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Abstract. Automated algorithm configuration is a powerful and
increasingly widely used approach for improving the performance of algo-
rithms for computationally hard problems. In this work, we investigate
the impact of automated algorithm configuration on the scaling of the
performance of two prominent inexact solvers for the travelling salesman
problem (TSP), EAX and LKH. Using a recent approach for analysing
the empirical scaling of running time as a function of problem instance
size, we demonstrate that automated configuration impacts significantly
the scaling behaviour of EAX. Specifically, by automatically configuring
the adaptation of a key parameter of EAX with instance size, we reduce
the scaling of median running time from root-exponential (of the form

a · b
√

n) to polynomial (of the form a ·nb), and thus, achieve an improve-
ment in the state of the art in inexact TSP solving. In our experiments
with LKH, we noted overfitting on the sets of training instances used
for configuration, which demonstrates the need for more sophisticated
configuration protocols for scaling behaviour.

1 Introduction

The travelling salesperson problem (TSP) is a well known and widely studied
NP-hard problem. Given a set of cities and pair-wise distances between them,
the objective of the TSP is to find the shortest round trip that visits each
city exactly once. TSP algorithms are usually categorised into two kinds: exact
algorithms, which are guaranteed to find an optimal solution to any TSP instance
and can prove the optimality of the solution, and inexact algorithms, which
may find optimal solutions but cannot prove optimality. Presently, Concorde [2]
represents the long-standing state of the art among exact TSP algorithms. In
terms of inexact TSP algorithms, LKH [5,6] had been the best available solver
until the recent introduction of EAX [20], an evolutionary algorithm that makes
uses of an improved edge assembly crossover operator [19] for recombining short
tours. Empirical results show that EAX tends to perform better than LKH on
a broad range of TSP instances [20]; however, it has been shown recently that
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LKH is not dominated by EAX in that there are many instances for which LKH
finds optimal solutions more efficiently than EAX [14].

In theoretical computer science, time complexity is arguably the most impor-
tant concept for analysing and understanding the difficulty of problems and the
performance of algorithms. The time complexity of an algorithm is characterised
by the scaling of the time required for solving a problem instance as a func-
tion of instance size. In spite of the significant role that theoretical methods
play in understanding the complexity of problems and algorithms, many high-
performance algorithms are beyond the reach of such methods, and therefore
have to be studied using principled empirical approaches.

In this work, we investigate the question whether and to which extent the
empirical scaling of the running time of state-of-the-art inexact TSP solvers
EAX and LKH changes as the parameter settings of these solvers are optimised.
This question is particularly relevant as automated procedures for optimising
parameter settings (so-called algorithm configurators) are now readily available
and used increasingly frequently in the development of state-of-the-art solvers for
computationally challenging problems as well as for customisation of such solvers
for particular application contexts (see, e.g., [1,3,10,11]). To study the scaling
behaviour of EAX and LKH, we use an advanced empirical scaling analysis
approach that challenges automated fitted scaling models by extrapolation and
uses bootstrap re-sampling to statistically assess scaling models [7,18]. Our main
findings are as follows:

– automated algorithm configuration can significantly improve the scaling
behaviour of EAX, and by adapting the population size with instance size,
the empirical time complexity of EAX is reduced from root-exponential (of
the form a · b

√
n) to polynomial (of the form a · nb);

– the state of the art in inexact TSP solving can thus be improved: for instance,
we reduce the median running time of EAX for solving instances of size n =
4500 (three times larger than those used for training the configurator) by
about a factor of 1.13;

– automated algorithm configuration can significantly impact the scaling of
LKH, but configuring LKH suffers from overfitting that leads to improved
running times for small instances but worse performance for larger ones.

In the remainder of this work, we first describe the benchmark instances, algo-
rithms and methods that we use in our experiments (Sect. 2); next, we present
in detail our results (Sect. 3); and finally, we draw some general conclusions and
briefly outline avenues for future work (Sect. 4).

2 Instances, Algorithms and Methods

2.1 Benchmark Instances

2D Euclidean TSP instances, i.e., instances where the locations to be visited
correspond to points in the Euclidean plane, often occur in practical applications.
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A particularly widely studied type of 2D Euclidean TSP instances are obtained
by placing cities uniformly at random in a square. The so-called RUE instances
thus obtained are known to have properties similar to a broad range of other 2D
Euclidean instances and represent a challenging, widely used benchmark for TSP
solvers [12,13]. In the following, we use the benchmark sets of RUE instances
generated and studied earlier by Hoos and Stützle [8,9]. These instances were
generated using the portgen generator from the 8th DIMACS implementation
challenge for TSP, which places n points in a 100 000×100 000 square uniformly
at random and computes the Euclidean distances between pairs of points. There
are 1000 instances for each instance size n = 500, 600, . . . , 1500, 2000 and 100
instances for each n = 2500, 3000, . . . , 4500.

2.2 Inexact Algorithms for TSP

The inexact TSP solvers we selected for our study are the latest versions of LKH
and EAX. LKH [5,6], Helsgaun’s variant of the Lin-Kernighan TSP heuristic,
is a variable-depth search algorithm that performs sophisticated heuristically
guided local search moves based on sequences of five or more edge exchanges.
It restarts the local search based on perturbations of previously found solu-
tions using various strategies. LKH represents a milestone in the development
of inexact TSP solvers and is arguably the most prominent method for finding
finding high-quality solutions to challenging TSP instances. In this work, we
used LKH version 2.0.7, keeping all parameters at their default values, except
for PATCHING A and PATCHING C, which we set to 2 and 3, respectively, to
include patching of cycles in searching for improving moves. These values were
also adopted in the example parameter file for solving TSPLIB instance pr2392
and used in earlier work studying LKH [4].

EAX [20] is a recent evolutionary algorithm that makes use of improved
variants of the edge assembly cross-over recombination operator. It also exploits
diversity preservation techniques and initialises the initial population by local
optimisation. For our experiments, we used EAX with default parameter settings,
namely with population size set to 100 and the number of offsprings generated
per recombination attempt set to 30.

For our analyses, we used the same modified implementations of LKH and
EAX as Dubois-Lacoste et al. [4], who enhanced the original solvers with a restart
mechanism to achieve improved performance. This type of modification is a sim-
ple, yet effective means for overcoming stagnation behaviour often encountered
in stochastic local search algorithms [21]; in the case of LKH and EAX, the
added restart mechanism helps considerably in finding optimal solutions more
efficiently.

2.3 Algorithm Configurator

To automatically configure the parameters of EAX and LKH, we used SMAC,
a prominent, state-of-the-art algorithm configurator [10]. SMAC is based on a
sequential model-based optimisation procedure that builds and iteratively refines
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a statistical model mapping parameter configurations of a given algorithm to
performance predictions. This empirical performance model is used to select
promising configurations in each iteration of SMAC; these configurations are
then run, and the performance values thus observed are used to update the
model. The standard version of SMAC, as used in our experiments for configuring
EAX and LKH, uses random regression forests to model performance.

2.4 Scaling Analysis

We use a recent boostrap approach for studying the empirical scaling of algo-
rithm performance with input size [7]. It automatically fits scaling models to a
set of support data and then challenges these models by testing the performance
predictions obtained from them for larger input sizes. Most importantly, it uses a
re-sampling approach to assess the models and their predictions in a statistically
meaningful way. This approach has been used to characterise the scaling behav-
iour of state-of-the-art exact and inexact TSP algorithms [4,8] and to study the
empirical time complexity of state-of-the-art solvers for the propositional sat-
isfiability problem (SAT) [18]. In this latter work, Mu and Hoos extended the
approach to compare scaling models based on bootstrap confidence intervals for
predicted and observed running times and to assess differences in the scaling
models for two given algorithms. To perform this type of scaling analysis for
different configurations of EAX and LKH, we used the ESA system [17].

2.5 Computing Environment and Experimental Setup

For the automatic configuration of EAX and LKH, we used a standard protocol,
according to which we performed 25 independent runs of SMAC for each scenario
and selected the best parameter configuration according to the performance on
the given set of training instances for scaling analysis. The cut-off time for each
run of the algorithm being configured and the overall time budget for each run of
SMAC differ between our experiments for EAX and LKH, and we report them
as we discuss each experiment.

For our scaling analysis, we considered three parametric models:

– Exp [a, b] (n) = a · bn (2-parameter exponential);
– RootExp [a, b] (n) = a · b

√
n (2-parameter root-exponential);

– Poly [a, b] (n) = a · nb (2-parameter polynomial).

Models were fitted to performance observations in the form of medians of the
distributions of running times over sets of instances for given n. Compared to
the mean, the median has two advantages: it is statistically more stable and
immune to the presence of a certain number of timed-out runs. We performed
10 independent runs per instance and used the median over those 10 running
times as the running time for the respective instance. Our approach could be
easily extended to other scaling models, but, as we will show in the following,
these models jointly characterise the scaling observed in all our experiments, and,
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thus, we saw no need to consider different or more complex models. For fitting
parametric scaling models to observed data, the ESA system we used for scaling
analysis uses the non-linear least-squares Levenberg-Marquardt algorithm.

Following previous work [4,7,8], we computed 95% bootstrap confidence
intervals for the performance predictions obtained from our scaling models, based
on 1000 bootstrap samples per instance set and 1000 automatically fitted vari-
ants of each scaling model. For collecting running time data for our TSP solvers,
we used the Compute Canada/Westgrid cluster orcinus (DDR), each node of
which is equipped with two 3.0 GHz Intel Xeon E5450 quad-core CPUs and
16 GB of RAM, running 64-bit Red Hat Enterprise Linux Server 5.3.

3 Experimental Results

3.1 Treatment of Running Time Data

EAX and LKH cannot prove the optimality of the solutions they find; in our
experiments, they therefore need access to the optimal solution qualities of the
instances we consider, in order to measure the running time required to reach
optimal solutions and to terminate runs once an optimal solution has been found.
The optimal solutions to the RUE instance we used have been determined in an
earlier study of the scaling of Concorde [8]. However, Concorde did not solve all
instances within the allotted time in that study. To make more instances avail-
able for EAX and LKH to solve, we ran Concorde on the previously unsolved
instances with different seeds and/or on faster machines. In addition, we per-
formed multiple runs of EAX and LKH on those instances that were then still not
solved by Concorde. For some of these instances, EAX and LKH found the same
best solution in every run; we conjecture these solutions to be optimal and we
refer to them as pseudo-optimal. For our analysis, we use data for both optimal
and pseudo-optimal instances, but we note that qualitatively similar conclusions
are obtained when excluding instances with pseudo-optimal solutions.

We took special care in dealing with the eight instances for which we did
not succeed in establishing pseudo-optimal solutions (two of size 4000 and six
of size 4500). As reported by [4], the pairwise performance correlations between
EAX, LKH and Concorde are very low, and the instances for which we were
unable to determine even pseudo-optimal solutions may still be easy for one
of the inexact solvers. Thus, they are treated using an optimistic/pessimistic
estimation, as done by [4]. More precisely, we treat these instances as easy with
smaller-than-median running times in the optimistic estimation, and as timed-
out instances in the pessimistic treatment. This gives us intervals for the median
running times on those instance sizes for which some instances are lacking even
pseudo-optimal solutions (n = 4000 and n = 4500). We note that these intervals
are not confidence intervals, but bounds on the median running times, as they
must contain the true median running times.
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3.2 Scaling of EAX and LKH with Default Parameters

We first repeat the scaling analyses for EAX and LKH of [4,16] with new sets of
running time data collected using our machines. This ensures that the compar-
isons described below are not affected by differences between the machines used.
The results we thus obtained are qualitatively similar to those reported in [4,16].
More precisely, we found that the scaling of EAX is reasonably well described
by a root-exponential model, while that of LKH is bounded from below and
above by a polynomial and a root-exponential model, respectively. We report
detailed results for EAX, labelled EAX (default), including the best fitted mod-
els and the bootstrap confidence intervals for the model parameters, in Tables 1
and 2, respectively. Analogous results for LKH, labelled LKH (default), can be
found in Tables 6 and 7. Comparing our models to those reported in [16], our
new results lead to a larger value of b in the root-exponential model for EAX,
while large overlaps are seen in the bootstrap confidence intervals for b in the
root-exponential and polynomial models of LKH, respectively.

3.3 Impact of Automated Configuration on Scaling of EAX

Next, we automatically configured the two parameters exposed by EAX: Npop

(fNumOfPop in the source code), the population size, and Nch (fNumOfKids
in the source), the number of offsprings generated per recombination attempt,
which also affects the way EAX switches between different search strategies.
The default values for these parameters are Npop = 100 and Nch = 30. In
our experiments, we enforced a cut-off of one CPU day for each SMAC run.
To ensure that SMAC could perform at least 1000 runs of EAX, we further
enforced a cut-off time of 86 s for each EAX run. We note that even though EAX
has only two parameters to configure, which makes the use of SMAC seemingly
excessive, we still chose to use SMAC, because we saw no harm in doing so
and because this allowed us to use the same configuration protocol as for LKH,
whose configuration space is much larger. After configuration on a set of RUE
instances with n = 1500, SMAC determined a parameter setting with Npop (167
vs 100) and smaller Nch (20 vs 30).

Table 1. Most accurate scaling models (according to RMSE on challenge data) for
the median running times required by different variants of EAX for finding optimal
solutions to RUE instances and corresponding RMSE values (in CPU sec). EAX (con-
figured) uses a parameter configuration determined by SMAC, and EAX (configured +
var pop) additionally determines Npop as a linear function of instance size. All models
were fitted using performance data obtained on RUE instances of size 500...1500 and
challenged by performance data for instances of size 2000...4500.

Solver Model RMSE
(support)

RMSE
(challenge)

EAX (default) RootExp. 0.086254 × 1.1439
√

n 0.12518 [73.961, 116.47]

EAX (configured) RootExp. 0.19910 × 1.1193
√

n 0.22625 [22.278, 32.899]

EAX (configured + var pop) Poly. 1.6194 × 10−8 × n2.8364 0.027288 [37.049, 44.847]
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Table 2. 95% bootstrap confidence intervals for the parameters of the scaling models
from Table 1.

Solver Model Confidence interval for a Confidence
interval for b

EAX (default) RootExp. [0.08287, 0.08991] [1.1424, 1.1452]

EAX (configured) RootExp. [0.19024, 0.20586] [1.1182, 1.1208]

EAX (configured + var pop) Poly.
[
1.3424 × 10−8, 1.9355 × 10−8

]
[2.8110, 2.8623]

We then investigated the scaling behaviour of EAX with these optimised
parameters. The most accurate scaling model, according to the root mean
squared error (RMSE) on challenge data (i.e., instance sets not used for model
fitting), is shown in Table 1, where this version of EAX is labelled EAX (con-
figured). Similar to results for the default version of EAX, a root-exponential
model characterises the scaling most accurately, while the best exponential and
polynomial models can be rejected with 95% confidence. We cross-checked the
predictions of the root-exponential model for the default version of EAX against
the observed running times for the optimised version of EAX. Our results, illus-
trated in Fig. 1, clearly show that even though the optimised version loses some
performance on small instances, the performance on larger instances is signifi-
cantly improved. Thus, the original model over-estimates the running times for
the optimised version of EAX. In addition, from the confidence intervals of the
model parameters, as shown in Table 2, there is evidence that algorithm con-
figuration significantly improves the scaling of EAX, since it reduces the value
of b in the 2-parameter root-exponential models from 1.144 to 1.119, with non-
overlapping confidence intervals ([1.1424, 1.1451] vs. [1.1182, 1.1208]).

In preliminary experiments, we noted that the performance for larger
instances could be improved by using larger population sizes, Npop. Furthermore,
the README file distributed with the source code of EAX recommends to use
Npop = 300 for instances with n > 10 000 cities. We therefore considered the
possibility of increasing Npop with n and performed an experiment to quantify
the impact of varying the population size as a simple linear function of n, i.e.,

Npop(n) := α · n.

To obtain an estimate for α, we divided the optimised value of Npop by
the instance size n = 1500 at which this setting was obtained, resulting in
α = 0.111. We then analysed the empirical scaling behaviour of EAX with
Npop(n) detemined in this manner and the optimised value of Nch = 20 from our
previous experiment and refer to this setting as EAX (configured + var pop). The
most accurate scaling model is presented in Table 1, with bootstrap confidence
intervals for the model parameters shown in Table 2. To our surprise, the best
accuracy is now achieved by a polynomial model, while the best exponential
and root-exponential models are rejected with 95% confidence, as illustrated in
Fig. 2. Furthermore, from Fig. 1, it is obvious that this also stands in contrast
with the scaling behaviour of EAX (default).
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Fig. 1. Most accurate scaling models for the median running times required by three
variants of EAX for finding optimal solutions to RUE instances and confidence intervals
for model predictions, along with observed performance data; see Tables 1 and 2 for
details.

As a result of its improved scaling behaviour, the optimised version of EAX
significantly improves the previous state of the art in inexact TSP solving, as
represented EAX (default); this can also be seen from the respective observed
and predicted running times in Table 3.

We also compared this optimised version of EAX with EAX (default) on
solving a set of TSPLIB instances with n between 500 and 4500, based on median
running times determined from 10 independent runs per instance. Our results
indicate that EAX (configured + var pop) performs better in some cases, but
worse in others, and overall does not achieve significantly improved performance.
We believe that this is primarily as most TSPLIB instances are actually easier to
solve than RUE instances of a similar size, and smaller population size values are
sufficient to solve these instances. We note that for the two TSPLIB instances
that are harder than similarly-sized RUE instances, EAX (configured + var
pop) does perform significantly better than EAX (default). Two other TSPLIB
instances were not solved by EAX with any of the two parameter settings.

In addition, we compared LKH with EAX (configured + var pop). As illus-
trated in Fig. 3, the median running times of EAX (configured + var pop) for
n = 4500 show substantially less variability than those of LKH (analogous obser-
vations hold for other n); furthermore, although EAX performs better than
LKH on aggregate, there are many instances on which the converse is true.
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Fig. 2. Scaling models for the median running times required by EAX (configured +
var pop) for finding optimal solutions to RUE instances and confidence intervals for
predictions obtained from these models, along with observed median running times. All
models were fitted using performance data obtained on RUE instances of size 500...1500
and challenged by performance data for instances of size 2000...4500.

Table 3. Improvement of the state of the art in inexact TSP solving, as demonstrated
by the bootstrap confidence intervals for observed (for n = 4500) and predicted (for
n = 6000, 10000) median running times for the default and optimised (configured +
var pop) versions of EAX.

n Median running time for EAX 75th percentile of running time for EAX

Default Configured
+ var pop

Speedup Default Configured
+ var pop

Speedup

4500 [364.1, 685.6] [404.8, 478.5] ≈1.2× [685.6, 2350.3] [482.8, 573.8] ≈ 2.9×
6000 [2711, 3026] [809, 880] ≈3.4× [5052, 9908] [873, 1090] ≈7.6×
10000 [54511, 64275] [3401, 3800] ≈16.5× [132120, 364836] [3613, 4826] ≈58.9×

We performed an analogous performance comparison for the previously men-
tioned set of TSPLIB instances. Both EAX and LKH fail to solve two of the
28 instances, and LKH fails to solve one instance solved by EAX. As seen in
Fig. 3, once again, EAX (configured + var pop) performs better on aggregate,
but LKH is considerably faster in solving several of these instances and therefore
still contributes substantially to the state of the art in inexact TSP solving.

Analysing the performance results for EAX (configured + var pop) in more
detail, we found that by increasing the population size for large instances, the
success probability of each restart segment (i.e., the part of a run between two
restarts, between initialisation and the first restart and between the last restart
and termination) is significantly increased. Figure 4, showing the distributions
of the success probabilities of restart segments from all runs of EAX on RUE
instances with n = 1500 and 4500, clearly illustrates this finding. Increasing
population size, however, also increases the running time of the restart segments.
The two effects can be clearly seen from medians of success probabilities and
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Fig. 3. Running time required by EAX (configured + var pop) vs the default version
of LKH for solving RUE instances of size n = 4500 (left) and a set of TSPLIB instances
(right); all running times are reported in CPU seconds. For RUE instances, the median
running time for EAX and LKH lies within [430.8, 454.8] and [870.3, 1131.1], respec-
tively. For TSPLIB instances, the median running time for EAX and LKH is 6.6 and
13.0, respectively.

Table 4. Median success probability and running time per restart segment of EAX
(default) and EAX (configured + var pop) on sets of RUE instances.

n Success probability per restart segment Running time per restart segment

Default Configured + var pop Default Configured + var pop

500 1.00 0.77 1.524 0.930

1500 0.77 0.91 16.265 17.991

2500 0.53 0.91 37.986 77.950

3500 0.30 0.91 70.406 218.735

4500 0.16 1.0 119.231 450.940

times to restart shown in Table 4. Hence, there is a tradeoff between the two
effects. To achieve better scaling for EAX, it is critical to set the population size
at the right point balancing the two effects.

To summarise, our experiments indicate that adapting the population size,
Npop, with instance size can significantly improve the scaling behaviour of EAX
on RUE instances. After optimising the adaptation mechanism using automated
configuration of α (together with Nch), the scaling of EAX is best captured by
a polynomial model, and the resulting version of EAX represents a significant
improvement in the state of the art for inexact TSP solving. In particular, we
observed an ≈1.13× improvement in the median running time for EAX and even
more substantial improvements for higher percentiles when solving instances
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Fig. 4. Distributions of the success probability of each restart segment within EAX
solving RUE instances with n = 1500, 4500. (For details, see text.)

of size n = 4500. Based on our scaling analysis, we expect the performance
advantage of EAX (configured + var pop) over EAX (default) to grow further
with instance size.

3.4 Impact of Automated Configuration on Scaling of LKH

We also attempted to configure LKH for improved scaling of running time. With
over 40 parameters, LKH is arguably much more configurable than EAX. Out
of these parameters, some require additional information, such as initial tours
or sub-division of a given TSP instance, which are not available in our case.
Thus, we selected the 21 parameters (12 numerical and 9 categorical) listed
in Table 5, which we could configure without additional information or code
modification. We used the same default values as specified in the user guide,
except for PATCHING A and PATCHING C, as mentioned in Sect. 2.2. The
ranges or sets of settings for all parameters were determined based on the user
guide; when in doubt, we used large ranges to create a large configuration space
for SMAC to explore. We enforced a cut-off of 2 CPU days for each SMAC run.
To ensure that SMAC could perform at least 1000 runs of LKH, we further
enforced a cut-off time of 172 s for each LKH run.

We first configured LKH analogously to EAX, that is, we performed 25 SMAC
runs using a set of 100 RUE instances of size n = 1500 randomly selected from
the full set, and selected from the 25 configurations the one with the best per-
formance across the 100 training instances. The resulting configuration achieved
improved performance only for instances up to size 2000, but did not scale to
larger instance sizes, suggesting overfitting on smaller instance sizes.

Next, we attempted to improve the scaling performance by following a pro-
tocol proposed by Styles et al. [23]. More precisely, we performed 25 SMAC runs
to configure LKH using a set of 100 instances with instance size n = 1000 and
selected the best configuration based on performance on a set of 50 validation
instances selected uniformly at random from the the set of RUE instances of



168 Z. Mu et al.

Table 5. List of numerical (N) and categorical (C) parameters for LKH considered in
our configuration experiments.

Parameter name Type Domain

ASCENT CANDIDATES N [10, 500]

BACKBONE TRIALS N [0, 5]

BACKTRACKING C {YES, NO}
CANDIDATE SET TYPE C {ALPHA, DELAUNAY, NEAREST-NEIGHBOR,

QUADRANT}
EXTRA CANDIDATES N [0, 20]

EXTRA CANDIDATE SET TYPE C {NEAREST-NEIGHBOR, QUADRANT}
GAIN23 C {YES, NO}
GAIN CRITERION C {YES, NO}
INITIAL STEP SIZE N [1, 5]

INITIAL TOUR ALGORITHM C {BORUVKA, GREEDY, MOORE, NEAREST-
NEIGHBOR, QUICK-BORUVKA, SIERPINSKI,
WALK}

KICK TYPE N {0} ∪ [4, 20]

KICKS N [0, 5]

MAX CANDIDATES N [3, 20]

MOVE TYPE N [2, 20]

PATCHING A N [1, 5]

PATCHING C N [1, 5]

POPULATION SIZE N [0, 1000]

RESTRICTED SEARCH C {YES, NO}
SUBGRADIENT C {YES, NO}
SUBSEQUENT MOVE TYPE N {0} ∪ [2, 20]

SUBSEQUENT PATCHING C {YES, NO}

size n = 1500. We then analysed the scaling of LKH with the configuration
such obtained and found a root-exponential model to fit best, with a value of
b very similar to that obtained for the default configuration (1.2077 vs 1.2067).
Based on these scaling models and observed running times, we determined that
this configuration performs better than the default configuration of LKH up to
n = 3500, but not beyond. This indicates that using the modified configura-
tion protocol reduces, but does not completely eliminate overfitting on smaller
instance sizes.

After inspecting the parameter settings obtained from the two configu-
ration experiments described so far in more detail, we concluded that they
help LKH to more carefully check possible local search steps in a way that
is effective only for smaller TSP instances. Based on this observation, we fixed
KICKS, MOVE TYPE, POPULATION SIZE and RESTRICTED SEARCH to
their default values and performed another round of configuration following the
protocol by Styles et al.. Results from the analysis of the scaling behaviour of
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Table 6. Most accurate (bounding) scaling models for the median running times
required by variants of LKH for finding optimal solutions to RUE instances and cor-
responding RMSE values (in CPU sec). LKH (scaling configuration) uses parameter
settings obtained using SMAC and the protocol by Styles et al.; LKH (scaling con-
figuration w/fewer para) uses a configuration obtained analogously using a reduced
parameter space (for details, see text). All models were fitted using performance data
obtained on RUE instances of size 500...1500 and challenged by performance data for
instances of size 2000...4500.

Solver Model RMSE
(support)

RMSE
(challenge)

LKH (default) RootExp. 0.010186 × 1.2067
√

n 0.34977 [859.21, 968.83]

Poly. 8.2328 × 10−10 × n3.2255 0.30801 [190.79, 293.36]

LKH (scaling configuration) RootExp. 0.0066414 × 1.2077
√

n 0.13341 [533.13, 1165.9]

LKH (scaling configuration w/fewer para) RootExp. 0.0048097 × 1.2010
√

n 0.15081 [1394.8, 2090.6]

Table 7. 95% bootstrap confidence intervals for the parameters of the scaling models
from Table 6.

Solver Model Confidence interval for a Confidence

interval for b

LKH (default) RootExp. [0.0047391, 0.01955] [1.1836, 1.2333]

Poly.
[
4.3312 × 10−11, 1.0215 × 10−8

]
[2.8684, 3.6341]

LKH (scaling configuration) RootExp. [0.0040961, 0.010936] [1.1908, 1.2245]

LKH (scaling configuration w/fewer para) RootExp. [0.0027107, 0.008814] [1.1802, 1.2210]
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Fig. 5. Scaling models for default LKH and optimised LKH (scaling configuration
w/fewer para) from Table 6, along with observed performance data and bootstrap con-
fidence intervals for predicted performance obtained from the scaling models.

the configuration of LKH thus obtained are shown in Tables 6 and 7. We note
that the confidence interval for b in the root-exponential model largely overlaps
with that for LKH with default parameters ([1.1802, 1.2210] vs [1.1836, 1.2333]).
Again, the root-exponential model gives the best fit (according to RMSE on chal-
lenge data), and fits the running times well up to n = 4000, as seen in Fig. 5. The
value of b = 1.2010 in this model is very similar to that for the default version
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of LKH (b = 1.2077), with a large overlap in the respective confidence intervals
([1.1802, 1.2210] vs [1.1908, 1.2245]). Comparing the running times and scaling
models between these two configurations of LKH, as illustrated in Figure 5, we
noticed that the new configuration decreases the running times for n ≤ 4000, but
performs worse for n = 4500. In other words, the Styles et al. protocol applied
to our reduced parameter space seems to overfit less, but still suffers from some
overfitting to the instance sizes used for configuration.

4 Discussion

In this work, we investigated the impact of parameter settings and automated
configuration on the scaling of inexact TSP algorithms. For EAX, algorithm con-
figuration helps improve the scaling, which can be further improved by adapting
the population size with instance size. In particular, we achieved an improvement
in the median running time for EAX on RUE instances of size n = 4500 of a
factor of ≈1.13 and of a factor of ≈1.87 for the 75th percentile of the distribution
of running times over sets of RUE instances; based on our scaling models, we
expect the improvement to be even more significant for larger instances.

Surprisingly, when adapting the population size with instance size, we obtain
polynomial scaling of the median running time with instance size, compared to
root-exponential scaling for the default configuration of EAX. To the best of
our knowledge, this is the first time, polynomial scaling of the empirical median
running time for an inexact TSP solver has been reported for a widely used set
of challenging 2D Euclidean TSP instances.

Overall, our work complements earlier work on the scaling of state-of-the-art
TSP solvers [4,8,9] and indicates potential for improvements in scaling behav-
iour through automated algorithm configuration and through setting certain
parameters in dependence of features of the problem instance to be solved.

We see significant potential in developing automated configuration proce-
dures for better scaling behaviour. Such procedures can make algorithm config-
uration more applicable to real-world situations, as problem instances from the
target distribution may take a long time to solve. This poses a substantial chal-
lenge to existing algorithm configuration techniques, which require many runs of
the target algorithms with different parameter settings. There is some previous
work on configuration protocols addressing this challenge [15,22,23], but based
on the findings for LKH reported in our study here, we believe that there is the
need (and, indeed much room) for further improvements. In particular, we see
the tight integration of empirical scaling analysis into the configuration process
as a promising avenue for future research in this area.
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4. Dubois-Lacoste, J., Hoos, H.H., Stützle, T.: On the empirical scaling behaviour of
state-of-the-art local search algorithms for the Euclidean TSP. In: Proceedings of
GECCO 2015, pp. 377–384. ACM Press (2015)

5. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

6. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

7. Hoos, H.H.: A bootstrap approach to analysing the scaling of empirical run-time
data with problem size. Technical report, TR-2009-16, Department of Computer
Science, University of British Columbia (2009)
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