
Automated Configuration and Usage of Strategy
Portfolios for Bargaining

Bram M. Renting
Leiden University

Delft University of Technology
B.M.Renting@liacs.leidenuniv.nl

Holger H. Hoos
Leiden University

University of British Columbia
hh@liacs.nl

Catholijn M. Jonker
Delft University of Technology

Leiden University
C.M.Jonker@tudelft.nl

Abstract

Bargaining can be used to resolve mixed-motive games in multi-agent systems.
Although there is an abundance of negotiation strategies implemented in auto-
mated negotiating agents, most agents are based on single fixed strategies, while
it is widely acknowledged that there is no single best-performing strategy for all
negotiation settings.
In this paper, we focus on bargaining settings where opponents are repeatedly
encountered, but the bargaining problems change. We introduce a novel method
that automatically creates and deploys a portfolio of complementary negotiation
strategies using a training set and optimise pay-off in never-before-seen bargaining
settings through per-setting strategy selection. Our method relies on the following
contributions. We introduce a feature representation that captures characteristics
for both the opponent and the bargaining problem. We model the behaviour of
an opponent during a negotiation based on its actions, which is indicative of its
negotiation strategy, in order to be more effective in future encounters.
Our combination of feature-based methods generalises to new negotiation settings,
as in practice, over time, it selects effective counter strategies in future encounters.
Our approach is tested in an Automated Negotiating Agents Competition (ANAC)-
like tournament, and we show that we are capable of winning such a tournament
with a 5.6% increase in pay-off compared to the runner-up agent.

1 Introduction

Bargaining or negotiation is a prominent method to decentrally solve mixed-motive problems through
reaching mutual agreement. Problems from this area occur prominently in many real-world applica-
tions (e.g., transportation of goods using warehouse robotics, coordination of autonomous vehicles,
calendar scheduling). Since the 1980s, there has been research aimed at designing computer ne-
gotiators that can replace or assist humans in negotiation. Following early contributions by Smith
[27], Sycara-Cyranski [30], Rosenschein [24], Sycara [29], Jelassi and Foroughi [12], Klein and Lu
[14], Robinson [23], this research area has evolved considerably, and at the time of this writing, there
are regular negotiation competitions (e.g., Automated Negotiating Agents Competition (ANAC) [5])
and standardised test-beds (e.g., GENIUS [15]) that support the development of algorithmic negoti-
ation strategies. There are now more than one hundred negotiation strategies freely available that

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

21
2.

10
22

8v
1

 [
cs

.M
A

]
 2

0
D

ec
 2

02
2

can be used as opponents to test against — which is important, since we know that the success of a
negotiator also depends on the strategy of the opponent [4].

The improvement of negotiation strategies over time is promising; however, we observe that the
strategies almost always remain monolithic, i.e. single strategy with fixed behaviour for every setting.
It has been observed that no single strategy is optimal for all negotiation settings [11, 15]. Therefore,
a good way to further improve pay-off appears to select from a portfolio of strategies, based on the
negotiation setting. This introduces the problem of algorithm selection [22] into bargaining. An
early attempt on applying algorithm selection in automated negotiation was made by Ilany and Gal
[10, 11], but they only selected a strategy based on the bargaining problem, without considering the
opponent, which we know to be an important factor [4]. Furthermore, they relied on a portfolio of
existing strategies to select from, which potentially limits robustness.

Our contributions in this paper are as follows: 1) we apply automated algorithm configuration tech-
niques to not only create a single negotiation strategy, but a portfolio of complementary negotiation
strategies; and 2) we introduce a procedure to learn and exploit opponent and problem characteristics
during a simulated ANAC tournament. The first contribution uses the approach by Renting et al. [21]
to automatically configure negotiation strategies, which we extend by implementing HYDRA [32]
for portfolio construction and AutoFolio [16] to create a portfolio selector. Empirical results on a
variety of bargaining settings show that our method beats the runner-up agent by a (comfortable)
margin of 5.6%.

2 Related work

Thanks to ANAC, new negotiation strategies are developed every year and collected in the GE-
NIUS [15] test-bed, to support future research; they are categorised and empirically evaluated [4, 2]
to provide a basis for new strategies. Most negotiation strategies contain policy parameters that
influence the behaviour of the agent. To optimise the performance of the agent, the parameters
need tuning. So far, tuning is mostly done manually while testing on the available opponents in the
GENIUS test-bed. Although manual configuration is conceptually easy, it is also tedious and often
leads to unsatisfactory results. Following earlier attempts at automatically configuring strategies using
genetic algorithms [18, 8, 7], or reinforcement learning [6, 26], a recent successful approach used
a model-based algorithm procedure (Sequential Model-based optimization for general Algorithm
Configuration (SMAC)) [9] to automatically configure a negotiation strategy [21].

As there is no single best strategy for all negotiation problems [11, 15], we should be able to improve
pay-off by exploiting differences in problem instances by selecting different strategies per negotiation
setting. We see this as a variation of the algorithm selection problem [22]. Note that algorithm
selection has been successfully applied to, e.g., SAT-solving [31] and pattern recognition [28].
However, in the field of automated negotation, only a few attempts were made to use algorithm
selection methods. Ilany and Gal [10, 11] used a set of past ANAC strategies and predicted which
strategy would perform best on a given bargaining problem; they then entered that strategy into the
negotiation session. Although they managed to improve the pay-off of the agent in this manner, they
were unable to win ANAC. Kawata and Fujita [13] used a portfolio of 7 strategies that previously
competed in ANAC. They applied a multi-armed bandit approach to find the best performing strategy
for every combination of an opponent and problem, while repeating precisely the same bargaining
setting 100 times. This strategy does not generalise to new negotiation settings and problems.

3 Preliminaries

Agent systems that are built to negotiate contain a software-based negotiation strategy. This negotia-
tion strategy must function according to the rules (or protocol) that is set for a negotiation setting.
The protocol used in this work is the Stacked Alternating Offers Protocol [1], an extension of the
Alternating Offers Protocol [25, 19]. A deadline of 60 seconds is used, normalised to t ∈ [0, 1], after
which a negotiation is aborted without agreement. We refer to a bargaining problem as (p ∈ P),
which we will negotiate between our own agent and an opponent (o ∈ O). The combination of a
bargaining problem and an opponent is a bargaining setting (s ∈ S = O × P). Protocols, problems
and opponents are all available through the GENIUS [15] test-bed (GPL v3), which we use to
benchmark our agents.

2

3.1 Bargaining problem

We negotiate over multi-issue (or multi-objective) problems that are defined according to a common
standard in automated negotiation [20, 17, 2]. Here, an issue (i ∈ I) is an objective in the problem
for which an agreement must be found. The set of possible solutions for an issue is denoted by Vi,
and the Cartesian product of all the solutions of issues in a problem forms the total outcome space
(
∏
i∈I Vi = Ω). An outcome is denoted by ω ∈ Ω.

Preferences over the outcome space Ω are expressed through a utility function u(ω), such that
u : Ω→ [0, 1], where a score of 1 represents the best possible outcome. We refer to our own utility
function as u(ω) and to that of the opponent as uo(ω). Negotiations are performed under incomplete
information, so the utility of the opponent is predicted, which we denote as ûo(ω).

3.2 Dynamic agent

Renting et al. [21] built a flexible agent and automatically configured it using SMAC (described
later in this section). They demonstrated that this DA(θ) was able to win an ANAC-like tournament
by a significant margin. We implemented the same DA(θ) with configuration θ ∈ Θ. The full
configuration space Θ of DA(θ) can be found in Appendix B. There are three types of parameters that
influence the behaviour of DA(θ): four accepting parameters that influence when the agent accepts an
offer, three bidding parameters that determine the utility to demand, and six parameters that influence
searching in the solution spaces for suitable solutions.

3.3 Automated Configuration

Automated algorithm configuration procedures evaluate configurations of a given algorithm, observe
their performance, and use this information to find better-performing configurations for a given set
or distribution of problem instances. We attempt to optimise the obtained utility r(θ, s) ∈ [0, 1] by
playing strategy θ in a negotiation setting s. As we work with a set of settings S, we define the
optimisation metric as the average utility

R(θ, S) =
1

|S|
·
∑
s∈S

r(θ, s), (1)

SMAC. We use the freely available general-purpose algorithm configurator SMAC [9] to automati-
cally configure DA(θ), following the successful implementation of Renting et al. [21]. A pseudocode
version of SMAC can be found in Appendix D, modified for this work. Here, SMAC is used to
optimise on single settings (s ∈ S) in a training set to significantly reduce computational expense.
SMAC attempts to model differences between negotiation settings through features that capture
information on setting complexity. We describe these features in Section 3.4.

3.4 Negotiation setting features

To perform algorithm selection, we need some features that describe 1) the characteristics of the
negotiation problem that we currently face, and 2) the characteristics of the current opponent. Then,
given these features, algorithm selection essentially becomes an classification problem, where we
map the current features to a selected negotiation algorithm from our portfolio. We also use these
features to guide the model-based optimisation procedure of SMAC.

Renting et al. [21] created a set of features to describe a negotiation setting, which was partly based on
previous work by Ilany and Gal [11] and Baarslag et al. [3]. We adopt this set of features consisting
of bargaining problem features (Xp) and opponent features (Xo). An overview of the bargaining
setting features we use is given in Appendix A. Opponent behaviour depends partly on the problem
and is not always deterministic. We therefore calculate both the mean and covariance of the opponent
features over multiple negotiation settings as opponent features for a total of 8 opponent features.

3.5 Problem definition

Strategy portfolio creation. We have an agent with a dynamic strategy DA(θ) based on configura-
tion space Θ. Can we create a portfolio of configurations θ ⊂ Θ using a training set of negotiation

3

settings S consisting of configurations that outperform each other on specific subsets of a test set of
negotiation settings S′test ⊂ Stest that have never been encountered before?

Algorithm selection. We have an agent with a dynamic strategy DA(θ), and a portfolio of configu-
rations θ = {θ1, θ2, . . . , θn}, where θ1 is the single best-performing configuration (Equation 5). Can
we apply an algorithm selection method θs = AS(θ, s) that selects a configuration θs from θ based
on negotiation setting s, such that R(AS(θ, s), Stest) > R(θ1, Stest). The real goal here is to let
R(AS(θ, s), Stest) approach the performance of the oracle selector (Equation 4) R(OR(θ, s), Stest)
as closely as possible.

4 Portfolio of bargaining strategies

As a basis for algorithm selection, we need a portfolio of negotiation strategies to select from. A
simple approach is to build a portfolio of negotiation strategies that already exist within the GENIUS
environment, which is the approach used by Ilany and Gal [11]. However, for several reasons, we
consider this a less than ideal approach:

1. It relies on strategies that already exist, thus limiting our choices for a portfolio to strategies
that have been previously implemented and are available to be re-used.

2. The strategies might not be optimised or optimised for a different objective, resulting in a
low-performance portfolio.

3. There might be dominated strategies in the portfolio, which are outperformed in all cases by
some other strategy in the portfolio, needlessly complicating the selection problem.

4. The portfolio might not be robust. There can be negotiation instances for which all the
negotiation strategies fail to achieve a decent performance, causing “weak spots” in our
portfolio.

4.1 Portfolio creation

We aim to expand upon the work of Renting et al. [21], by not only automatically configuring a
single negotiation strategy, but by building a portfolio of complementary strategies to better exploit
differences between negotiation settings. The portfolio of strategies θ we create is thus a portfolio of
configurations for our DA(θ). In our method we will therefore enforce that every strategy must add
value to the portfolio:

∀θ ∈ θ, ∃s ∈ S, ∀θ′ ∈ (θ \ θ) : r(θ, s) > r(θ′, s) (2)

The portfolio can be viewed as a set of strategies that each specialise on a region within the bargaining
setting space. Similarities in this space are found by mapping the space to the feature space. One
could obtain such a portfolio by automatically configuring strategies on sets of negotiation settings
that are separated in feature space by dividing the feature space either manually or using clustering
techniques. However, both methods rely on human input without clear insight into the effects. The
quality of the sets is disputable, as they are created based on similarities in the given feature space
without regard for the performance gains thus achieved. Therefore, instead we chose to automate
the portfolio creation method by using HYDRA [32], removing the requirement of human input in
feature space separation.

4.2 HYDRA

HYDRA automatically generates a portfolio given only a parameterised strategy (Section 3.2) and a
set of negotiation settings with features (Section 3.4) while using an algorithm configurator and an
algorithm selector (Section 5). We provide a pseudo-code description of HYDRA in Appendix E,
modified for this work.

The main idea of HYDRA is to perform multiple configurator runs on an identical set of training
settings, while only modifying the performance metric. Due to the modifications to the metric,
the configurator produces different strategies. In Appendix E, the modified performance metric is
computed by “GetModifiedPerformanceMetric” and formally defined as

rk(θ, s) = max (r(θ, s), r(AS(θ, s), s)) . (3)

4

The modified performance is the better of the performance of the strategy that is assessed and the
performance of the strategy that is selected by the algorithm selector. By optimising using the increase
of performance as compared to the current portfolio, the configurator aims to find a configuration that
adds the most value to the portfolio. In the first configurator run, the default performance metric is
used. The resulting configuration θ1 is therefore a locally optimal configuration over the full set of
training settings, also known as the single best strategy in the portfolio.

5 Strategy selection

The next important step in our approach is strategy selection. We now have a portfolio of strategies
θ, but still need to decide which of these strategies best fits our current problem and opponent. We
therefore desire a mapping from the feature space X to a one-hot distribution over the possible
strategies. This is essentially a classification problem, which we can train on examples generated
from our training set. Subsequently, we hope the learned function can generalise to new bargaining
problems and unknown opponents in the test set, allowing us to select the most suitable strategy from
our portfolio.

Ilany and Gal [11] also considered this algorithm selection problem and analysed the performance of
multiple classifiers that map feature vectors to algorithms. The process of selecting a classifier and
configuring the accompanying parameters can again be seen as an algorithm configuration problem.
In line with the rest of this paper, we chose to automate the configuration of an algorithm selector
by using AutoFolio [16], leveraging the power of a broad range of algorithm selection methods and
removing human bias.

5.1 AutoFolio

The algorithm selection system AutoFolio constructs the algorithm selector. It has a range of
regression and classification methods to choose from and uses SMAC to determine both the selection
method to use and the setting of its hyperparameters. The data AutoFolio requires as input is the
performance r(θ, s) of every strategy (θ ∈ θ) on every setting (s ∈ S) in the training set and a set of
features. Its goal is to select the best-performing strategy for every negotiation setting.

5.2 Performance measure

We measure the algorithm selector’s performance as a normalised value between a baseline and the
oracle selector (Equation 4) on the test set of negotiation settings. The oracle selector always makes
the perfect choice for every negotiation setting and is an upper bound on the performance of an
selector using the given portfolio. It is obtained by simply trying every strategy on every setting and
selecting the best strategy. The single best strategy is the strategy in the portfolio that obtains the
highest performance on the full set of negotiation settings (Equation 5). We refer to this strategy as
θ1, as it is the first strategy in the portfolio produced by HYDRA. The performance of the single best
strategy is considered to be the baseline.

OR(θ, s) ∈ arg max
θ∈θ

r(θ, s) (4)

θ1 ∈ arg max
θ∈θ

R(θ, S) (5)

6 Empirical evaluation

6.1 Method

The first configurator run with the default performance metric results in the single best strategy θ1 on
the training set of negotiation settings. We aim to complement the portfolio with an additional three
strategies, so we iterate through HYDRA until k = 4. This also allows us to analyse the performance
of portfolios of size 1, 2 and 3 due to the incremental approach of HYDRA. The configurations thus
obtained were tested 10 times on every negotiation setting in the training set to reduce stochastic
influence. Finally, the portfolio and the performance data was used along with the setting features to
configure an algorithm selector using AutoFolio.

5

Table 1: Individual configuration performance on S and Stest. The left two columns show the average
utility of every individual strategy in the portfolio on the training and test set of negotiation settings.
The next four columns show the fraction of the amount settings in the test set for which a single
strategy belongs to a set of best performing strategies.

R(θ, ·) Best performing on Stest by ratio

θ S Stest Single best In top 2 In top 3 In top 4 Sum

θ1 0.815 0.742 0.281 0.100 0.016 0.123 0.520
θ2 0.788 0.734 0.167 0.022 0.020 0.123 0.333
θ3 0.789 0.754 0.154 0.065 0.031 0.123 0.373
θ4 0.773 0.721 0.118 0.058 0.033 0.123 0.333

6.1.1 Input.

Specifics on the training and test set can be found in Appendix C. The bargaining problem features
were calculated in advance, as described in Appendix A. The opponent features can only be gathered
by performing negotiations against the opponents. We gathered these features in advance for the first
configurator run, by negotiating 10 times on every setting with a manually set strategy. After the
first configurator run, opponent features are extracted based on negotiations with strategies that are
already in the portfolio. Note that during training, we use the actual opponents utility function (uo) to
calculate the features in Appendix A to reduce estimation noise.

6.1.2 Hardware & budget.

We followed Renting et al. [21] in terms of computational budget, in order to be able to compare
results. Each run of SMAC was given a 1200-hour budget, divided over 300 parallel runs. Every
run was performed on a single Intel® Xeon® CPU core with 2 threads and 12 GBs of RAM. We ran
AutoFolio on a single dual core processor on the same computing cluster, assigned it 4 gigabytes of
RAM, and provided it with a budget of 0.5 hours.

6.2 Results

6.2.1 Quality of the portfolio.

We tested the quality of the portfolio by testing the performance (Equation 1) of every configuration
in the portfolio on the training and testing sets of negotiation settings. The results can be found in
Table 1. We included ratios that indicate how often a strategy is part of the set of best strategies
per setting (“Sum” in Table 1). As a final quality check, the performance of the oracle selector
(Equation 4) is evaluated for varying sizes of the portfolio. We present the results in Table 2.

Table 1 shows the results per strategy in the portfolio in the form of an individual performance over
a set of settings R(θ, S). It is evident that θ1 is the single best strategy over the full training set S.
Furthermore, as every strategy is at least once the single best on individual settings (single best ratio
> 0), we can conclude that every strategy contributes to the portfolio, thus satisfying the first problem
statement in Section 3.5.

Finally, Table 2 shows us that, at every iteration of HYDRA, the oracle performance of the portfolio
increases on both S and Stest. The improvement decreases on S as the amount of iterations increase,
indicating that HYDRA fills the largest “weaknesses” in the portfolio first.

6.2.2 Performance of the algorithm selector.

Table 2 shows that there is potential in the portfolio to improve utility of DA(θ) by 0.840−0.742
0.742 ·

100% ≈ 13.0% on the test set, if we use the oracle selector rather than θ1. We now replace the oracle
selector with the actual selector and test its performance in two ways.

Performance with known opponents. We test the absolute performance of the algorithm selector
by assuming perfect knowledge of opponent features of the opponents in the test set of negotiation set-
ting Stest. The opponent features are gathered by running 10 negotiation sessions with configuration
θ1 on the test set.

6

Table 2: Algorithm selector performance compared to oracle performance. The left two columns
show the upper limit in average utility for various sizes of the portfolio on the training and test set of
negotiation settings. The right two columns show the average utility obtained by applying the trained
algorithm selector on every setting in both sets.

R(OR, ·) R(AS, ·)
θ S Stest S Stest

{θ1} 0.815 0.742 0.815 0.742
{θ1, θ2} 0.870 0.824 0.865 0.785
{θ1, θ2, θ3} 0.875 0.832 0.869 0.776
{θ1, θ2, θ3, θ4} 0.879 0.840 0.868 0.784

We trained and tested multiple algorithm selectors on different portfolio sizes by extending the
portfolio, starting with the single best strategy θ1. We report the performance in Table 2. For the
oracle selector OR the performance of DA(θ) increases with the size of the portfolio. However,
the performance of the algorithm selector AS plateaus on S after adding the fourth strategy to the
portfolio. Based on the results on the training set, we conclude that the fourth strategy in the portfolio
is redundant and needlessly complicates the strategy selection procedure; we therefore omitted it in
the final evaluation step reported in the following.

Performance with unknown opponents. Opponent features, in contrast to the problem features,
must be learned from previous encounters. Up to this point, we assumed the opponents to always be
known in advance, which is not realistic. We simulate a realistic negotiation tournament where this
problem occurs. The agents in Stest can also learn from their opponents, but we cannot guarantee
fair learning chances due to parallelisation. To solve this, we negotiate once against all of them and
then “wiping our memory”, giving every opponent a head start.

The question arises what strategy to select at first encounters with opponents, when no opponent
features are available. If strategy selection is not possible, we select the single best strategy θ1.
Opponent features are influenced by the strategy that is selected by DA(θ), so we simplify the feature
extraction process and only gather features when strategy θ1 is selected. This aligns with the decision
to select θ1 at first opponent encounters. The Coefficient of Variance (CoV) of an opponent feature
(Section 3.4) needs at least two samples to be meaningful, so we set a second condition to select
strategy θ1 for the first two encounters with an opponent to “sample” the opponent.

To obtain the results, we iterate randomly through the test settings Stest and use DA(AS(θ, s)) with
θ = {θ1, θ2, θ3} to negotiate, following the procedure as described. Additionally, we let every
opponent in the test set negotiate with every other opponent in the test set on every test problem and
combine the results with the results of the DA(θ). This procedure is repeated 10 times to reduce
variance for a total of 38 080 negotiations. The results averaged per agent show that we are capable
of winning an ANAC-like tournament with our DA(θ) using the strategy selector, see Table 3. We
beat the runner-up agent (MetaAgent) by 0.788−0.752

0.752 · 100% ≈ 5.6% (one-tailed t-test p < 0.0022).

Finally, we compare the performances of DA(θ) with θ1 and with a portfolio of strategies in a realistic
ANAC tournament setup, see Figure 1. Notice that our utility improved with 0.788−0.742

0.742 · 100% ≈
6.2% by using a portfolio instead of a single fixed strategy, and that the portfolio approach also
improves all other performance measures.

7 Conclusions and future work

In previous work [21], automated configuration was used to obtain a single best strategy. Here, we
have introduced a method to configure and use a portfolio of strategies for negotiation agents, adding
a combination of HYDRA, AutoFolio, and a procedure to learn opponent behaviour. Our approach is
fully automated and represents a significant step beyond the use of single best strategies in automated
negotiation. It requires only a negotiation agent with a flexible, parameterised strategy.

We created a portfolio of 4 strategies θ and tested the performance of every strategy on a broad set of
negotiation settings. In Table 1, we showed that every configured strategy contributes to the portfolio
by specialising on separate sets of negotiation settings. By adding algorithm selection to the Dynamic

7

Table 3: ANAC tournament results using DA(AS(θ, s)) where all scores are averaged over all
bargaining settings. The goal of ANAC is to obtain the highest utility. We show the top 5 agents and
all the outliers for every performance measure. Here, social welfare is the summation of utility and
opponent utility, Pareto distance is the smallest distance to a Pareto efficient bargaining outcome,
Nash distance is the distance to the Nash bargaining solution of the problem, and agreement ratio
represents the fraction of settings that resulted in an agreement. (bold = best, underline = worst)

Agent Utility Opponent
utility

Social
welfare

Pareto
distance

Nash
distance

Agreement
ratio

Imitator 0.446 0.901 1.347 0.091 0.428 0.953
GeneKing 0.612 0.783 1.396 0.065 0.378 0.994
Mamenchis 0.636 0.863 1.498 0.016 0.272 0.993
MadAgent 0.669 0.536 1.204 0.232 0.383 0.768
AgentKN 0.690 0.757 1.447 0.065 0.252 0.934
SimpleAgent 0.699 0.531 1.230 0.204 0.398 0.805
AgentF 0.738 0.679 1.417 0.076 0.301 0.941
ShahAgent 0.741 0.554 1.296 0.172 0.342 0.829

MetaAgent2013 0.746 0.659 1.405 0.092 0.284 0.917
MetaAgent 0.752 0.634 1.386 0.106 0.296 0.894

DA(AS(θ, s)) 0.788 0.627 1.414 0.074 0.314 0.923

Utility
Opponent utility

Social welfare
Pareto distance

Nash distance
Agreement ratio

0

0.5

1

1.5

0
.7
4
2

0
.5
6
0

1
.3
0
2

0
.1
4
8

0
.3
8
5

0
.8
4
9

0
.7
8
8

0
.6
2
7

1
.4
1
4

0
.0
7
4

0
.3
1
4

0
.9
2
3

DA(θ1)
DA(AS(θ, s))

Figure 1: Comparison of two DA(θ) strategies in an ANAC tournament setting. Here, DA(θ1) is
comparable to the agent configured by Renting et al. [21] and DA(AS(θ, s)) represents this work.
See Table 3 for an explanation of the performance measures.

Agent to exploit differences between settings in a realistic tournament, we increased the performance
of Dynamic Agent by 6.2% compared to the single best strategy, and won the tournament by a margin
of 5.6%. We note that the single best strategy is comparable to the agent configured by Renting et al.
[21], indicating that a portfolio-based agent provides another significant boost to negotiation pay-off.

Limitations lie in the required mutual agreement on the norms of how to conduct a negotiation. In
this work, a predefined protocol is used that is supported by all used agents. Agents that do not
support this protocol cannot participate in the negotiation. Another important limitation is that this
method has no safeguards that check whether the currently trained agent is still performing well,
and not being exploited. Finally, due to the train-then-test principle of our method, we still rely on a
training set that is a decent representation of the actual application. Ethical concerns in the design of
bargaining agents lie in the application of these agents in real life. Persons that have more resources
to design quality bargaining strategies can gain even more resources in the process, leading to more
inequality. There are risk of exploitation, unfair play, and deception due to a lack of explainability
and a high level of complexity for the layman.

In future work, we intend to study the influence of Dynamic Agent’s strategies on the opponent
characteristics that we learn during negotiation to improve opponent learning. Secondly, strategy
selection could be improved for first encounters with opponents, where currently the single best
strategy is selected without regard of the setting characteristics. We want to investigate strategy
selection for bargaining settings through neural networks to relax the reliance on manually designed
features. Finally, it would be interesting to explore the use of reinforcement learning for training
negotiation strategies instead of the algorithm configuration approach that we leveraged here.

8

Acknowledgement

The authors would like to thank Thomas Moerland for his help in proof-reading this paper.

This research was (partly) funded by the Hybrid Intelligence Center, a 10-year programme funded
the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for
Scientific Research, grant number 024.004.022 and by EU H2020 ICT48 project“Humane AI Net”
under contract # 952026.

This research was also partially supported by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215.

References
[1] Reyhan Aydoğan, David Festen, Koen V. Hindriks, and Catholijn M. Jonker. Alternating offers

protocols for multilateral negotiation. In Studies in Computational Intelligence, volume 674,
pages 153–167. Springer, 2017. ISBN 978-3-319-51563-2. doi: 10.1007/978-3-319-51563-2_
10. URL https://link.springer.com/chapter/10.1007%2F978-3-319-51563-2_10.

[2] T Baarslag. What to bid and when to stop. PhD thesis, Delft Uni-
versity of Technology, 2014. URL http://dx.doi.org/10.4233/uuid:
3df6e234-a7c1-4dbe-9eb9-baadabc04bca.

[3] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. Towards a quantitative concession-based
classification method of negotiation strategies. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7047
LNAI:143–158, 2011. ISSN 03029743. doi: 10.1007/978-3-642-25044-6_13.

[4] Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen Hindriks, Takayuki Ito, Nicholas R.
Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and Colin R. Williams. Evalu-
ating practical negotiating agents: Results and analysis of the 2011 international competition.
Artificial Intelligence, 198:73–103, 2013. ISSN 00043702. doi: 10.1016/j.artint.2012.09.004.
URL http://dx.doi.org/10.1016/j.artint.2012.09.004.

[5] Tim Baarslag, Reyhan Aydoğan, Koen V. Hindriks, Katsuhide Fujita, Takayuki Ito, and
Catholijn M. Jonker. The Automated Negotiating Agents Competition, 2010–2015. AI Mag-
azine, 36(4):2010–2014, 2015. ISSN 0738-4602. doi: 10.1609/aimag.v36i4.2609. URL
http://www.aaai.org/ojs/index.php/aimagazine/article/view/115-118.

[6] Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag. RLBOA: A modular
reinforcement learning framework for autonomous negotiating agents. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
pages 260–268. International Foundation for Autonomous Agents and Multiagent Systems, 2019.
ISBN 978-1-4503-6309-9. URL https://www.ifaamas.org/Proceedings/aamas2019/
pdfs/p260.pdf.

[7] Garett Dworman, Steven O. Kimbrough, and James D. Laing. Bargaining by artificial agents in
two coalition games: A study in genetic programming for electronic commerce. Proceedings
of the First Annual Conference on Genetic Programming, page 54–62, 1996. URL http:
//portal.acm.org/citation.cfm?id=1595536.1595544.

[8] T Eymann. Co-evolution of bargaining strategies in a decentralized multi-agent system. AAAI
Fall 2001 Symposium on Negotiation Methods for Autonomous Cooperative Systems, pages
126–134, 2001. URL http://www.aaai.org/Papers/Symposia/Fall/2001/FS-01-03/
FS01-03-016.pdf.

[9] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimiza-
tion for General Algorithm Configuration. In Carlos A. Coello Coello, editor, Learning and
Intelligent Optimization, Lecture Notes in Computer Science, pages 507–523, Berlin, Heidel-
berg, 2011. Springer. ISBN 978-3-642-25566-3. doi: 10.1007/978-3-642-25566-3_40. URL
https://link.springer.com/chapter/10.1007/978-3-642-25566-3_40.

9

https://hybrid-intelligence-centre.nl
https://link.springer.com/chapter/10.1007%2F978-3-319-51563-2_10
http://dx.doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
http://dx.doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
http://dx.doi.org/10.1016/j.artint.2012.09.004
http://www.aaai.org/ojs/index.php/aimagazine/article/view/115-118
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf
http://portal.acm.org/citation.cfm?id=1595536.1595544
http://portal.acm.org/citation.cfm?id=1595536.1595544
http://www.aaai.org/Papers/Symposia/Fall/2001/FS-01-03/FS01-03-016.pdf
http://www.aaai.org/Papers/Symposia/Fall/2001/FS-01-03/FS01-03-016.pdf
https://link.springer.com/chapter/10.1007/978-3-642-25566-3_40

[10] Litan Ilany and Ya’akov Gal. The Simple-Meta Agent. In Ivan Marsa-Maestre, Miguel A.
Lopez-Carmona, Takayuki Ito, Minjie Zhang, Quan Bai, and Katsuhide Fujita, editors, Novel
insights in agent-based complex automated negotiation, volume 535, pages 197–200. Springer,
2014. ISBN 978-4-431-54757-0. doi: 10.1007/978-4-431-54758-7.

[11] Litan Ilany and Ya’akov Gal. Algorithm selection in bilateral negotiation. Autonomous
Agents and Multi-Agent Systems, 30(4):697–723, 2016. ISSN 15737454. doi: 10.1007/
s10458-015-9302-8.

[12] M Tawfik Jelassi and Abbas Foroughi. Negotiation support systems: An overview of design
issues and existing software. Decision Support Systems, 5(2):167–181, 1989.

[13] Ryohei Kawata and Katsuhide Fujita. Meta-Strategy for Multi-Time Negotiation: A Multi-
Armed Bandit Approach. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, pages 2048–2050, Richland, SC, May 2019.
International Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-
6309-9.

[14] Mark Klein and Stephen C. Y. Lu. Conflict resolution in cooperative design. Artificial In-
telligence in Engineering, 4(4):168–180, October 1989. ISSN 0954-1810. doi: 10.1016/
0954-1810(89)90013-7. URL https://www.sciencedirect.com/science/article/
pii/0954181089900137.

[15] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and Catholijn M. Jonker.
Genius: An integrated environment for supporting the design of generic automated negotiators.
Computational Intelligence, 30(1):48–70, 2014. ISSN 08247935. doi: 10.1111/j.1467-8640.
2012.00463.x. URL http://doi.wiley.com/10.1111/j.1467-8640.2012.00463.x.

[16] Marius Lindauer, Frank Hutter, Holger H. Hoos, and Torsten Schaub. AutoFolio: An auto-
matically configured algorithm selector. IJCAI International Joint Conference on Artificial
Intelligence, 53:5025–5029, 2017. ISSN 10450823. doi: 10.1613/jair.4726.

[17] Ivan Marsa-Maestre, Mark Klein, Catholijn M. Jonker, and Reyhan Aydoǧan. From problems
to protocols: Towards a negotiation handbook. Decision Support Systems, 60(1):39–54, 2014.
ISSN 01679236. doi: 10.1016/j.dss.2013.05.019.

[18] Noyda Matos, Carles Sierra, and Nick R. Jennings. Determining successful negotiation strate-
gies: An evolutionary approach. Proceedings - International Conference on Multi Agent Systems,
ICMAS 1998, pages 182–189, 1998. ISSN 0254-1319. doi: 10.1109/ICMAS.1998.699048.

[19] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory., volume 1. MIT press, 1
edition, 1994. ISBN 0262650401. doi: 10.2307/2554642. URL http://www.jstor.org/
stable/10.2307/2554642?origin=crossref.

[20] Howard Raiffa. The art and science of negotiation. Harvard University Press, 1985. ISBN
9780674048133.

[21] Bram M. Renting, Holger H. Hoos, and Catholijn M. Jonker. Automated Configuration of
Negotiation Strategies. In Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, pages 1116–1124, Auckland, 2020. International Foundation for
Autonomous Agents and Multiagent Systems. URL http://arxiv.org/abs/2004.00094.

[22] John R. Rice. The Algorithm Selection Problem. Advances in Computers, 15(C):65–118, 1976.
ISSN 00652458. doi: 10.1016/S0065-2458(08)60520-3.

[23] W.N. Robinson. Negotiation behavior during requirement specification. [1990] Proceedings.
12th International Conference on Software Engineering, pages 268–276, 1990. ISSN 02705257.
doi: 10.1109/ICSE.1990.63633. URL http://ieeexplore.ieee.org/document/63633/.

[24] J. S. Rosenschein. Rational interaction: cooperation among intelligent agents. PhD
thesis, Stanford University, Stanford, CA, USA, 1986. URL http://www.osti.gov/
energycitations/product.biblio.jsp?osti_id=5310977.

10

https://www.sciencedirect.com/science/article/pii/0954181089900137
https://www.sciencedirect.com/science/article/pii/0954181089900137
http://doi.wiley.com/10.1111/j.1467-8640.2012.00463.x
http://www.jstor.org/stable/10.2307/2554642?origin=crossref
http://www.jstor.org/stable/10.2307/2554642?origin=crossref
http://arxiv.org/abs/2004.00094
http://ieeexplore.ieee.org/document/63633/
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977

[25] Ariel Rubinstein. Perfect Equilibrium in a Bargaining Model. Econometrica, 50(1):97, 1982.
ISSN 00129682. doi: 10.2307/1912531. URL http://www.jstor.org/stable/1912531.

[26] Ayan Sengupta, Yasser Mohammad, and Shinji Nakadai. An autonomous negotiating agent
framework with reinforcement learning based strategies and adaptive strategy switching
mechanism. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’21, pages 1163–1172. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2021. ISBN 978-1-4503-8307-3. URL https:
//www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf.

[27] Reid G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers, C-29(12):1104–1113, 1980. ISSN
00189340. doi: 10.1109/TC.1980.1675516. URL http://www.csupomona.edu/~ftang/
courses/CS599-DI/notes/papers/contractnetprotocol.pdf.

[28] Kate A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM Computing Surveys, 41(1):1–25, 2009. ISSN 03600300. doi: 10.1145/1456650.1456656.
URL http://portal.acm.org/citation.cfm?doid=1456650.1456656.

[29] Katia Sycara. Resolving Goal Conflicts via Negotiation. The Seventh National Conference on
Artificial Intelligence, pages 245–249, 1988. URL http://www.aaai.org/Papers/AAAI/
1988/AAAI88-044.pdf.

[30] K Sycara-Cyranski. Arguments Of Persuasion In Labour Mediation. Proceedings of the
International Joint Conference on Artificial Intelligence, 1:294–296, 1985.

[31] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Se-
lection for SAT. Journal of Artificial Intelligence Research, 32:565–606, July 2008. ISSN 1076-
9757. doi: 10.1613/jair.2490. URL https://www.jair.org/index.php/jair/article/
view/10556.

[32] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. In Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929.

11

http://www.jstor.org/stable/1912531
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
http://www.csupomona.edu/~ftang/courses/CS599-DI/notes/papers/contract net protocol.pdf
http://www.csupomona.edu/~ftang/courses/CS599-DI/notes/papers/contract net protocol.pdf
http://portal.acm.org/citation.cfm?doid=1456650.1456656
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
https://www.jair.org/index.php/jair/article/view/10556
https://www.jair.org/index.php/jair/article/view/10556
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929

A Feature representations of bargaining setting

Table 4: Bargaining problem features (Xp) [11]. The utility functions of the problems that are used
in the paper are linear additive. An issue weight is a linear weight that is associated with an issue.
The scores of every issue are multiplied by this weight and then summed to obtain the final utility.
The sum of the issue weights is 1.

Description Definition
Number of issues |I|
Average number of values per issue 1

|I| ·
∑
i∈I
|Vi|

Number of possible outcomes |Ω|
Standard deviation of issue weights

√
1
|I| ·

∑
i∈I

(wi − 1
|I|)

2

Average utility of all possible outcomes 1
|Ω| ·

∑
ω∈Ω

u(ω) = u(ω̄)

Standard deviation utility of all possible outcomes
√

1
|Ω| ·

∑
ω∈Ω

(u(ω)− u(ω̄))
2

Table 5: Opponent features (Xo) [21]. x−o is the lowest offer by the opponent in their predicted utility.
ω+/ω− is our best/worst possible outcome. x̄ is the (fictional) average offer by the opponent in their
predicted utility. ωagree is the agreement.

Description Definition
The time it takes to reach an agreement t

Concession rate of opponent

{
1 if ûo(x−o) ≤ ûo(ω+),
1−ûo(x−

o)
1−ûo(ω+) otherwise.

Average offer rate of opponent

{
1 if ûo(x̄) ≤ ûo(ω+),
1−ûo(x̄)

1−ûo(ω+) otherwise.

Default strategy performance

{
0 if u(ωagree) ≤ u(ω−),
u(ωagree)−u(ω−)

1−u(ω−) otherwise.

12

B Configuration space and configured portfolio of the Dynamic Agent

Table 6: Configuration space of DA(θ) as set by Renting et al. [21]

Description Symbol Domain Purpose

Scale factor α [1, 1.1] Accepting
Utility gap β (0, 0.2] Accepting
Accepting time tacc [0.9, 1] Accepting
Lower boundary γ {MAXW ,AVGW } Accepting
Trade-off factor δ [0, 1] Bidding
Conceding factor e (0, 2] Bidding
Conceding goal n {1, 2, 3, 4, 5} Bidding
Population size Np [50, 400] Searching
Tournament size Nt [1, 10] Searching
Evolutions E [1, 5] Searching
Crossover rate Rc [0.1, 0.5] Searching
Mutation rate Rm [0, 0.2] Searching
Elitism rate Re [0, 0.2] Searching

Table 7: Final configurations in the portfolio. These are the final parameter settings that make up the
different bargaining strategies in the portfolio.

Accepting Bidding Searching
θ α β tacc γ nfit δ e Npop Ntour E Rc Rm Re

θ1 1.038 0.03201 0.942 AV GW 3 0.927 0.00199 262 6 4 0.290 0.140 0.085
θ2 1.001 0.00166 0.935 AV GW 3 0.998 0.06232 94 2 5 0.168 0.002 0.108
θ3 1.007 0.01970 0.912 AV GW 4 0.917 0.01093 305 10 1 0.107 0.063 0.184
θ4 1.056 0.00003 0.900 MAXW 5 0.997 0.02090 139 10 4 0.463 0.176 0.101

13

C Training and testing set of opponents and problems

This appendix provides an overview of the training and testing set of both opponents and bargaining
problems that is used throughout this paper. A single training setting requires an agent as opponent
and problem from the train set, the same is true for a test setting.

The set of agents is provided in Table 8. We used a total of 36 agents from the ANAC. The set of
ANAC agents is split up in 20 training agents and 16 test agents. The set of problems is provided in
Table 9. A total of 42 problems is used of which both sides can be played by our agent resulting in 84
playable problems. The set of bargaining problems is selected based on diversity using the features
as described in Appendix A and their discount factor and reservation utility are removed. The set is
split up in 56 training problems and 28 test problems.

The total amount of training settings:
|S| = |O| ∗ |P | = 20 ∗ 56 = 1120 (6)

The total amount of test settings:
|Stest| = |Otest| ∗ |Ptest| = 16 ∗ 28 = 448 (7)

Train/Test Agent ANAC
Test SimpleAgent 2017
Test Rubick 2017
Test PonPokoAgent 2017
Test ParsCat2 2017
Test ShahAgent 2017
Test Mosa 2017
Test Mamenchis 2017
Test MadAgent 2017
Test Imitator 2017
Test GeneKing 2017
Test Farma17 2017
Test CaduceusDC16 2017
Test AgentKN 2017
Test AgentF 2017
Test MetaAgent2013 2013
Test MetaAgent 2012
Train ParsCat 2016
Train YXAgent 2016
Train Terra 2016
Train MyAgent 2016
Train GrandmaAgent 2016
Train Farma 2016
Train Caduceus 2016
Train Atlas3201 2016
Train AgentHP2_main 2016
Train RandomDance 2015
Train PokerFace 2015
Train PhoenixParty 2015
Train ParsAgent 2015
Train kawaii 2015
Train Atlas3 2015
Train AgentX 2015
Train AgentH 2015
Train AgentBuyogMain 2015
Train Gangster 2014
Train DoNA 2014

Table 8: Overview of agent set used in this work. The last column indicates in which year the agent
participated in ANAC.

14

Train/Test Profile 1 Profile 2 Comment
train ItexvsCypress_Cypress.xml ItexvsCypress_Itex.xml x2 (both sides are played)
train laptop_buyer_utility.xml laptop_seller_utility.xml x2 (both sides are played)
train Grocery_domain_mary.xml Grocery_domain_sam.xml x2 (both sides are played)
train Amsterdam_party1.xml Amsterdam_party2.xml x2 (both sides are played)
train camera_buyer_utility.xml camera_seller_utility.xml x2 (both sides are played)
train energy_consumer.xml energy_distributor.xml x2 (both sides are played)
train EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml x2 (both sides are played)
train Barter-A-prof1.xml Barter-A-prof2.xml x2 (both sides are played)
train FlightBooking-A-prof1.xml FlightBooking-A-prof2.xml x2 (both sides are played)
train HouseKeeping-A-prof1.xml HouseKeeping-A-prof2.xml x2 (both sides are played)
train MusicCollection-A-prof1.xml MusicCollection-A-prof2.xml x2 (both sides are played)
train Outfit-A-prof1.xml Outfit-A-prof2.xml x2 (both sides are played)
train RentalHouse-A-prof1.xml RentalHouse-A-prof2.xml x2 (both sides are played)
train Supermarket-A-prof1.xml Supermarket-A-prof2.xml x2 (both sides are played)
train Animal_util1.xml Animal_util2.xml x2 (both sides are played)
train DogChoosing_util1.xml DogChoosing_util2.xml x2 (both sides are played)
train Icecream_util1.xml Icecream_util2.xml x2 (both sides are played)
train Lunch_util1.xml Lunch_util2.xml x2 (both sides are played)
train Ultimatum_util1.xml Ultimatum_util2.xml x2 (both sides are played)
train DefensiveCharms_util1.xml DefensiveCharms_util2.xml x2 (both sides are played)
train SmartEnergyGrid_util1.xml SmartEnergyGrid_util2.xml x2 (both sides are played)
train DomainAce_util1.xml DomainAce_util2.xml x2 (both sides are played)
train Smart_Grid_util1.xml Smart_Grid_util2.xml x2 (both sides are played)
train DomainTwF_util1.xml DomainTwF_util2.xml x2 (both sides are played)
train ElectricVehicle_profile1.xml ElectricVehicle_profile2.xml x2 (both sides are played)
train PEnergy_util1.xml PEnergy_util2.xml x2 (both sides are played)
train JapanTrip_util1.xml JapanTrip_util2.xml x2 (both sides are played)
train NewDomain_util1.xml NewDomain_util2.xml x2 (both sides are played)
test England.xml Zimbabwe.xml x2 (both sides are played)
test travel_chox.xml travel_fanny.xml x2 (both sides are played)
test IS_BT_Acquisition_BT_prof.xml IS_BT_Acquisition_IS_prof.xml x2 (both sides are played)
test AirportSiteSelection-A-prof1.xml AirportSiteSelection-A-prof2.xml x2 (both sides are played)
test Barbecue-A-prof1.xml Barbecue-A-prof2.xml x2 (both sides are played)
test EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml x2 (both sides are played)
test FiftyFifty-A-prof1.xml FiftyFifty-A-prof2.xml x2 (both sides are played)
test Coffee_util1.xml Coffee_util2.xml x2 (both sides are played)
test Kitchen-husband.xml Kitchen-wife.xml x2 (both sides are played)
test Wholesaler-prof1.xml Wholesaler-prof2.xml x2 (both sides are played)
test triangularFight_util1.xml triangularFight_util2.xml x2 (both sides are played)
test SmartGridDomain_util1.xml SmartGridDomain_util2.xml x2 (both sides are played)
test WindFarm_util1.xml WindFarm_util2.xml x2 (both sides are played)
test KDomain_util1.xml KDomain_util2.xml x2 (both sides are played)

Table 9: Overview of bargaining problem set used in this work

15

D SMAC

Algorithm 1 forms the main body of SMAC [9]. The sub-procedure Intensify is described in
Algorithm 2. We used the SMAC3 implementation of SMAC, which is released under a BSD
3-Clause License (https://github.com/automl/SMAC3).

Algorithm 1 Parallel Sequential Model-Based Optimisation [9] (SMBO)
Input Θ Configuration space

S Negotiation settings
O Performance metric
topt Optimisation time budget

Variables Ri Runhistory of pool i
RfullFull runhistory of parallel pools, where Rfull = [R1, . . . , Rm]
M Random forest regression model
θnewList of promising configurations

Output θinc Optimised parameter configuration

1: [Ri, θinc]← Initialise(Θ, S)
2: loop until GetT ime() > topt
3: Rfull ← ReadParallelRunhistories()
4: M← FitModel(Rfull)
5: θnew ← SelectConfigurations(M, θinc,Θ)
6: [Ri, θinc]← Intensify(θnew, θinc, Ri, S,O)

7: return θinc

Algorithm 2 Intensify(θnew, θinc, R, S,O) [9]
Input θnewList of promising configurations

θinc Incumbent configuration (current best)
R Runhistory
S Negotiation settings
O Performance metric
tint Time budget for intensify procedure

Variables θnewChallenging configuration
Output R Runhistory

θinc Incumbent configuration (current best)

1: for i := 1, . . . , |θnew| do
2: S′ ← {s′ ∈ S : Count(θinc on s′) ≤ Count(θinc on s′′),∀s′′ ∈ S}
3: s← Random(S′)
4: R← ExecuteNegotiation(R, DA(θinc), s)
5: θnew ← θnew[i]
6: N ← 1
7: loop
8: Smissing ← {s ∈ S : Exists(θinc on s) ∧ ¬Exists(θnew on s)}
9: Storun ← random subset of Smissing of size Min(N, |Smissing|)

10: for s ∈ Storun do R← ExecuteNegotiation(R, DA(θnew), s)
11: Smissing ← Smissing/Storun
12: Scommon ← {s ∈ S : Exists(θnew on s) ∧ Exists(θinc on s)}
13: if R(θnew, Scommon) < R(θinc, Scommon) then break
14: else if Smissing = ∅ then θinc ← θnew; break
15: else N ← 2 ∗N
16: if (GetT ime() > tint) ∧ i ≥ 2 then break
17: return [R, θinc]

16

https://github.com/automl/SMAC3

E HYDRA

Algorithm 3 HYDRA [32]
Input Θ Configuration space

S Training set of negotiation settings
o Performance metric

Variables θk Configuration
θ Portfolio of configurations
rk Modified performance metric

Output θ Portfolio of configurations
AS Algorithm selector

1: θ ← ∅; rk ← o
2: for k = 1; Until portfolio size is reached; k = k + 1 do
3: θk ← SMBO(Θ, S, rk) . Appendix D
4: TestPerformance(S, θk)
5: θ ← θ ∪ {θk}
6: AS ← FitAlgorithmSelector(θ, S)
7: rk ← GetModifiedPerformanceMetric(o,AS)

8: return AS, θ

17

	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Bargaining problem
	3.2 Dynamic agent
	3.3 Automated Configuration
	3.4 Negotiation setting features
	3.5 Problem definition

	4 Portfolio of bargaining strategies
	4.1 Portfolio creation
	4.2 HYDRA

	5 Strategy selection
	5.1 AutoFolio
	5.2 Performance measure

	6 Empirical evaluation
	6.1 Method
	6.1.1 Input.
	6.1.2 Hardware & budget.

	6.2 Results
	6.2.1 Quality of the portfolio.
	6.2.2 Performance of the algorithm selector.

	7 Conclusions and future work
	A Feature representations of bargaining setting
	B Configuration space and configured portfolio of the Dynamic Agent
	C Training and testing set of opponents and problems
	D SMAC
	E HYDRA

