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Abstract. Current AutoML systems have been benchmarked with tra-
ditional natural image datasets. Differences between satellite images and
natural images (e.g., bit-wise resolution, the number, and type of spectral
bands) and lack of labeled satellite images for training models, pose open
questions about the applicability of current AutoML systems on satellite
data. In this paper, we demonstrate how AutoML can be leveraged for
classification tasks on satellite data. Specifically, we deploy the Auto-
Keras system for image classification tasks and create two new variants,
IMG-AK and RS-AK, for satellite image classification that respectively
incorporate transfer learning using models pre-trained with (i) natural
images (using ImageNet) and (ii) remote sensing datasets. For evaluation,
we compared the performance of these variants against manually designed
architectures on a benchmark set of 7 satellite datasets. Our results show
that in 71% of the cases the AutoML systems outperformed the best
previously proposed model, highlighting the usefulness of a customized
satellite data search space in AutoML systems. Our RS-AK variant per-
formed better than IMG-AK for small datasets with a limited amount of
training data. Furthermore, it found the best automated model for the
datasets composed of near-infrared, green, and red bands.

Keywords: Remote sensing · AutoML · Transfer Learning · Classifica-
tion

1 Introduction

Remote sensing satellites continuously monitor the Earth’s surface and collect
data representing the state and health of the planet. The range of applications
that can benefit from such data varies from environmental mapping to urban
planning, emergency response, and many more [3]. To make use of such data,
remote sensing practitioners commonly adopt methods of computer vision and
machine learning. Classical machine learning approaches benefit from domain-
specific, hand-crafted features to account for dependencies in time or space, but
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rarely exploit spatio-temporal dependencies exhaustively. Modern deep learn-
ing methods can automatically extract such spatio-temporal features. However,
currently, two obstacles are limiting the use of deep learning for satellite data.
The first one is the lack of sufficient labeled data and the difficulty of getting
labels considering that satellite images are not as interpretable as natural images
for the human eye [3]. The second obstacle lies in the difficulty of designing
appropriate architectures that take the characteristics of satellite images into
account. Satellite images are different from natural images due to their addi-
tional spectral information content. Natural color images always include the
same three channels (RGB) but for satellite images, the number and type of
channels are variable, depending on the satellite instrument. A multi-spectral
satellite image captures information of the electromagnetic spectrum related to
different processes on Earth (e.g., land, ocean, atmosphere). The images from
the most common satellites can have up to 13 spectral bands that each could
be relevant for observing a different process. For instance, examples of channels
related to vegetation features are near-infrared and short-wave infrared bands.
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Fig. 1: Preliminary experiments using the
EuroSAT dataset [9]. A random forest and
three different CNNs built from scratch
based on machine learning (a simple
CNN with 3 convolutional layers (CNN1))
and remote sensing literature (CNN2 [1],
CNN3 [15]) are compared. For each model,
two versions are shown: a vanilla model per-
formance using default configurations and
a tuned model. The tuned models show the
performance after applying hyperparameter
tuning for the optimizer, learning rate, batch
size, and the number of epochs in the case
of the CNNs and the number of features for
the random forest.

Furthermore, natural images have an
8 bits precision, while remote sensing
input data usually comes at higher pre-
cision (16 or 32 bits). Creating new
high-performing models for satellite
data requires designing new architec-
tures while taking into account these
characteristics. Furthermore, the hy-
perparameters need to be set properly.
These tasks can be complex for remote
sensing experts.

To overcome these obstacles, we
propose to systematically leverage re-
cent developments in two different
machine learning fields: (i) transfer
learning [22] and (ii) automated ma-
chine learning (AutoML) [11]. Transfer
learning addresses the lack of labeled
data by re-using the knowledge gained
from previously seen tasks and trans-
ferring it to a newly created model
in another task (e.g., through us-
ing pre-trained models). AutoML [11]
aims to automatically design high-
performing models for each dataset in
a data-driven manner and thus mak-
ing machine learning accessible to non-
machine learning experts. Hyperpa-
rameter optimization and Neural Ar-
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chitecture Search (NAS) are both exemplars of techniques that are scoped in
this field. Specifically, with the increased interest in using deep learning algo-
rithms, NAS has become an important area that aims at finding the best neural
network architecture given a task and a dataset by automatically tuning various
hyperparameters.

As far as we are aware, NAS research systems have been benchmarked with
natural image datasets but not with satellite images. This brings us to the
questions: what is the performance of current AutoML systems for satellite
data? and how can we further improve their performance for satellite data by
transferring the knowledge gained from previous research in the field of remote
sensing? Figure 1 shows the results of one of our preliminary experiments,
demonstrating the potential of applying the most recent advances in AutoML
regarding hyperparameter optimization to a remote sensing dataset. We know
that positive results in specific applications are based on human priors. By
incorporating domain expert prior knowledge into machine learning systems the
performance of resultant models can significantly improve. Therefore, in this
paper, we propose to tailor the neural architecture search space of Auto-Keras [12]
(a popular AutoML system) by integrating findings of the remote sensing field in
form of pre-trained models on ImageNet and remote sensing datasets.

To the best of our knowledge, this is the first work considering the design of
AutoML systems for machine learning tasks based on remote sensing datasets.
More specifically, to achieve this goal our contributions in this paper are as
follows: (i) composing a diverse benchmark of already available satellite datasets
using a standardized format, (ii) evaluating the performance of the deployed
AutoML NAS system on these datasets, and finally, (iii) enriching this system
by incorporating pre-trained models on remote sensing datasets in a new block
called RS-AK.

2 Related work

In this section, we review the most popular deep learning approaches applied to
satellite data and the current status of AutoML in remote sensing.

Deep learning in remote sensing: The remote sensing research commu-
nity increasingly relies on the use of deep learning models. The authors of [3]
indicate that CNN-based methods have obtained impressive results when numer-
ous annotated samples to fine-tune or train a network from scratch are available.
Due to the difficulty of acquiring labeled data, researchers typically rely on tech-
niques from transfer learning, with models pre-trained on natural image datasets
(e.g., ImageNet) but also remote sensing benchmark datasets (e.g., EuroSat[9],
BigEarthNet[25]). Some works that rely on this technique are [9,16,18,23]. The
authors of [19] analyze three different transfer learning strategies to improve the
performance of CNNs for satellite image scene classification, i.e., full training,
fine-tuning, and using CNNs as feature extractors. They conclude that the fine-
tuning approach tends to be a good option in various scenarios. The authors of [9]
evaluated various CNN architectures on the EuroSAT dataset, achieving the best
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accuracy using a fine-tuned ResNet-50 pre-trained on ImageNet for the RGB data.
The authors of [19,30] reported high-performance results using CNNs too. The
authors of [15] suggest that an ensemble of Inception and ResNet modules is an
effective architecture for land cover classification. Current remote sensing research
does not fully exploit hyperparameter tuning to further improve these models;
researchers have mainly considered optimizing a subset of hyperparameters using
a parameter sweep approach [6,18]. The authors of [13] have considered AutoML
for a specific application of high-throughput image-based plant phenotyping.
They use Auto-Keras and compare its results with human-designed ImageNet
pre-trained CNN architectures, finding the best performance while using the
pre-trained network. However, they did not use all the potential of Auto-Keras.
In this paper, we consider more general applicability by performing a systematic
analysis on a diverse benchmark of problems and we propose the customiza-
tion of Auto-Keras for satellite tasks. Moreover, we see that many architectures
have been applied to remote sensing problems, but no clear consensus has been
reached about which one works best. This makes a compelling argument for using
AutoML, which can explore and select the best option in a data-driven way.

AutoML and Neural Architecture Search: AutoML aims to automate
the different stages of a machine learning pipeline. These steps typically are
data collection, data preparation, feature engineering, preprocessing, algorithm
selection, hyperparameter optimization, model training, and deployment. Cur-
rent AutoML systems commonly cover stages from data preparation to model
training [11]. Auto-Sklearn [7], Auto-WEKA [26] and T-POT [20] are examples
of AutoML systems focusing on traditional machine learning (such as SVM,
random forest, K-nearest neighbors). So far, only a few open-source AutoML
systems focus on deep learning. One of the biggest challenges of NAS compared
to previously mentioned AutoML systems is maintaining computational efficiency.
The time required to successfully solve the NAS problem is linked to the time
needed to train a candidate network and the number of candidates existing in
the search space. Two popular AutoML systems that focus on deep learning
are Auto-Keras [12] and Auto-Pytorch [17], both supporting image classification
tasks. Auto-Pytorch uses multi-fidelity optimization and Bayesian optimization
(BOHB) [5] while Auto-Keras uses a Bayesian optimization with a neural network
kernel and a tree-structured acquisition function to search for the best settings.
The search space of Auto-Keras is defined based on network morphism, it en-
closes all architectures that can be created by morphing the initial architecture.
Auto-Pytorch is delimited to multi-layer perceptron networks and funnel-shaped
residual networks. To deal with the memory limitations, Auto-Pytorch asks the
user to choose between small, medium, and full configuration spaces, whereas
Auto-Keras adapts the configuration space automatically based on a memory
estimation function. Both systems have focused on solving traditional machine
learning tasks, in the case of image classification the attention is only on natural
images. Our goal in this paper is to focus on Earth observation data. We propose
to customize AutoML systems for satellite data tasks. The challenge of adapting
NAS for specific problems falls into a right delimitation of the search space. By
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doing this, the remote sensing practitioners can reduce the amount of time needed
to find a suitable model for their data and instead focus on other major tasks.

3 Methodology

To discover automatically generated high-performance architectures for satellite
data classification tasks, we integrate the deep learning solutions for remote
sensing in an AutoML framework. We propose to increase the efficiency of
AutoML systems by reducing the complexity of the search space focusing on the
most likely well-performance architectures for satellite data tasks.

We selected one of the deployed AutoML systems to build upon. We select
Auto-Keras [12], an efficient NAS with network morphism, where Bayesian
optimization is used to guide the exploration of the search space. The search
space of Auto-Keras is based on network morphism, enclosing all architectures
that can be created by morphing the initial architecture. The generation of
the candidate architectures depends on the acquisition function of the Bayesian
optimization. As the NAS space is not Euclidean, Auto-Keras uses an edit-
distance neural network kernel for the Gaussian Process. This kernel measures
the number of operations needed to morph one network into another one. It
considers morphing the layers and the skip-connections. Different from fixed
layer width methods [14], the morphism operations can change the number of
filters in a convolutional layer and then make the search space larger. Therefore,
finding a good architecture could take more time. By focusing on the most likely
well-performance architectures for specific tasks, the searching time would be
reduced.

To measure the benefits of the development of specific tasks for satellite data,
we decided to gradually enhance the search space of the system and proposed
three different settings for our experiments. Those settings and the motivation
behind them are explained in the following subsections.

3.1 Original Auto-Keras system (V-AK)

Auto-Keras search space is built upon network morphism where the search space
of NAS is created using morphism operations. An initial network architecture G is
given and, with the use of morphism operations, new networks are created. Auto-
Keras’ authors use a three-layer convolutional network as starting architecture for
the experiments presented in their paper to test the efficiency of their approach
compared with other methods. However, the deployed Auto-Keras system has a
task-oriented API, in which 3 different initial architectures are applied for the
image classification task: first, it tries a vanilla network with 2 layers, second a
ResNet50 model without pre-training, and thirdly an Efficientb7 network pre-
trained with ImageNet. This change influences the possible architectures to select
and outperforms the system initialized with a three-layer convolutional network.
To the best of our knowledge, the selection of the initial architectures was based
on human expert knowledge and state-of-the-art architectures for specific tasks
based on natural image data.
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Fig. 2: (a) An abstract illustration of how the final architecture can be build based
on pre-defined blocks. A network consists of one preprocessing block, several model
blocks, and one classification head. V-AK and IMG-AK compose the model by using
Vanilla, Resnet, Xception and/or Efficient blocks. In addition to these, RS-AK can
make use of the RS Block as well. (b) The RS Block, only available to RS-AK. It can
be extracted from various different remote sensing datasets, which is controlled by the
hyperparameter rs_dataset_source

3.2 Models pre-trained using ImageNet dataset (IMG-AK)

Based on remote sensing research, we know that models pre-trained with ImageNet
can lead to promising results for satellite data classification tasks [3]. The Auto-
Keras search space already includes blocks with weights acquired by pre-training
on ImageNet. However, the decision to use such blocks depends on the process
of selecting new candidate architectures. It could be the case that, due to
trials budget and the vast search space, these pre-trained architectures are not
considered. Figure 2 provides an abstract illustration of how the final architecture
for the image classification task can be build based on pre-defined blocks existing
in Auto-Keras. The model blocks in which the ImageNet weights are available have
a hyperparameter called pretrained, which defines whether or not a pre-trained
version of the model will be used.

Therefore, in this approach, although we make use of the available pre-trained
models in the current systems, we still modify the configuration of G by defining
an initial architecture for the new specific task: satellite image classification. We
expect to improve the classification results by starting the neural architecture
search with a block pre-trained with ImageNet. The model block can be selected
based on the remote sensing literature findings. As reviewed in Section 2, ResNet
architectures have shown promising results in classification of satellite images in
the literature (see, e.g., [9,15]). Thus, we configure the initial G with a ResNet
block and we set the parameter pretrained to true.

3.3 Models pre-trained using remote sensing datasets (RS-AK)

Transfer learning can be most successful when the source and target domain
are similar [27,4,18]. Within the remote sensing community, there are models
pre-trained with remote sensing datasets [18,25] but none of these are available
yet in AutoML systems. Therefore, we proposed to incorporate this type of
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pre-trained models and customize the Auto-Keras image classification task for
satellite data. We need to initially decide what needs to be changed in Auto-Keras
to be able to add this feature. The Auto-Keras task-oriented NAS approach can
be inferred from the open-source deployed system. The image classification task
builds an architecture based on pre-defined cells or blocks. These blocks can
be divided into three categories: preprocessing, model, and classification head.
For the preprocessing category, two blocks are considered: (i) normalization,
which performs a feature-wise normalization on the data; and (ii) an image
augmentation block, which can apply various methods including flipping, rotation,
and translation. The addition of such blocks to the final architecture in Auto-
Keras is treated as a hyperparameter. The model blocks represent all the possible
cells that will shape the hidden layers of the network. Each block consists of
parameterized modules of well-known CNNs with various hyperparameters to
be tuned. The third category is the classification head block, which creates the
output layer of the network based on the number of classes and the classification
type. The only hyperparameter to tune in this block is a dropout value. The
preprocessing steps correspond to the ones applied by the authors of our satellite
datasets, and the classification head block does not need to be changed because
the nature of the classification is the same as any image classification task. We
only need to change the model blocks and how our new block (which we refer to as
RS Block) will interact with the classification head block. Figure 2 is an abstract
illustration of this. The RS Block first checks the shape of the input and resizes
the pixels if necessary. It chooses between different pre-trained module versions
(trained with satellite data). This choice is considered as another hyperparameter
to tune. Hence, it uses the same hyperparameter tuner that is used for all the
other blocks. The optimization method is explained next.

Hyperparameter tuning. Different tuners can be used to determine which
combination of hyperparameters will be sent for training in each trial during
NAS. We used an oracle combining random search and greedy algorithm [21,12]
presented inside of Auto-Keras. The hyperparameters are arranged by grouping
them into several categories according to the level or functionality. The oracle
tunes each category separately using random search. In each trial, it uses a greedy
strategy to generate new values for one of the categories of hyperparameters and
use the best trial so far for the rest.

Remote Sensing Pre-trained Models. Our RS Block is composed of
modules of different satellite learning representations acquired from different pre-
trained models. These pre-trained models were trained with 5 different satellite
datasets (BigEarthNet [25], EuroSAT [9], RESISC-45 [2], So2Sat [30], and UC
Merced [28]). Based on the number of spectral bands of the collected datasets we
considered two types of pre-trained models: (i) 3-channels and (ii) 13-channels.
Figure 3 shows the architectures and datasets used for pre-training. The 3-
channel pre-trained models were taken from the publicly available models posted
by [18]. Inspired by the findings in [15] and the selected architecture in [18],
we decided to create in-domain representations for 13-channels datasets using
ResNet architectures and training with the EuroSAT dataset [9].
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Fig. 3: Remote sensing pre-trained models considered for the RS Block. The first layer
indicates the number of channels, the second layer the architecture used, and, the
third layer the remote sensing dataset used. 3-channels models were created by Google
Research [18], 13-channels were created by us.

To rapidly test the performance of our new block, we made two changes in the
Auto-Keras search space. We first added the proposed RS Block to the model
blocks structure. Secondly, we adapted the initial architecture G to start with
our new remote sensing block. We would like to be able to study which of the
remote sensing representations (pre-trained blocks) are used more often and, thus
are more promising. We can inspect this, by studying the rs_dataset_source
parameter of the RS Block, which indicates the source dataset used for pre-
training in the case of the 3-channel datasets.

4 Experiments

In our evaluation we aim to address the following research questions:

– Q1. Can we achieve a performance similar to the non-automated deep learning
research in remote sensing by using AutoML systems?

– Q2. How do different Auto-Keras variants perform for datasets with dif-
ferent characteristics (different number of spectral bands, sizes, and class
distributions)?

– Q3. Which of the remote sensing pre-trained modules used in the RS-AK
shows more promising results for developing NAS systems for remote sensing?

4.1 Datasets

To have a broader idea of the applicability of this framework in the remote sensing
field, we have composed a benchmark of 7 diverse and well-known multi-spectral
satellite datasets. Furthermore, this selection shows a variety of classification tasks
with presumably different degrees of difficulty and complexity. Table 1 presents
the characteristics of these datasets and summarizes the approach taken by their
corresponding authors, as well as its performance. Except for the EuroSAT,
So2Sat, and UC Merced datasets, the performance and approach showed in this
table is the state-of-the-art (SOTA) considered for our experiments. For the case
of these 3 datasets, better results are reported by the Google research team in [18]
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Table 1: Overview of available labelled datasets and the presented approach and
performance from the paper in which the dataset was introduced.

Dataset Satellite (Bands) Resolution Images Labels No. Perf(%) Approach

BigEarthNet Sentinel-2 (3/12) Med-High 590k (L) Land 43 67.59 CNN 3-Conv[25]
BrazilDam Sentinel-2 (13) High 1.92k (S) Dam? 2 94.1 DenseNet [6]
Brazilian
Coffee

SPOT (3) High 2.87k (S) Coffee?2 83.04 2 OverFeat net-
works [23]

Cerrado-
Savanna

RapidEye (3) High 1.31k (S) Veg. 4 90.5 Fine-tuning
AlexNet [19]

EuroSAT Sentinel-2 (3/13) High 27k (L) Land 10 98.57 pre-trained
ResNet [9]

So2Sat Sentinel-2 (3) High 376k (L) Land 17 61 ResNet [30]
UC Merced USGS(3) Very High 2.1k (S) Land 21 NA BoVW [28]

using ResNet models pre-trained with remote sensing datasets; thus their results
are the SOTA in Table 2.

The use of bands different from the RGB spectrum is a common practice
in remote sensing applications due to the additional information that can be
extracted from other spectral bands. A clear example is the creation of vegetation
indexes for different applications; such indexes involve non-RGB channels like
near-infrared. The number of samples available for training in remote sensing
real-world problems is usually small. The Coffee scenes, BrazilDam, and Cerrado-
Savanna datasets meet these characteristics. The Cerrado-Savanna scenes [19]
is one of the most challenging datasets for classification. As explained by the
authors, this is due to the high intraclass variance of the dataset, caused by
different spatial configurations and densities of the same vegetation type, as well
as its high inter-class similarity, caused by the similar appearance of different
vegetation species [19]. Moreover, from 1,311 samples included in this dataset,
73% correspond to the Arboreal vegetation.

4.2 Experimental setup

For all our experiments, the datasets were first randomly divided into train and
test sets. The test set was created by reserving 20% of all the available data
from Eurosat, BigEartNet, So2Sat, and UC Merced datasets. In the case of the
BrazilDam dataset, only the Sentinel fold from 2019 was extracted to study. The
Coffee scenes and Savanna datasets are originally divided into five folds. The first
four were used for training and the last fold is reserved for testing. Next, another
split of 80-20 was applied to the training set, assigning 20% of it for validation,
which is used for the AutoML system to tune hyperparameters and select the best
model. As most of the datasets are also used as a source for creating pre-trained
models, when evaluating RS-AK, we should be careful not to include pre-trained
blocks from the dataset that we want to use to test on, to avoid being exposed
to labels from the test set. As such, when evaluating on a given dataset, we
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remove the pre-trained blocks coming from this dataset from the search space.
To exclude the corresponding dataset, before running the task, we keep out this
option from the set of pre-trained models available for the rs_dataset_source
hyperparameter in the RS Block.

To be able to show the significance of the results we performed a Wilcoxon
signed-rank test, first ensuring that the data was not normally distributed and
considering a p value of 0.05. The outcomes presented in this paper are based
on the 10 trials experiments. Each trial, varying per dataset, ranges from few
minutes to around 6 hours. All the experiments were run on a compute cluster
using nodes with 4 GPUs (PNY GeForce RTX 2080TI). We delimited the memory
to 32 and 64 GB for the experiments. For better reproducibility, we have made
the source code of our experiments available in a public repository.3

5 Results

In this section we will answer the research questions that were stated in Section 4.

5.1 AutoML vs non-automated models

Table 2 summarizes the performance of the three different AutoML approaches on
the test set for the different datasets. The performance metric shown here, same as
the baseline papers, is the overall classification accuracy. For the BigEarthNet-rgb
dataset, we decided to change the performance metric to be able to compare with
the baseline. We achieved an F1-score of 67.84% using an ImageNet pre-trained
module, while the result presented in [25] is 67.59%. There is no benchmark
performance available for the full spectral version of EuroSAT. Resultant of our
experiments, we established one with 97.8% overall accuracy.

To answer Q1 we grouped the results of the three variants (V-AK, IMG-
AK, and RS-AK) and we took the maximum performance. In this way, we can
analyze the AutoML competency against the non-automated architectures. We
outperformed the literature in 5 out of 7 datasets, improving the state-of-the-
art result for So2Sat by a rate of 34.5%. Therefore, we can conclude that the
performance found by using AutoML systems can be competitive and even better
for some of these datasets.

5.2 AutoML variants and the different type of datasets

To address Q2, we group our datasets based on size, number, and type of
spectral bands (channels). We consider four small datasets. We have 2 datasets
with 13 channels (BrazilDam and EuroSAT-all) and 6 with 3 channels. The
3-channels are either RGB bands or near-infrared, green, and red bands. Note
that the EuroSAT-all dataset has an empty entry for the SOTA and RS-AK
approach. Since the pre-trained blocks from the 13-band dataset come all from
3 https://github.com/palaciosnrps/automl-rs-project
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Table 2: Performance on test dataset considering 10 runs4 of each of our experiments
and the state-of-the-art (SOTA) found in literature for each dataset. BigEarthNet
performance metric is F1-score, all the other datasets use overall accuracy. As asterisk (*)
represents statistically significant results.

Dataset Type SOTA V-AK IMG-AK RS-AK

BrazilDam Small-13 94.1[6] 89.09±.05 76.54±.13 85.57 ±.01
Coffee scenes Small-3 83.4[23] 86.18±.02 82.96±.04 88.84±.00*
Cerrado-Savanna Small-3 90.5 [19] 85.79±.01 84.33±.03 89.92±.01
UCMerced Small-rgb 99.61 [18] 99.62±.00 76.43±.13 91.19±.06

EuroSAT-all Large-13 - 95.38±.02 97.82±.00* -
EuroSAT-rgb Large-rgb 99.2[18] 99.18±.00 99.54±.00* 95.90±.01
So2Sat-rgb Large-rgb 63.25[18] 95.47±.00 97.80±.00* 76.92±.00
BigEarthNet-rgb Large-rgb 67.59 [25] 50.62±.00 67.84±.00 65.29±.00

the EuroSAT-all dataset, we could not fairly deploy this model (see experimental
setup). To facilitate comparisons with the SOTA found in literature and among
our experiments, in Table 2 the boldfaced entries indicate the best approach
among the 3 Auto-Keras variants. If the results are statistically significant to both
other approaches according to the Wilcoxon Signed rank test the entry is marked
with an asterisk (*). Please note that the paired comparison of second-best
approaches is not shown in the table.

The original Auto-Keras V-AK and the IMG-AK version performed well on
the EuroSAT-all dataset. In this case, IMG-AK performs better than V-AK.
For the case of the BrazilDam dataset, the initialization with a pre-trained
ImageNet model did not benefit the performance (see IMG-AK Table 2) and
it even decreased the average accuracy. This can be explained considering the
difference in the number of input channels (increasing the complexity) and the
size of the dataset. BrazilDam dataset has 13 channels; therefore, the direct use
of pre-trained models from ImageNet (3-channel) does not apply. Different from
EuroSAT, the number of labeled samples of BrazilDam is small. We can notice
an improvement using RS-AK but this is not enough to beat the baselines.

We can see that for the RGB channel datasets either V-AK or IMG-AK
approaches lead to the best performance. We achieved a large improvement for
the So2Sat-rgb dataset, compared to the work presented in [18]. Even though
the authors of [18] also used pre-trained models, the variety of model versions
and the more sophisticated hyperparameter tuning method provided by the
AutoML systems played an important role in achieving better performance for
this dataset. Conversely, the RS-AK variant obtained the best results for the
Coffee scenes and Cerrado-Savanna datasets. These two datasets are composed of
near-infrared, green, and red bands and the classification task differs from land
4 Except for BigEarthNet which had 3 runs



12 N.R Palacios Salinas, and M. Baratchi, and J.N. van Rijn, and A. Vollrath

cover identification. Based on that, we can infer that the 3-channel remote sensing
representations are an option for transfer learning when the target dataset is
different from the well-known RGB channel datasets. In the case of the 13-channel
representations used for the BrazilDam dataset, the results were not as successful
as what was obtained by manually designed architectures. The best-automated
model generated using the original Auto-Keras consists of convolutional blocks
without pre-trained modules, suggesting that for this dataset training from
scratch rather than using the available pre-trained models is a better approach.
Based on the results of the non-RGB datasets, we can expect that improving the
13-channel representations could lead us to better performance.

Considering the dataset size, we notice that comparing the initialization of G
with ImageNet pre-trained models (IMG-AK) versus the implementation of remote
sensing pre-trained models (RS-AK), RS-AK gives better performance for the
small datasets. Meanwhile, IMG-AK consistently results in better performance for
large datasets. This could be explained by (i) the amount of data available for pre-
training and (ii) the degree of similarity between the target and source domains
that both determine the quality of the transfer-learning technique [24,27,29].
Bigger datasets should produce better representations. But data similarity also
needs to be taken into account. It is possible that for the classes represented in
the small datasets the current remote sensing representations are enough and the
best performance is acquired, as the domain source is similar. However, in the
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FOR AGR HRB SHR

Precision 0.94 0.57 0.71 0.67

Recall 0.98 0.44 0.76 0.36

FOR AGR HRB SHR

Precision 0.90 0.00 0.61 0.83

Recall 0.99 0.00 0.71 0.23
Fig. 4: Comparison of confusion matrices for Cerrado-Savanna dataset. Classes are
Agriculture (AGR), Arboreal Vegetation (FOR), Herbaceous Vegetation (HRB) and
Shrubby Vegetation (SHR).
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case of the large datasets the quality of the representations generated with the
ImageNet dataset (being over 2 times bigger than the BigEarthNet dataset) gain
over the domain similarity. To improve the performance of classification for the
bigger datasets using RS-AK, more studies are needed and some of those should
investigate different fine-tuning strategies and improving the performance of the
BigEarthNet representation, which so far is the most promising one.

The overall accuracy only gives a general idea of the performance, for datasets
in which the samples per class are not balanced we need to look with more detail
into the performance achieved for each class to know if there is still any room
for improvement. We generate confusion matrices to inspect the performance
in more detail. Figure 4a is the confusion matrix of the best model found for
the Cerrado-Savanna dataset by using RS-AK. The classes with originally more
samples (FOR, HRB) are the classes with better performance. For the SHR and
AGR classes, the misclassification is still high. However, while comparing with the
results given by using a non-pre-trained model obtained with V-AK (Figure 4b),
we can appreciate a big improvement of 13% and 44% in the less representative
classes (SHR, AGR) acquired by the use of pre-trained blocks.

Table 3 summarizes the findings of the confusion matrices for datasets with
a major difference in the distribution of class samples. To measure the impact
of pre-trained blocks, in this table, we compare the performance achieved for
the minority and majority classes, with and without pre-training. We notice
that while using pre-trained blocks, the recall of the least representative classes
in all datasets increases between 7% and 44 % while the values for majority
classes slightly decrease between 1% and 9%. However, the overall accuracy is
impacted more by the majority class, ignoring the large improvements on the
minority classes. For remote sensing applications in which the class distribution
is non-balanced, this improvement for the minority class is important.

5.3 The remote sensing block RS-AK

In this section, we aim to address Q3. Figure 5 shows the frequency at which each
source model was selected as part of the customized block for each dataset. For the
Savanna Cerrado, Coffee scenes, and So2Sat datasets the most chosen pre-trained
model was BigEarthNet. So2Sat was the most selected model in the case of UC
Merced dataset and it tied with BigEarthNet for the EuroSAT dataset. These
results are expected due to the big size of the datasets but differ from the findings
of [18] who conclude that the RESISC-45 representation achieves the highest
performance. We found the RESISC-45 representation to achieve the best results
only when used for classification on the BigEarthNet dataset. Our experiments
differ in the way we are using a more efficient framework for tuning a large set
of possible hyperparameters (including learning rate, optimizer, regularization,
preprocessing) and selecting the design choices using an oracle combining random
search and a greedy algorithm (explained in Section 3.3) while the authors of [18]
optimize by sweeping only a fixed set of hyperparameters (learning rate, weight
decay, training schedules, preprocessing). The authors of [18] utilized the same
ResNet50V2 architecture [8] to fine-tune the remote sensing datasets using SGD
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Table 3: Recall value of the classes with most
and least samples for the non-balanced datasets.

Dataset Class non-
pre

pre-
trained

majority (73.6%) 0.99 0.98Cerrado
savanna minority (3.4%) 0.00 0.44

majority (12.3%) 0.95 0.99So2Sat minority (0.6%) 0.76 0.94

majority (57.9%) 0.95 0.86BrazilDam minority (42.1%) 0.78 0.85
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Fig. 5: Remote sensing pre-trained
models selected for the 3-channels
datasets during the 3rd experiment.

with momentum set to 0.9, in our approach the pre-trained model is only a block
that is part of the full architecture (see Figure 2). In [18], the comparison of
the different pre-trained models was made after finishing the fine-tuning using
partial (100, 1000) and full training samples; in our study, the selection of the
best-performed model was based on the validation set inside the Auto-Keras
framework. Considering that, we believe that our experiments have exploited the
potential of each dataset representation by using a more sophisticated framework
for the design of the architecture and the hyperparameter tuning; moreover, our
results are consistent with the expectations of the remote sensing community
about the promising applications of BigEarthNet on remote sensing tasks [25].

6 Conclusions and Future Work

We demonstrated how AutoML can be used to leverage the implementation
of deep learning models for satellite data tasks, outperforming some state-of-
the-art research results. We focused on classification tasks for multi-spectral
satellite datasets. We assessed the performance of the original Auto-Keras [12](V-
AK) and modified its search space to create two different variants of its image
classification task: (i) initializing the architecture to morph with a model pre-
trained on ImageNet (IMG-AK) and (ii) adding models pre-trained on well-known
remote sensing datasets (RS-AK) such as BigEarthNet and UC Merced. Our
experimental results on a varied selection of satellite datasets showed that for
3-channel datasets, current AutoML systems can beat state-of-the-art results for
land cover classification tasks. Analyzing the performance of the two Auto-Keras
variants initialized with pre-trained blocks (IMG-AK and RS-AK), we noticed
that RS-AK performed better for small datasets meanwhile IMG-AK was best
for relatively large datasets. Moreover, we showed that these pre-trained versions
exhibit superior performance on minority classes. The use of bands different from
RGB is a common practice in remote sensing due to the extra spectral information



AutoML for Satellite Data 15

that can be extracted from such bands. Besides, the amount of samples available
for training in remote sensing real-world problems is often small. Our remote
sensing block achieved the best results in such situations. This highlights the
usefulness of a customized satellite data search space in AutoML systems for
real-world datasets. The 13-channel pre-trained models can be downloaded and
used for other remote sensing tasks; due to the number of channels these models
are useful when working with Sentinel-2 satellite images. There is still room
for improvement in such remote sensing representations. In future work, we
will first aim at improving the transferability of the remote sensing pre-trained
models and work on covering the widely used image segmentation task. A more
sophisticated transfer learning method, deep meta-learning [10], or customized
techniques per dataset & task (based on [24,29]) integrated into AutoML systems
could improve the usage of remote sensing data representations. Based on our
experiments, we recommend the remote sensing practitioners to make use of the
existing open-source AutoML tools. By making this framework publicly available,
we enable the community to further experiment with relevant remote sensing
datasets and expect to expand the use of AutoML for different applications.
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