards decision and objective space dimension scalability.

Within the MMF suite [24], the majority of problems is either uni-

modal or multi-global, but not multi-local. The bi-objective Black-

Box Optimization Benchmark (BBOB) [22] contains 55 bi-objective

test functions which originate from combinations of a subset of the

SO BBOB benchmark [11] and show a strong level of multimodality.
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Indicators. Researchers proposedmany different indicatorswhich

often require a reference set [26]. In our setting we configure the

algorithms to maximize either a) the dominated hypervolume (HV),

i. e., a very prominent measure which calculates the space enclosed

by the approximation set and an anti-optimal reference point or

b) the Solow-Polasky measure which was designed to measure the

amount of diversity between species in biology [21]. Both mea-

sures do not require reference sets. While the former is defined in

objective space, the latter measures diversity in the decision space.

Automated algorithm configurators. Consider an algorithm 𝐴

with a corresponding parameter configuration spaceΘ, which holds

a list of parameters, respective domains and possible constraints on

different parameter combinations. Given a set of problem instances

𝐼 , the goal of AAC [12] is to find a optimal configuration 𝜃∗ ∈ Θ

that w. l. o. g. maximizes a quality metric 𝑄 on a problem set 𝐼 , or

formally defined as 𝜃∗ = argmax𝜃 ∈Θ 𝑄 (𝐴𝜃 , 𝐼 ). In this work, the

quality 𝑄 over 𝐼 is computed as the mean performance over all

instances 𝐼 and an instance refers to a specific benchmark problem.

The number of distinct configurations in Θ is often very large

and requires high-performing algorithm configurators. We will use

SMAC [13], which is supported in Sparkle1, and successfully demon-

strated its performance in fields such as SAT and TSP (see [12] for

details, also on alternative approaches such as irace or ParamILS).

3 EXPERIMENTS

A benchmark study is conducted for a variety of MO algorithms

on a large set of, mainly multi-modal, MOPs of well-known bench-

mark sets. We investigate the extent of performance improvement

induced by AAC w. r. t. both convergence in objective as well as

diversity in decision space.

Experimental set-up. For all algorithms publicly available imple-

mentations [1, 3, 4, 18, 20, 23] were used. The R package smoof [2]

was used to generate the problem instances. We compiled a set of 33

bi-objective problems from the 4 benchmark set (see Section 2) with

2-dimensional decision space. All problems from the ZDT, DTLZ

and MMF benchmarks were selected, except ZDT5 and MMF13,

since their decision space is not continuous or 2-dimensional. The

remaining 3 instances are the highly multi-modal problems 𝑓46, 𝑓47,

and 𝑓50 from bi-objective BBOB.

AAC experiments were conducted using SMAC with the Sparkle

framework 2 Each configuration scenario consisted of 10 sequential

configuration runs with each a limit of 250 algorithm calls and a

wall clock time limit of 6 hours. Other configurator settings were

set to their default. Each algorithm had a function call budget of

20 000. One exception to the latter is MOGSA because it has no

termination criterion for budget. However, MOGSA often kept the

number of function calls below the budget. The best configuration

ś based on the mean performance over all instances in the training

set ś of a scenario is picked for further validation on test instances.

Each configuration scenario maximized a single performance

indicator (HV or SP). For HV calculation, in case of unknown ref-

erence points, we derived it from the maximum values of the non-

dominated set out of the union of runs of all algorithms on the

1Accessible through ada.liacs.nl/projects/sparkle
2All code is available at: github.com/jeroenrook/MMMOO-AAC-experiments

respective instance. During configuration, the HVmetrics were nor-

malized against the instances’ maximum obtainable HV to assess

the effect on the mean performance of each instance comparably.

For SP the absolute scores were used, but to keep them aligned

between algorithms and configurations, population sizes 𝜇 were

set to 100. MOLE and MOGSA do not have populations and occa-

sionally return much larger solution sets than they started with.

In such cases, we reduced the solution sets by randomly sampling

2 000 points to keep the SP score computation possible.

Due to the limited number of instances we used leave-one-out

cross validation for configuration. This implies that for each algo-

rithm we ran 33 different configuration scenarios.

To validate the indicators’ score, we ran each algorithm 25 times.

Each of the 25 runs has a fixed random seed (e. g., each first run

always had the same seed). The median over all runs was used to

express each indicators’ score. In the rare occasion that an algo-

rithm could not find any non-dominated points that fell below the

reference point, resulting in a HV of 0, we imputed them by the

worst non-zero HV found in all other runs on that instance.

Configurability. To gauge how susceptible the algorithms are

to improving their performance for one indicator specifically, we

looked at both the indicator’s performance after configuring for

HV and after configuring for SP.

When configuring for HV, we observe a relative increase in HV

comparing to default configuration for all algorithms and, unex-

pectedly, no relative decrease for SP, except for a small proportion

of runs. In fact, for MOGSA, MOLE and HIGA-MO the SP even

improves along with the HV. The amplitude of the relative improve-

ment on HV differs widely between the algorithms. For example,

NSGA-II, SMS-EMOA and Omni-Optimizer show little to none im-

provements. This can be attributed to their limited parameter spaces

or, more likely, because their default parameters were already set to

perform well for HV. In contrast, MOLE occasionally shows large

improvements indicating that it can benefit from configured param-

eters significantly. The median value however is ≈ 0 , but MOLE

also shows the strongest potential in increasing the SP-measure.

In case of configuring for SP, for all algorithms the SP increases,

although sometimes at the cost of HV. The latter is most domi-

nant for MOEA/D and Omni-Optimizer. This suggests that these

algorithms might be over-fitted for optimizing HV. In general, we

observe considerable variability across repeated runs for HIGA-MO,

MOGSA, and MOLE, which exploit local structures.

The resulting parameter configurations strengthen the aforemen-

tioned findings. There is a tendency that parameters configured for

SP tend to differ substantially more from the default settings com-

pared to parameter settings optimized for HV. For MOLE, however,

parameters for both configurations largely differ from the default

parameters. This indicates that these default parameters are likely

not targeted to perform well on the selected indicators and should

be adjusted in order to exhibit good convergence properties.

Competitiveness. We complement the perspective of configura-

bility by an investigation of the competitiveness of the considered

algorithms before and after configuration. In that context, we focus

on six scenarios: two rankings w. r. t. HV and SP of unconfigured

algorithms as well as the rankings w. r. t. both HV and SP, when the

algorithms are either configured to maximize HV or SP, respectively.
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Figure 1: Critical distance plots over the average rank of an al-

gorithm over all individual runs (seed-instance). The figures

on the left show the ranking of HV and the figures on the

right for SP. The rows are the ranks for default, configured

for HV and configured for SP, respectively.

The scenarios are denoted default HV, default SP, config-HV

HV, config-HV SP, config-SP HV, and config-SP SP, where the

first component denotes the configuration objective and the second

component denotes the ranking objective. The default scenarios

use standard (recommended) parameters for the algorithms.

We ranked the algorithms for each distinct seed-instance pair

from which we computed the average rank for each algorithm.

A Nemenyi test [17] with (𝛼 < 0.1) was conducted to determine

the critical distance (CD) of 0.15 between ranks to be significantly

better or worse than the other algorithms (see Figure 1).

In these rankings we see that SMS-EMOA and NSGA-II are in all

cases leading, when HV is considered as ranking objective. In terms

of SP, both algorithms are partly outranked by Omni-Optimizer

and MOEA/D for the default scenario and become even worse after

configuration. Omni-Optimizer shows strong performance in all

the SP rankings but also MOLE performs much better. MOLE even

shares rank 1 with Omni-Optimizer in the config-HV SP scenario.

MOGSA is consistently outranked and HIGA-MO shows a similar

pattern, except for SP where it ranks better than SMS-EMOA and

NSGA-II when the algorithms were configured for SP.

Relative indicator loss. We now focus on the indicators’ perfor-

mance differences between both configurations to investigate the

potential of obtaining maximum convergence in objective space as

well as maximum solution diversity in decision space. Specifically,

we looked at the relative change between the non-configured indi-

cator’s performance and its performance when it was configured

for that indicator, i. e., the relative change of HV after configuring

for SP and after configuring for HV. A positive relative change in-

dicates a loss in what potentially can be achieved for that indicator.

Hence, we refer to the relative changes as losses.

Figure 2 shows the relative loss on both indicators for each algo-

rithm. The losses on HV (blue boxplots), if configured for SP, show

that all algorithms suffer some degree of relative losses ranging

from the largest losses for MOEA/D and Omni-Optimizer and the

smallest for HIGA-MO, NSGA-II and SMS-EMOA.
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Figure 2: Relative loss between the configurations for HV

and SP on the indicators that were not targeted in the config-

urations, respectively.
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Figure 3: The relative loss for each indicator when it was

configured for the opposite indicator. Each points represents

the relative loss of an algorithm-instance pair.

For SP (orange boxplots), i. e., configured on HV, we see that

all algorithms, except MOGSA, suffer a loss on their potential as

well. For MOGSA this means that there is a relative gain, i. e., the

SP performance was better when configuring for HV. Again, the

amplitude in the relative loss varies across the tested algorithms.

MOEA/D and Omni-Optimizer show the largest loss here and are

the only losses that are significant3 for SP. Overall, we notice that

the losses for HV are higher than the losses for SP.

Figure 3 combines the losses for each indicator and presents it

in a scatter plot. Here, each point represents the loss for HV and SP

for one of the 231 algorithm-instance pairs. These pairs are divided

into three partitions; a green partition holding 30 (13%) pairs that

show no loss on both indicators, a white partition holding 109 (47%)

pairs have a loss on only one indicator and a red partition with

the remaining 92 (40%) pairs that have a loss on both indicators.

This shows that for the majority of pairs we are not achieving their

true potential for both indicators simultaneously. The proportion

(adjusted for their total proportion) of benchmarks is consistent

across each partition. This indicates that the benchmarks sets are

not particularly more sensitive or insensitive to these losses. The

proportion of presence of the algorithms for each partition shows

that MOEA/D and Omni-Optimizer are above average (27% and

23% resp. over the average of 14%) in the partition with losses on

both indicators. Omni-Optimizer is also the only algorithm that

never displays improvements for both indicators.

Discussion. From the presented experimental results, we derive

several insights: (1) Compared to the other considered approaches

SMS-EMOA and NSGA-II often excel in the task they are designed

3based on a Wilcoxon signed-rank test with 𝛼 = 0.1 of the median indicator scores.
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for: they create a good approximation of the Pareto front. Combined

with the observation of low configurability (see Section 3), we can-

not expect a large influence of our configuration on these overall

results. (2) Conversely, this also implies that configuration w. r. t. SP

has little effect on these algorithms’ performance. As expected, it

also shows, that the objective-space-focused design of SMS-EMOA

and NSGA-II holds no potential w. r. t. conserving alternative so-

lutions in decision space which results in a loss of diversity. (3)

For algorithms like Omni-Optimizer and MOLE the configurations

hold the potential to improve their performance compared to other

established methods over all considered benchmarks. Remember,

that specifically MOLE is a local optimizer. Still, it is able to compete

with global approaches. Its approach of traversing multiple local

(and global) efficient sets during directed MO descent certainly

helps in preserving alternative solutions. (4) Overall, the potential

in configuration w. r. t. multiple goals like convergence and diver-

sity, is large for methods which either exploit local structures (like

MOLE) or at least preserve alternative solutions in archives, niches,

or multiple populations (like e. g. Omni-Optimizer or MOEA/D).

Future research will show, whether this finding also generalizes to

related approaches. (5) The results show that MOLE which is con-

ceptually similar to the original MOGSA [10] approach but more

developed, is competitive with other optimizers. (6) We observe

that when configuring for either HV or SP, in most cases we have

to hazard the consequence of loosing performance regarding the

other criterion. So there is a strong need for perspectively focusing

on reaching the optimal trade-off between both criteria by means

of multi-objective AAC.

4 SUMMARY AND CONCLUSION

We demonstrate the large potential of automated algorithm config-

uration in the evolutionary MO domain focusing on multi-modal

problems for which both decision space diversity as well as con-

vergence in objective space is of crucial interest. Specialized al-

gorithms, which exploit local structures or include archiving and

niching techniques are contrasted to more general, commonly used

state-of-the-art MO algorithms such as NSGA-II and SMS-EMOA.

We show that suitably set parameters in most cases substantially

improve algorithm performance, especially w. r. t. decision space

diversity. From our experiments, however, we explicitly derive the

necessity of taking a multi-objective perspective in automated algo-

rithm configuration by simultaneously optimizing for convergence

and decision space diversity.

REFERENCES
[1] Jakob Bossek. 2017. Ecr 2.0: AModular Framework for Evolutionary Computation

in R. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (GECCO ’18). ACM, Berlin, Germany, 1187ś1193. https://doi.org/10.
1145/3067695.3082470

[2] Jakob Bossek. 2017. smoof: Single- and Multi-Objective Optimization Test Func-
tions. The R Journal 9, 1 (2017), 103ś113. https://doi.org/10.32614/RJ-2017-004

[3] Jakob Bossek and Kalyanmoy Deb. 2021. omnioptr: Omni-Optimizer. https:
//github.com/jakobbossek/omnioptr R package version 1.0.0.

[4] Felipe Campelo, Lucas S. Batista, and Claus Aranha. 2020. The MOEADr Package:
A Component-Based Framework for Multiobjective Evolutionary Algorithms
Based on Decomposition. Journal of Statistical Software 92, 6 (2020), 1ś39. https:
//doi.org/10.18637/jss.v092.i06

[5] Carlos Artemio Coello Coello, David A. van Veldhuizen, and Gary B. Lamont.
2007. Evolutionary Algorithms for Solving Multi-Objective Problems (2nd ed.).
Springer.

[6] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2005. Scal-
able Test Problems for Evolutionary Multiobjective Optimization. Springer London,
London, 105ś145. https://doi.org/10.1007/1-84628-137-7_6

[7] Kalyanmoy Deb and Santosh Tiwari. 2005. Omni-optimizer: A Procedure for
Single and Multi-objective Optimization. In Evolutionary Multi-Criterion Opti-
mization. Springer Berlin Heidelberg, Berlin, Heidelberg, 47ś61.

[8] Christian Grimme, Pascal Kerschke, Pelin Aspar, Heike Trautmann, Mike Preuss,
Andre H. Deutz, Hao Wang, and Michael Emmerich. 2021. Peeking beyond peaks:
Challenges and research potentials of continuous multimodal multi-objective
optimization. Computers & Operations Research 136 (2021), 105489. https:
//doi.org/10.1016/j.cor.2021.105489 Publication status: Published.

[9] Christian Grimme, Pascal Kerschke, Michael T. M. Emmerich, Mike Preuss, An-
dré H. Deutz, and Heike Trautmann. 2019. Sliding to the Global Optimum: How
to Benefit from Non-Global Optima in Multimodal Multi-Objective Optimiza-
tion. In AIP Conference Proceedings (Leiden, The Netherlands). AIP Publishing,
020052ś1ś020052ś4.

[10] Christian Grimme, Pascal Kerschke, and Heike Trautmann. 2019. Multimodality
in Multi-Objective Optimization Ð More Boon than Bane?. In Proceedings of the

10𝑡ℎ International Conference on Evolutionary Multi-Criterion Optimization (EMO)
(East Lansing, MI, USA) (Lecture Notes in Computer Science (LNCS), Vol. 11411),
Kalyanmoy Deb, Erik Goodman, Carlos A. Coello Coello, Kathrin Klamroth,
Kaisa Miettinen, Sanaz Mostaghim, and Patrick Reed (Eds.). Springer, 126 ś 138.
https://doi.org/10.1007/978-3-030-12598-1_11

[11] Nikolaus. Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defini-
tions. Technical Report RR-6829. INRIA. http://hal.inria.fr/inria-00362633/en/

[12] Holger H. Hoos. 2012. Automated Algorithm Configuration and Parameter
Tuning. In Autonomous Search, Youssef Hamadi, Eric Monfroy, and Frédéric
Saubion (Eds.). Springer, 37ś71. https://doi.org/10.1007/978-3-642-21434-9_3

[13] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In Proceedings of the
5th International Conference on Learning and Intelligent Optimization (LION 5).
Springer Berlin Heidelberg, 507ś523.

[14] Pascal Kerschke and Christian Grimme. 2017. An Expedition to Multimodal

Multi-Objective Optimization Landscapes. In Proceedings of the 9𝑡ℎ International
Conference on Evolutionary Multi-Criterion Optimization (EMO) (Lecture Notes in
Computer Science (LNCS), Vol. 11411), Heike Trautmann, Günter Rudolph, Kathrin
Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, and Christian Grimme
(Eds.). Springer, Münster, Germany, 329 ś 343. https://doi.org/10.1007/978-3-
319-54157-0_23

[15] Yiping Liu, Hisao Ishibuchi, Yusuke Nojima, Naoki Masuyama, and Yuyan Han.
2019. Searching for Local Pareto Optimal Solutions: A Case Study on Polygon-
Based Problems. In 2019 IEEE Congress on Evolutionary Computation (CEC)
(Wellington, New Zealand). IEEE, 896 ś 903.

[16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. 2016. The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives 3 (2016), 43ś58.
https://doi.org/10.1016/j.orp.2016.09.002

[17] Peter Bjorn Nemenyi. 1963. Distribution-free multiple comparisons. Princeton
University.

[18] person). 2019. mogsa: A Multi-Objective Optimization Algorithm Based on Multi-
Objective Gradients. https://github.com/kerschke/mogsa R package version
1.0.

[19] Lennart Schaepermeier. 2021. Multimodal Search Structures in Continuous Multi-
Objective Optimization. Master’s thesis. University of Münster.

[20] Lennart Schäpermeier. 2022. An R Package Implementing the Multi-Objective
Landscape Explorer (MOLE). https://github.com/schaepermeier/moleopt

[21] Andrew R. Solow and Stephen Polasky. 2006. Measuring biological diversity.
Environmental and Ecological Statistics 1 (2006), 95ś103.

[22] Tea Tušar, Dimo Brockhoff, Nikolaus Hansen, and Anne Auger. 2016. COCO:
The Bi-Objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite.
arXiv preprint abs/1604.00359 (2016).

[23] Hao Wang, André Deutz, Thomas Bäck, and Michael Emmerich. 2017. Hyper-
volume Indicator Gradient Ascent Multi-Objective Optimization. In 9th Interna-
tional Conference on Evolutionary Multi-Criterion Optimization - Volume 10173
(Münster, Germany) (EMO 2017). Springer-Verlag, Berlin, Heidelberg, 654ś669.
https://doi.org/10.1007/978-3-319-54157-0_44

[24] Caitong Yue, Boyang Qu, Kunjie Yu, Jing Liang, and Xiaodong Li. 2019. A Novel
Scalable Test Problem Suite for Multimodal Multiobjective Optimization. Swarm
and Evolutionary Computation 48 (2019), 62 ś 71.

[25] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiob-
jective Evolutionary Algorithms: Empirical Results. Evolutionary Computation
(ECJ) 8, 2 (2000), 173 ś 195.

[26] Eckart. Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane G.
da Fonseca. 2003. Performance assessment of multiobjective optimizers: an
analysis and review. IEEE Transactions on Evolutionary Computation (TEVC) 7, 2
(2003), 117ś132. https://doi.org/10.1109/TEVC.2003.810758

359

https://doi.org/10.1145/3067695.3082470
https://doi.org/10.1145/3067695.3082470
https://doi.org/10.32614/RJ-2017-004
https://github.com/jakobbossek/omnioptr
https://github.com/jakobbossek/omnioptr
https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.18637/jss.v092.i06
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1016/j.cor.2021.105489
https://doi.org/10.1016/j.cor.2021.105489
https://doi.org/10.1007/978-3-030-12598-1_11
http://hal.inria.fr/inria-00362633/en/
https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1007/978-3-319-54157-0_23
https://doi.org/10.1007/978-3-319-54157-0_23
https://doi.org/10.1016/j.orp.2016.09.002
https://github.com/kerschke/mogsa
https://github.com/schaepermeier/moleopt
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1109/TEVC.2003.810758

	Abstract
	1 Introduction
	2 Methodology
	3 Experiments
	4 Summary and Conclusion
	References

