
Machine Learning manuscript No.
(will be inserted by the editor)

Hyperparameter Importance and Optimization of
Quantum Neural Networks Across Small Datasets

Charles Moussa · Yash J. Patel · Vedran
Dunjko · Thomas Bäck · Jan N. van Rijn ·

the date of receipt and acceptance should be inserted later

Abstract As restricted quantum computers become available, research focuses
on finding meaningful applications. For example, in quantum machine learning, a
special type of quantum circuit called a quantum neural network is one of the most
investigated approaches. However, we know little about suitable circuit architectures
or important model hyperparameters for a given task. In this work, we apply
the functional ANOVA framework to the quantum neural network architectures
to analyze which of the quantum machine learning hyperparameters are most
influential for their predictive performance. We restrict our study to 7 open-
source datasets from the OpenML-CC18 classification benchmark, which are small
enough for simulations on quantum hardware with fewer than 20 qubits. Using this
framework, three main levels of importance were identified, confirming expected
patterns and revealing new insights. For instance, the learning rate is identified
as the most important hyperparameter on all datasets, whereas the particular
choice of entangling gates used is found to be the least important on all except
for one dataset. In addition to identifying the relevant hyperparameters, for each
of them, we also learned data-driven priors based on values that perform well
on previously seen datasets, which can then be used to steer hyperparameter
optimization processes. We utilize these priors in the hyperparameter optimization
method hyperband and show that these improve performance against uniform
sampling across all datasets by, on average, 0.53%, up to 6.11%, in cross-validation
accuracy. We also demonstrate that such improvements hold on average regardless
of the configuration hyperband is run with. Our work introduces new methodologies
for studying quantum machine learning models toward quantum model selection in
practice. All research code is made publicly available.

Keywords Hyperparameter importance · Quantum Neural Networks · Quantum
Machine Learning · Hyperparameter Optimization.

C. Moussa, Y. J. Patel, V. Dunjko, T. Bäck, J. N. van Rijn
LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
E-mail: c.moussa@liacs.leidenuniv.nl

2 Charles Moussa et al.

1 Introduction

Quantum computers have the potential to efficiently solve computational prob-
lems believed to be intractable for classical computers, such as factoring [66] or
simulating quantum systems [18]. In the current noisy intermediate-scale quantum
era [55], fault-tolerant quantum algorithms face many limitations (e.g., the number
of qubits, decoherence, etc.). Consequently, hybrid quantum-classical algorithms
were introduced to target practical applications under these constraints, such
as chemistry [45], combinatorial optimization [16], and machine learning [2]. In
exceptional cases, quantum models can exhibit exponential advantages over clas-
sical ones [30,38,59,70]. More theoretical works also study these models from a
generalization perspective [11]. Quantum neural networks are quantum circuits
with adjustable parameters that have been used to tackle regression [43], classifica-
tion [23], generative adversarial learning [76], and reinforcement learning tasks [30,
68].

However, the value of such quantum models is still to be delved into in any larger-
scale methodical fashion and on real-world datasets [22,54]. Presently, standard
practices from machine learning, such as large-scale benchmarking, hyperparameter
importance, and analysis, have been challenging tools to use in the quantum
community [63]. Numerous ways to design quantum circuits for machine learning
tasks call for hyperparameter optimization and other methods from the field of
automated machine learning [28]. However, more intuition is needed on which
quantum machine learning hyperparameters are important to optimize and which
are less important for efficient hyperparameter optimization [8,17,44].

In order to broach this question, we employ functional ANOVA [26,69], a sta-
tistical framework which can be used for assessing hyperparameter importance. To
obtain more general results, we follow and extend the methodologies provided by [56,
65], who employed functional ANOVA across datasets. Our work distinguishes
itself from the previous work by applying it to the challenging case of simulated
quantum neural networks, which come at a significantly increased computational
cost compared to the conventional models.

We selected a subset of several low-dimensional datasets from the OpenML-
CC18 benchmark [7] matching the current scale of simulations of quantum hardware.
We defined a configuration space consisting of ten hyperparameters identified based
on a literature study. We then apply the functional ANOVA framework across
datasets and extend it with a critical verification step of the internal surrogate
models. This results in a ranking of the importance of hyperparameters across
datasets. We also perform an extensive experiment to verify whether the importance
ranking of hyperparameters holds in practice. Our main findings align with existing
knowledge and reveal new insights. For instance, setting the learning rate well is
found to be the most critical hyperparameter, whereas the particular choice of
entangling gates used is identified as the least important on all except one dataset.

Finally, we demonstrate the usefulness of our insights on hyperparameter impor-
tance within a hyperparameter optimization procedure. Following the methodology
used in [56], we learned data-driven priors based on values that achieve good
performance on previously seen datasets for each hyperparameter. We utilize these
priors in the hyperparameter optimization method hyperband, and compare it to
the original version of hyperband, which samples hyperparameter configurations
uniformly across the input space. We show that the data-driven priors improve

Title Suppressed Due to Excessive Length 3

performance by 0.53%, up to 6.11%. Extending from [56], we also demonstrate that
such improvements hold on average regardless of the configuration of hyperband.
Indeed, across various instantiations of hyperband considered in our study, we
improve over the original version of hyperband in 77.2% of cases when sampling
according to the data-driven priors.

This paper is an invited extended edition to the original version [48], including
the additional methodology and experiments on the data-driven priors for quantum
neural networks. We make all of our results and experimental scripts publicly
available.1

2 Background

This section introduces the necessary background on functional ANOVA, quan-
tum computing, and quantum circuits with adjustable parameters for supervised
learning.

2.1 Functional ANOVA

When applying a new machine learning algorithm to solve a specific task, it is
not known a priori which hyperparameters to optimize, what are the good ranges
for these hyperparameters to sample from, and which values in these user-defined
ranges are suitable to get high performance. Several techniques exist that assess
hyperparameter importance, such as forward selection [27], ablation analysis [4],
local parameter importance [6], and functional ANOVA [26,60]. These techniques
are typically used as a post-hoc procedure, stating which hyperparameters were
most influential after executing the hyperparameter optimization process. The
work of [56] showed that these findings could generalize across datasets.

We first introduce the relevant notation, based on the work by Hutter et al. [26].
Let A be a machine learning algorithm that has n hyperparameters with domains

Θ1, . . . , Θn and configuration space Θ = Θ1 × . . .×Θn. An instantiation of A is a
vector θ = {θ1, . . . , θn} with θi ∈ Θi, for all i ∈ [n] = {1, . . . , n} (this is also called
a configuration of A). A partial instantiation of A is a vector θU = {θi1 , . . . , θik}
with a subset U = {i1, . . . , ik} ⊆ N = [n] of the hyperparameters fixed, and the
values for other hyperparameters unspecified. Note that θN = θ.

Functional ANOVA is based on the concept of a marginal of a hyperparameter,
i.e., how a given value for a hyperparameter performs, averaging over all possible
combinations of the other hyperparameters’ values. The marginal performance
âU (θU) is described as the average performance of all complete instantiations θ
that have the same values for hyperparameters that are in θU . As an illustration,
Fig. 1 shows marginals for two hyperparameters of a quantum neural network and
their union (see also Fig. 9 in Appendix A). As the number of terms to consider
for the marginal can be very large, the authors of [26] used tree-based surrogate
regression models to calculate the average performance efficiently. Surrogate
models operate on the meta-level: they take as input the hyperparameter values
of a certain configuration, and map this to a given performance score of this

1 See: https://github.com/chMoussa/prior_qnn_surrogate_search.

https://github.com/chMoussa/prior_qnn_surrogate_search

4 Charles Moussa et al.

2 4 6 8 10
Depth

0.70

0.72

0.74

0.76

0.78

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

(a)

10 4 10 3 10 2 10 1

Learning rate

0.65

0.70

0.75

0.80

0.85

0.90

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
depth and learning rate

Depth

2
4

6
8

10 Lea
rn

in
g

ra
te

(lo
g)

−8

−6

−4

−2

va
li
d

at
io

n
b

in
ar

y
ac

cu
ra

cy

0.60

0.65

0.70

0.75

0.80

0.85

(c)

Fig. 1: Marginals for a quantum neural network with validation accuracy as performance on
the banknote-authentication dataset. Marginal plots of other datasets are shown in Fig. 9 in
Appendix A. The hyperparameters correspond to the number of layers, also known as depth
(a), the learning rate used during training (b), and their combination (c). The hyperparameter
values for the learning rate are on a log scale. When considered individually, we see, for instance,
that depth and learning rate should be set at a reasonable price for better performances.
However, when grouped together, the learning rate seems most influential.

configuration [14]. As such, it can be used to assess the scores of configurations
that we have not observed directly, serving as a surrogate for running the actual
model and determining its performance. Such a model yields predictions ŷ for the
performance measure p of arbitrary hyperparameter settings.

Functional ANOVA determines how much each hyperparameter (and each
combination of hyperparameters) contributes to the variance of ŷ across the
algorithm’s hyperparameter space Θ, denoted V. Intuitively, it assumes that a
hyperparameter is highly important to the performance measure if its marginal
has a high variance and vice versa. Due to the marginalizing over all possible
hyperparameter values and combinations, it gives a global overview of the important
hyperparameters (opposed to for example ablation analysis, which gives a more
local view) [5]. Functional ANOVA has been used for studying the importance
of hyperparameters of standard machine learning models such as support vector
machines, random forests, Adaboost, and residual neural networks [56,65]. We
refer to [26] for a complete description.

2.2 Supervised learning with Parameterized Quantum Circuits

2.2.1 Basics of quantum computing

In quantum computing, computations are performed by manipulating qubits,
similar to classical computing with bits. A system of n qubits is represented by
a 2n-dimensional complex vector in the Hilbert space H = (C2)⊗n. This complex
vector describes the state of the system |ψ⟩ ∈ H and is of unit norm ⟨ψ|ψ⟩ = 1.
The bra-ket notation is used to describe vectors |ψ⟩, their conjugate transpose
⟨ψ| and inner-products

〈
ψ
∣∣ψ′〉 in H. Single-qubit computational basis states are

given by |0⟩ = (1, 0)T , |1⟩ = (0, 1)T , and their tensor products describe general
computational basis states, e.g., |10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0).

Title Suppressed Due to Excessive Length 5

The quantum state is modified with unitary operations or gates U acting on
H. This computation can be represented by a quantum circuit (see Fig. 2). When
a gate U acts non-trivially only on a subset S ⊆ [n] of qubits, we denote such
operation U ⊗ 1[n]\S . In this work, we use, the Hadamard gate H, the single-qubit
Pauli gates X,Y, Z and their associated rotation gates RX , RY , RZ :

H =
1√
2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
, RZ(w) = exp

(
−iw

2
Z
)
,

Y =

(
0 −i
i 0

)
, RY (w) = exp

(
−iw

2
Y
)
, X =

(
0 1
1 0

)
, RX(w) = exp

(
−iw

2
X
)
,

(1)

The rotation angles are denoted by w ∈ R (typically restricted in the range of
[−π, π]). The matrix form of a 2-qubit controlled-Z gate = diag(1, 1, 1,−1) and
the

√
iSWAP (also denoted as sqiswap) gate is given by

1√
2

√
2 0 0 0
0 1 i 0
0 i 1 0

0 0 0
√
2

 . (2)

Measurements are carried out at the end of a quantum circuit to obtain bitstrings.
Such measurement operation is described by a Hermitian operator O called an
observable. Its spectral decomposition O =

∑
m λmPm in terms of eigenvalues λm

and orthogonal projections Pm defines the outcomes of this measurement, according
to the Born rule: a measured state |ψ⟩ gives the outcome λm and gets projected
onto the state Pm |ψ⟩ /

√
p(m) with probability p(m) = ⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ. The

expectation value of the observable O with respect to |ψ⟩ is Eψ[O] =
∑
m p(m)λm =

⟨O⟩ψ. We refer to [51] for more basic concepts of quantum computing and follow
with parameterized quantum circuits.

2.2.2 Parameterized Quantum Circuits

A parameterized quantum circuit (also called ansatz) can be represented by a
quantum circuit with adjustable real-valued parameters w. A unitary U(w) then
defines the quantum circuit by acting on a fixed n-qubit state (e.g.,

∣∣0⊗n〉). The
ansatz may be constructed by exploiting the nature of the problem (typically the
case in chemistry [45] or optimization [16]) or with a problem-independent generic
construction. The latter are often designated as hardware-efficient-ansatz.

For a machine learning task, the unitary U(w) encodes an input data instance
x ∈ Rd and is parameterized by a trainable vector w. Many designs exist, but
hardware-efficient parameterized quantum circuit [31] with an alternating-layered
architecture is often considered in quantum machine learning when no information
on the structure of the data or the problem is known. This architecture is depicted
in an example presented in Fig. 2 and essentially consists of an alternation of
encoding unitaries Uenc and variational unitaries Uvar. In the example, Uenc is
composed of single-qubit rotations RX , and Uvar of single-qubit rotations RY , RZ
and entangling Ctrl-Z gates, represented as in Fig. 2, forming the entangling part
of the circuit. Such an entangling part denoted Uent can be defined by connectivity
between qubits.

6 Charles Moussa et al.

|0⟩1 RX(x1) • • RY (w1
1) RZ(w

1
2)

|0⟩2 RX(x2) • • RY (w2
1) RZ(w

2
2)

|0⟩3 RX(x3) • • RY (w3
1) RZ(w

3
2)

|0⟩4 RX(x4) • • RY (w4
1) RZ(w

4
2)

Fig. 2: Parameterized quantum circuit architecture example with 4 qubits and ring connectivity
(qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a ring). The first layer of RX is the
encoding layer Uenc, taking a data instance x ∈ R4 as input. It is followed by the entangling part
with Ctrl-Z gates. Finally, a variational layer Uvar is applied. Eventually, we do measurements
to be converted into predictions for a supervised task. The dashed part can be repeated many
times to increase the expressive power of the model.

These parameterized quantum circuits are similar to neural networks where the
circuit architecture is fixed, and the gate parameters are optimized by a classical
optimizer such as gradient descent. Hence, they have also been termed quantum
neural networks. The parameterized layer can be repeated multiple times, which
increases its expressive power like neural networks [67]. The data encoding strategy
(such as reusing the encoding layer multiple times in the circuit - a strategy called
data reuploading) also influences the latter [52,64].

The user can define the observable(s) and the post-processing method to convert
the circuit outputs into a prediction in the case of supervised learning. In practice,
observables based on the single-qubit Z operator are used. When applied on m ≤ n
qubits, the observable is represented by a 2m − 1 square diagonal matrix with
{−1, 1} values and is denoted O = Z ⊗ Z ⊗ · · · ⊗ Z.

Having introduced parameterized quantum circuits, we present the hyperpa-
rameters of the models, the configuration space, and the experimental setup for
our functional ANOVA-based hyperparameter importance study.

2.2.3 Related works

To apply functional ANOVA for performing hyperparameter importance, we per-
formed an extensive literature review on parameterized quantum circuits for ma-
chine learning [2,23,24,29,30,37,39,42,43,54,62,68,71,72,73,76] as well as quan-
tum machine learning software [1,3,10]. This resulted in a set of hyperparameters
and configuration space presented in Section 3.1. Several works also study the
performances of quantum neural networks on binary classification tasks, but more
for benchmarking purposes [40,62]. Concerning hyperparameter optimization, sev-
eral directions are taken, from quantum architecture search [13,75], to developing
hyperparameter optimization techniques [58], or applying concepts from automated
machine learning to quantum models [19]. In our case, we use insights from the hy-
perparameter importance study to steer a hyperparameter optimization procedure,
which can be considered an automated machine learning concept.

Title Suppressed Due to Excessive Length 7

3 Methods

In this section, we describe the model with its hyperparameters and define our
methodology.

3.1 Hyperparameters, configuration space and simulations

Many parameterized quantum circuit designs have been introduced based on
motivated research questions and contributions or the addressed problem. We
first carried out an extensive literature review on parameterized quantum circuits
for machine learning [2,23,24,29,30,37,39,42,43,54,62,68,71,72,73,76] as well as
quantum machine learning software [1,3,10]. We aggregated and translated the
design choices into a set of hyperparameters and configuration space, resulting in a
list of 10 hyperparameters, presented in Table 1. We choose them, so we balance
between having well-known hyperparameters that are expected to be essential and
less considered ones in the literature. For instance, many use Adam [32] as the
optimization algorithm whose learning rate should usually be well set. In contrast,
the choice of the entangling gate is generally fixed.

From the literature, we expect the data encoding strategy/circuit to be essential.
We set two main forms for Uenc. The first one is the hardware-efficient

⊗n
i=1RX(xi).

The second form from [3,29,23], translates to an instantaneous quantum polynomial
(IQP) circuit and is formulated as:

Uenc(x) = Uz(x)H
⊗n (3)

Uz(x) = exp

−iπ

 n∑
i=1

xiZi +
n∑

j=1,
j>i

xixjZiZj

. (4)

We can also make a model more expressive using data-reuploading [52,64,30,
68] or by pre-processing the input [64] (sometimes used in encoding strategies
where input features are fed into Pauli rotations). In this work, as a possible
pre-processing technique, we choose a usual activation function tanh. Its range is
[−1, 1], similar to the data features during training after the normalization step.

The list of hyperparameters we take into account is non-exhaustive. Therefore,
it can be extended at will, at the cost of more software engineering and a budget
for running experiments. All the quantum circuits were implemented using the Cirq
library [20] and numerically simulated with the TensorFlow Quantum library [10]
using an exact statevector simulator (without quantum noise). An estimated total
compute time for all the simulations performed was 31 000 CPU-hours.

3.2 Assessing Hyperparameter Importance

Having set the previous list of hyperparameters and the configuration space, we
perform the hyperparameter importance analysis using functional ANOVA. Firstly,
we sample various random configurations per dataset and apply the models to
measure their performance according to a measure we are interested in, in this

8 Charles Moussa et al.

Table 1: List of hyperparameters considered for hyperparameter importance for a quantum
neural network, as we named them in our TensorFlow Quantum code.

Hyperparameter Values Description

Adam learning rate [10−4, 0.5]
(log)

The learning rate with which the quantum neural net-
work starts training. The range was taken from the
automated machine learning library Auto-sklearn [17].
We uniformly sample, taking the logarithmic scale.

batch size 16,
32,
64

Number of samples in one batch of Adam used during
training

depth {1, 2,
· · · , 10}

Number of variational layers defining the circuit

is data encoding
hardware efficient

True,
False

Whether we use the hardware-efficient circuit⊗n
i=1 RX(xi) or an IQP circuit defined in Eq.3 to

encode the input data.
use reuploading True,

False
Whether the data encoding layer is used before each
variational layer or not.

have less rotations True,
False

If True, only use layers of RY , RZ gates as the varia-
tional layer. If False, add a layer of RX gates.

entangler operation cz,
sqiswap

Which entangling gate to use in Uent

map type ring,
full,
pairs

The connectivity used for Uent. The ring connectivity
uses an entangling gate between consecutive indices
(i, i+1), i ∈ {1, . . . , n} of qubits. The full one uses a gate
between each pair of indices (i, j), i < j. Pairs connect
even consecutive indices first, then odd consecutive
ones.

input activation
function

linear,
tanh

Whether to input tanh(xi) as rotations or just xi.

output circuit 2Z,
mZ

The observable(s) used as output(s) of the circuit. If
2Z, we use all possible pairs of qubit indices defining
Z ⊗ Z. If mZ, the tensor product acts on all qubits.
Note that we do not use single-qubit Z observables,
although they are often used in the literature. Indeed,
they are provably not using the entire circuit when it is
shallow. Hence we decided to use Z ⊗ Z instead. Also,
a single neuron layer with a sigmoid activation function
is used as a final decision layer similar to [62].

case, predictive accuracy. The sampled configurations and performances are used
to train a tree-based surrogate model (i.e., a random forest [9]) that can map any
configuration to the performance measure. Each hyperparameter value is given as
input, and the output is predictive accuracy. On top of the hyperparameters, we
can also add the number of epochs to make the surrogate aware of specific budgets.

Next, we verify the performance of the surrogate models. We utilize regression
metrics commonly used in surrogate benchmarks [15] to discard datasets where
surrogates perform poorly, as they can deteriorate the quality of the results. Per
dataset, the R2 score is calculated over the actual performance per configuration
versus the predicted performance per configuration. If this score is too low (below
0.75), the surrogate model is not accurate enough, and the dataset is excluded
from further analysis. Finally, we obtain the marginal contribution of each hyper-
parameter across all datasets, which can be used to infer a ranking of their general

Title Suppressed Due to Excessive Length 9

importance. A verification step similar to [56] is carried out to confirm the inferred
ranking previously obtained. We explain such a procedure in the following section.

3.3 Verifying Hyperparameter Importance

br
ea

st
-w ilp

d

ph
on

em
e

bl
oo

d-
tr

an
sf

us
io

n-
se

rv
ic

e-
ce

nt
er

ba
nk

no
te

-
au

th
en

ti
ca

ti
on

di
ab

et
es

w
ilt

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n

bi
na

ry
ac

cu
ra

cy

Fig. 3: Performances of 1 000 quantum
machine learning models defined by differ-
ent configurations of hyperparameters over
each dataset. The metric of interest we use
is the 10-fold cross-validation accuracy. We
take the best-achieved metric per model
trained over 100 epochs.

In order to verify the hyperparameter
importance ranking, the authors of [56]
proposed a random search procedure in
which one hyperparameter is fixed to a
given value, and all other hyperparam-
eters are optimized. The assumption is
that when an important hyperparame-
ter is fixed to a given value, the result
of the optimization procedure is worse
than when an unimportant hyperparam-
eter is fixed to a given value. When fix-
ing a hyperparameter to a given value,
the procedure is repeated several times
with different values to avoid bias, and as
such, the optimization procedure is car-
ried out several times. Formally, for each
hyperparameter θj , we measure y∗j,f as
the result of a random search for max-
imizing the metric, fixing θj to a given
value f ∈ Fj , Fj ⊆ Θj . For categorical
θj with domain Θj , Fj = Θj is used. For
numeric θj , following [56], we use a set of
10 values spread uniformly over θj ’s range. We then compute y∗j = 1

|Fj |
∑
f∈Fj

y∗j,f ,

representing the score when not optimizing hyperparameter θj , averaged over fixing
θj to various values it can take. Hyperparameters with lower values for y∗j are
assumed to be more important since the performance should deteriorate more when
set sub-optimally.

In our study, we extend the verification step to be used on the scale of quantum
machine learning models. As quantum simulations can be costly, we use the
predictions of the surrogate instead of fitting new quantum models during the
verification experiment. The surrogates yield predictions ŷ for the performance
of arbitrary hyperparameter settings sampled during a random search, serving to
compute y∗j,f . This is also the reason why we performed a second phase evaluation
of the built-in surrogates. Surrogates that perform poorly can reduce the quality
of built marginals, resulting in inferred conclusions with potential bias.

3.4 Deriving Data-driven Priors for Hyperparameter Optimization

From the functional ANOVA framework, we obtain insights into which hyperpa-
rameters are important to optimize and which are not at the hyperparameter level.
Additionally, we will explore ways to utilize well-performing hyperparameter values
across datasets. The authors of [56] demonstrated a procedure for this that learns

10 Charles Moussa et al.

Fig. 4: Procedure outlining how we learn data-driven priors, following [56]. The top pane
shows three individual datasets (utilized for training). Each dot here represents a configuration
that was run on these datasets, with the red dots being the best-performing configurations.
The bottom pane shows how a kernel density estimator can be utilized to learn data-driven
priors inferred from the best configurations. This figure shows how this is done for a single
hyperparameter, although it can be generalized to multi-dimensional configuration spaces.

data-driven priors across datasets from good hyperparameter values. The priors
are then used within a hyperparameter optimization procedure such as hyperband
[36].

Figure 4 outlines this procedure. For each dataset, we utilize past experiments
and determine which configurations yielded the best performance. For each dataset
not used for evaluation, we identify the best-N (N to be determined by the user, but
we found that 10 and 20 works) performing configurations in terms of the metric
that we are interested in (e.g., predictive accuracy). Per hyperparameter, we now
gather the values that ended up in the best configurations. We fit a 1-dimensional
distribution per hyperparameter [35]. For numeric hyperparameters, we use a kernel
density estimator; for categorical hyperparameters, we sample from a multinomial
distribution (or Bernoulli in case of 2 possible values) whose parameters are set
according to the frequencies of values. This distribution now represents a learned
prior of good hyperparameter values and can be used to sample configurations in a
hyperparameter optimization process.

4 Dataset and inclusion criteria

We consider classical datasets to apply the machinery of quantum neural networks
and investigate the importance of the hyperparameters that were introduced before.
Similarly to [56], we use datasets from the OpenML-CC18 benchmark suite [7]. We
adhere to a commonly used trend in the quantum community in our study; i.e., we
only consider the datasets whose number of features is equal to the number of qubits
available under the current scale of quantum simulations on a server. We limit this
study to the case where the number of features is less than 20 after pre-processing,

Title Suppressed Due to Excessive Length 11

Table 2: List of datasets used in this study. The number of features is obtained after a usual
pre-processing used in machine learning methods, such as one-hot encoding.

Dataset
OpenML
Task ID

Number of
features

Number of
instances

breast-w 15 9 699
diabetes 37 8 768
phoneme 9952 5 5 404
ilpd 9971 11 583
banknote-authentication 10093 4 1 372
blood-transfusion-service-center 10 101 4 748
wilt 146820 5 4 839

as simulating quantum machine learning algorithms is computationally expensive.2

Hence, our first step was identifying which datasets fit this criterion. We include
all datasets from the OpenML-CC18 with 20 or fewer features after categorical
features have been one-hot-encoded and constant features are removed. Afterwards,
the input variables are scaled to unit variance as a normalization step. Finally, the
scaling constants are calculated on the training data and applied to the test data.

The final list of datasets is given in Table 2. In total, 7 datasets fitted the
criterion considered in this study. For all of them, we picked the OpenML Task ID
giving the 10-fold cross-validation task. A quantum model is then applied using
the latter procedure with the aforementioned pre-processing steps.

5 Results of Hyperparameter Importance

In this section, we present the results of the hyperparameter importance study.

5.1 Performance distributions per dataset

We independently sampled 1 000 hyperparameter configurations for each dataset
and ran the simulation of quantum models for 100 epochs as budget. We recorded
the best validation accuracy obtained over 100 epochs as a performance measure.
Fig. 3 shows the distribution of the 10-fold cross-validation accuracy obtained per
dataset. We observe the impact of hyperparameter optimization by the difference
between the least performing and the best model configuration. For instance, on
the wilt dataset, the best-performing model gets an accuracy close to 1, and the
least-performing model obtains a performance below 0.25. We can also see that
some datasets present a smaller spread of performances. For example, ilpd and
blood-transfusion-service-center are in this case. Hyperparameter optimization does
not seem to have a real effect because most hyperparameter configurations give
the same result. As such, the surrogates could not differentiate between various
configurations. For most datasets, hyperparameter optimization is vital for getting
high performances per dataset and detecting datasets where the importance study
can be applied.

2 A 10-fold cross-validation run in our experiment takes on average 262 minutes for 100
epochs with Tensorflow Quantum [10].

12 Charles Moussa et al.

Table 3: Results of the step in which we validate the surrogate models. This table shows
performances of the surrogate models built within functional ANOVA over a 10-fold cross-
validation procedure. We present the average coefficient of determination (R2), root mean
squared error (RMSE), and Spearman’s rank correlation coefficient (CC). These are standard
regression metrics for benchmarking surrogate models on hyperparameters [15]. The surrogates
over ilpd and blood-transfusion-service-center obtain low scores (less than .75 R2). Hence we
remove them from the study.

Dataset R2 score RMSE CC

breast-w 0.8663 0.0436 0.9299
diabetes 0.7839 0.0155 0.8456
phoneme 0.8649 0.0285 0.9282
ilpd 0.1939 0.0040 0.4530
banknote-authentication 0.8579 0.0507 0.9399
blood-transfusion-service-center 0.6104 0.0056 0.8088
wilt 0.7912 0.0515 0.8015

5.2 Surrogate verification

Functional ANOVA relies on an internal surrogate model to determine the marginal
contribution per hyperparameter. If this surrogate model is not accurate, this can
severely limit the conclusions drawn from functional ANOVA. Surrogate models
are trained to map the configuration to a particular performance score. Each
hyperparameter value is given as an input, and the output is the performance
measure of interest, in this case, predictive accuracy. As such, in this experiment,
we measure the performance of the surrogates without information on the number
of epochs. In this experiment, we verify whether the hyperparameters can explain
the performances of the models. Table 3 shows the performance of the internal
surrogate models. We notice low regression scores for the two datasets (less than
0.75 R2 scores). Hence we remove them from the analysis.

5.3 Marginal contributions

For functional ANOVA, we used 128 trees for the surrogate model. Fig. 5(a,b)
shows the marginal contribution of each hyperparameter over the remaining 5
datasets. We distinguish visually 3 primary levels of importance. According to
these results, the learning rate, depth, data encoding circuit, and reuploading
strategy are critical. These results are in line with our expectations. According
to functional ANOVA, the entangler gate, connectivity, and whether we use RX
gates in the variational layer are the least important. Hence, our results reveal new
insights into these hyperparameters that are not considered in general.

5.4 Verification of important hyperparameters

In line with the work of [56], we perform an additional verification experiment
that verifies whether functional ANOVA outcomes align with our expectations.
However, the verification procedure involves an expensive, post hoc analysis: a

Title Suppressed Due to Excessive Length 13

en
tan

gle
r o

pe
rat

ion

ha
ve

 le
ss

rot
ati

on
s

inp
ut

act
iva

tio
n f

un
cti

on

map
 ty

pe

ou
tpu

t c
irc

uit

ba
tch

siz
e

de
pth

use
 re

up
loa

din
g

is d
ata

 en
cod

ing
 ha

rdw
are

 ef
fici

en
t

lea
rni

ng
 ra

te

0.00

0.05

0.10

0.15

0.20

0.25
Va

ria
nc

e
Co

nt
rib

ut
io

n

task_name
breast-w
phoneme
banknote-authentication
wilt
diabetes

(a)

en
tan

gle
r o

pe
rat

ion

map
 ty

pe

ha
ve

 le
ss

rot
ati

on
s

inp
ut

act
iva

tio
n f

un
cti

on

ou
tpu

t c
irc

uit

ba
tch

siz
e

is d
ata

 en
cod

ing
 ha

rdw
are

 ef
fici

en
t

de
pth

use
 re

up
loa

din
g

lea
rni

ng
 ra

te

0.00

0.05

0.10

0.15

0.20

0.25

m
ax

(m
ar

gi
na

l)
- m

in
(m

ar
gi

na
l)

task_name
breast-w
phoneme
banknote-authentication
wilt
diabetes

(b)

Fig. 5: The marginal contributions per dataset are presented as (a) the variance contribution
and (b) the difference between the minimal and maximal value of the marginal of each
hyperparameter. The hyperparameters are sorted from the least to the most important using
the median. We distinguish from the plot 3 primary levels of importance.

random search procedure fixing one hyperparameter at a time. Therefore, as our
quantum simulations are costly, we used the surrogate models fitted on the current
dataset considered over the 1 000 configurations obtained initially to predict the
performances one would obtain when presented with a new configuration. Fig. 6
shows the average rank of each run of random search, labeled with the hyperparam-
eter whose value was fixed to a default value. A high rank implies poor performance
compared to the other configurations, meaning that tuning this hyperparameter
would have been important. We again witness the 3 levels of importance, with
almost the same order obtained. However, the input activation function is found to
be more important while the batch size is less. More simulations with more datasets
may be required to validate the importance. However, we empirically retrieve
the importance of well-known hyperparameters while considering less important
ones. Hence functional ANOVA becomes an interesting tool for quantum machine
learning in practice. Next, we demonstrate this by using the obtained results to
improve a hyperparameter optimization algorithm.

5.5 Efficiency of Data-driven Priors for hyperparameter optimization

We will utilize the performance data to build data-driven priors over what are
good hyperparameter values across datasets. The data-driven priors can then be
utilized in hyperparameter optimization methods, such as hyperband [36], to replace
uniform sampling strategies. We will use the experimental data to obtain a set of
data-driven priors (kernel density estimators and multinomial) over hyperparameter
values, similar to [56]. We will demonstrate that employing the data-driven priors

14 Charles Moussa et al.

0 1000 2000 3000 4000
Iteration

2

3

4

5

6

7

8

9

Av
er

ag
e

Ra
nk

Verification experiment
batchsize
depth
entangler_operation
have_less_rotations
input_activation_function
is_data_encoding_hardware_efficient
learning_rate
map_type
output_circuit
use_reuploading

Fig. 6: Verification experiment of the importance of the hyperparameters. A random search
procedure is used for up to 4096 iterations, excluding one parameter at a time. A lower curve
means the hyperparameter is found to be less important.

improves the results obtained with hyperband with respect to the default uniform
sampling.

We will utilize hyperband to verify whether the data-driven priors are more effec-
tive than uniform sampling. Generally, in hyperband, a number of hyperparameter
configurations are sampled uniformly (where each hyperparameter value is sampled
independently) to train machine learning models given a value of a user-defined
notion of budget (e.g. the number of epochs). A proportion of the configurations
that have performed best are kept for the next iteration where the budget value
is increased until one configuration remains. In our case, uniform sampling can
be replaced by the data-driven priors which can be sampled to obtain hyperpa-
rameter values. In order to get a balanced assessment under which conditions
these data-driven priors work well, we also vary the hyperparameters of hyperband
itself. While hyperband is arguably robust against ill-specified hyperparameters,
we want to see whether the data-driven priors work well across the various options.
Table 4 shows the various hyperparameters of hyperband that we considered. We
ran an experiment on each combination of these hyperparameters. Note that, to
keep the computational cost manageable, we do not run the actual algorithms
that hyperband is exploring but use surrogate models instead. The latter are built
similarly to the previously considered surrogate models in functional ANOVA (see
Sec. 5.2); however, we also incorporate the number of epochs as a feature for this
experiment. We do so to use the number of epochs as the notion of budget for
hyperband. Configurations are sampled randomly with an increased number of

Title Suppressed Due to Excessive Length 15

Table 4: List of hyperparameters considered for hyperband experiments.

Hyperparameter Values Description

η 2, 3, 4 Elimination rate factor for con-
figurations advancing to the next
iteration.

s max 3, 4, 5, 6 Number of unique executions of
successive halving.

R 50,
100

Maximum amount of resources
(epochs) that can be allocated to
a single configuration.

Important
Hyperparameters

Adam learning rate,
depth,
input activation function,
use reuploading

Set of important hyperparame-
ters considered to fit a Kernel
Density Estimator based on the
insights of Section 5.4.

best N 10, 20 Number of best-performing con-
figurations on which a kernel den-
sity estimator or multinomial dis-
tribution is fitted for important
hyperparameters.

Sampling method Uniform,
Data-driven
(e.g., kernel density estimator)

The method for generating hyper-
parameter configurations to run
the models on.

Bandwidth Selection
method

Silverman,
Sheather-Jones

The bandwidth estimator
method used to fit the data with
kernel density estimator.

epochs for a given hyperband iteration, onto which performances are determined
with the surrogate models.

Figure 10 in Appendix B illustrates example kernel density estimators for a
quantum neural network’s two most important hyperparameters. We see from
the figure that: (i) the default values of Adam’s learning rate used by the deep
learning practitioners have a reasonable default, and (ii) the significance of using a
higher depth in parameterized quantum circuits as it makes them more expressive
(a desirable property of any machine learning model). We note that in order to
evaluate the data-driven priors on a given dataset, we build these priors on all
other datasets except this one (leave one dataset out). As such, we have a slightly
different set of data-driven priors for each experiment.

For our experiments, we run hyperband with different values for its hyper-
parameters with 15 random seeds per dataset, using the previously-mentioned
surrogate models to obtain performance scores per configuration (to economize on
the otherwise extensive runtime). Figure 7 and 8 illustrate our results. For each
dataset, the difference in accuracy between the two sampling strategies is depicted:
positive values indicate that sampling based on data-driven priors performs better.
Each data point represents a given configuration of hyperband with data-driven
priors compared to a configuration of hyperband with uniform sampling. The
violin plots aggregate over various datasets (5), random seeds (15) and various
hyperparameter settings of hyperband (see Table 4).

In general, the results suggest that using data-driven priors from good values
of hyperparameters can aid in finding better configurations of quantum neural
networks. Indeed, as shown in Figure 7 a), the average improvement is 0.53%,

16 Charles Moussa et al.

0.02

0.00

0.02

0.04

0.06
Im

pr
ov

em
en

t

(a)

All runs of Hyperband

(b)

Best run

(c)

Worst run

Fig. 7: Relative difference in performance improvement between two instances of hyperband, one
sampling based on the learned priors and one using uniform sampling. Positive values indicate
superior performance by using data-driven priors and vice versa. We show the distribution
of performances over all combinations of hyperband parameters from Table 4, random seeds
and datasets (a), and for the data-driven prior hyperband run achieving the largest average
performance gain over the uniform priors (averaged over all random seeds and datasets) (b) and
for the data-driven prior hyperband run achieving the lowest average performance gain over the
uniform priors (averaged over all random seeds and datasets) (c). We note that the data-driven
priors are superior to the uniform sampling across all tried configurations of hyperband.

0.02

0.00

0.02

0.04

0.06

Im
pr

ov
em

en
t

(a)

{lr}

(b)

{lr, depth}

(c)

{lr, depth, activation}

(d)

{lr, depth, activation, reuploading}

Fig. 8: Relative difference in performance improvement between two instances of hyperband,
one sampling based on the data-driven priors and one using uniform sampling. We show the
distribution of performances over all combinations of hyperband parameters from Table 4,
random seeds, and datasets. The figure from left (a) to right (d) shows a slight increase in
average improvement as the number of hyperparameters considered for building data-driven
priors grows. Here, lr, depth, activation, and reuploading denote Adam optimizer’s learning
rate, quantum circuit depth, activation function, and data reuploading.

Title Suppressed Due to Excessive Length 17

and the maximum was 6.11% for all hyperband hyperparameters tried. From
Figure 7 b), the best run in terms of average performances achieved an average
improvement of 1.41%, and the maximum was 4.04%. Moreover, from Figure 7 c),
the worst run in terms of average performance achieved an average improvement of
0.14%, and the maximum was 1.21%. Furthermore, the improvement was obtained
across all hyperband runs in 77.2% of cases. Finally, Figure 8 shows that the
average improvement generally increases as we add a hyperparameter according to
its importance ranking when learning data-driven priors. This demonstrates the
benefits of balancing between exploration and exploitation using hyperparameter
importance when performing hyperparameter optimization.

More simulations with more datasets can be performed as methods enabling
the usage of quantum neural networks on datasets with a number of features
greater than the number of qubits are being developed [22,54]. However, we verified
empirically that the importance information obtained from functional ANOVA could
be helpful for hyperparameter optimization. More sophisticated hyperparameter
optimization algorithms can also benefit from such studies.

6 Limitations

We discuss three limitations to better place the work in a context that could guide
further research. Firstly, the work heavily leans on the hyperparameter importance
definition of functional ANOVA. While this is a well-established measure built on a
solid foundation of prior work [69,26,56] there are also downsides. The involvement
of the marginal has a very desirable property in that it is not conditioned on the
value of other hyperparameters, as it averages over all possible values for all other
hyperparameters. Following this definition, it considers both very well-performing
hyperparameter configurations and all mediocre-performing configurations. Thereby,
it gives good information on what hyperparameters are generally important, giving
a global picture. However, in some cases, we might be more interested in the
hyperparameters that do not seem important on a global level, are responsible
for obtaining the final bits of performance. These are usually hard to detect by
functional ANOVA. The work of [25] proposes a way to filter out bad-performing
configurations, compromising the global overview of functional ANOVA in favour
of the aforementioned important details. However, it is essential to note that every
definition of hyperparameter importance always comes with a particular definition
bias that should be clearly communicated.

Secondly, due to the high amount of required CPU resources, we have decided
to perform both the verification experiment and the evaluation of the data-driven
priors on learned surrogate models. The surrogate models are learned based on the
experimental data we have gathered and evaluated extensively (see Section 5.2).
However, like any model, the surrogates are not perfect, and by introducing a
surrogate in the experimentation, a bias is induced in favour of economizing on
CPU time. Since the experiments of [56] were run on actual models (rather than
the surrogate models) and already confirmed the high correlation between the
functional ANOVA results and the verification experiment, we believe that using
the surrogate models for this paper is a valid approach.

Finally, by means of this study, we have considered a family of quantum
neural network architectures, whereas the literature has proposed many more

18 Charles Moussa et al.

architectures. While it is likely that some hyperparameter importance results
generalize across different architectures (e.g., the learning rate and the depth will
likely always be important), it should be noted that only limited conclusions can
be transferred across different architectures. Ideally, this study can be repeated
over a broad range of quantum neural network architectures, identifying even more
general patterns. For instance, various hyperparameters of the models can have
an influence on the trainability and optimization of the model. It is known that
quantum neural networks can suffer from the phenomenon of barren plateaus [41],
similar to the vanishing gradients problem inherent in neural networks, resulting
in trainability issues. Several hyperparameters such as the circuit architecture [50],
input state [34] and the depth [12] are related to barren plateaus. It would be
interesting to extend this study by modifying or adding into the hyperparameters
more quantum circuit specifications designed to handle barren plateaus [53,21,74,
57] and tailored optimization procedures for quantum machine learning [47,33].

7 Conclusion

In this work, we assess the importance of several hyperparameters related to quan-
tum neural networks for classification using the functional ANOVA framework.
Our experiments rely on OpenML datasets matching the current scale of quan-
tum hardware simulations (i.e., datasets with at most 20 features after applying
pre-processing operators, hence using 20 qubits). We selected and presented the
hyperparameters based on an investigation of quantum computing literature and
software. Firstly, hyperparameter optimization highlighted datasets where we ob-
served high variance in the performance across configurations (see Figure 3). In
particular, for the ‘wilt’ dataset, the performances were spread from 25%–100%.
This further underlines the importance of hyperparameter optimization for these
datasets. There were also datasets where this variance was negligible.

Following [56], we utilized functional ANOVA to attribute the variance in
performance to the various (combinations of) hyperparameters. Hyperparameters
that attribute to a high variance are considered important, whereas hyperparameters
that attribute to only a small variance are considered unimportant. From our
results, we distinguished 3 primary levels of importance. On the one hand, Adam’s
learning rate, depth, and data encoding strategy are found to be very important,
as we expected. On the other hand, the less considered hyperparameters, such
as the particular choice of the entangling gate and using 3 rotation types in the
variational layer, are in the least important group. Hence, our experiment confirmed
expected patterns and revealed new insights for the selection of the quantum model.
We confirmed these results by cross-checking these results against an extensive
experiment, where we ran several hyperparameter optimization processes, each time
optimizing all but one hyperparameter. When such a hyperparameter optimization
run was still successful even when a given hyperparameter was not optimized, that
indicates that the hyperparameter was not important, and vice-versa. There was a
high correlation between the hyperparameters that were found to be important
by both results. For example, both results rank learning rate, depth, and use
reuploading among the most important hyperparameters.

Finally, following [56], we utilize good configurations across datasets to create
data-driven priors that can be used in hyperparameter optimization processes

Title Suppressed Due to Excessive Length 19

to sample from (opposed to the commonly-used uniform or log-uniform prior).
We demonstrated that using prior information of good values of hyperparameters
benefits the hyperparameter optimization process by comparing a hyperband
optimization process with the data-driven priors against a hyperband optimization
process with uniform priors. This experiment was repeated with many different
settings for hyperband, ranging in many different hyperparameter configurations of
the hyperparameter optimization method. The results indicate that the data-driven
priors outperform the uniform priors in 77.2% of the cases.

For future work, we plan further to investigate methods from the field of au-
tomated machine learning to be applied to quantum neural networks [8,17,44].
Indeed, our experiments have shown the importance of hyperparameter optimiza-
tion, which should become standard practice and part of the protocols applied
within the community. We further envision functional ANOVA to be employed
in future works related to quantum machine learning and understanding how to
apply quantum models in practice. For instance, it would be interesting to con-
sider quantum data, for which quantum machine learning models may have an
advantage. Plus, extending hyperparameter importance to techniques for scaling
to a large number of features with the number of qubits, such as dimensionality
reduction or divide-and-conquer techniques, can be left for future work. Finally,
this type of study can also be extended to different noisy hardware and towards
algorithm/model selection and design. For example, choosing which hardware
works best for machine learning tasks becomes possible if we have access to a
cluster of different quantum computers. One could also extend our work with
meta-learning [8], where a model configuration is selected based on meta-features
created from dataset features. Such types of studies already exist for parameterized
quantum circuits applied to combinatorial optimization [46,49,61].

Acknowledgements CM, YJP, and VD acknowledge support from TotalEnergies. This work
was supported by the Dutch Research Council (NWO/OCW) as part of the Quantum Software
Consortium programme (project number 024.003.037). This research is also supported by the
project NEASQC, funded by the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 951821).

Funding This work was supported by the Dutch Research Council (NWO/OCW) as part of
the Quantum Software Consortium programme (project number 024.003.037). This research
is also supported by the project NEASQC, funded by the European Union’s Horizon 2020
research and innovation programme (grant agreement No 951821).

Authors’ contributions All authors contributed to the study conception and design of the
presented work. CM and YJP performed the numerical experiments. All authors contributed to
the critical review, iterative improvement, and approval of the final version of the manuscript.

Availability of data and materials All the datasets used in the study are open source.

Code availability All code associated with this paper is publicly available from
https://github.com/chMoussa/prior_qnn_surrogate_search.

Declarations

Conflict of interests The authors declare no conflicts of interest.

Ethics approval Not applicable.

Consent for publication Not applicable.

Consent to participate Not applicable.

https://github.com/chMoussa/prior_qnn_surrogate_search

20 Charles Moussa et al.

References

1. ANIS, M.S., et al.: Qiskit: An open-source framework for quantum computing (2021).
DOI 10.5281/zenodo.2573505

2. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as
machine learning models. Quantum Science and Technology 4(4), 043001 (2019)

3. Bergholm, V., Izaac, J.A., Schuld, M., Gogolin, C., Killoran, N.: Pennylane: Automatic
differentiation of hybrid quantum-classical computations. CoRR abs/1811.04968 (2018)

4. Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett, C., Hoos, H.: Efficient
parameter importance analysis via ablation with surrogates. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31 (2017)

5. Biedenkapp, A., Marben, J., Lindauer, M., Hutter, F.: CAVE: configuration assessment,
visualization and evaluation. In: Learning and Intelligent Optimization - 12th International
Conference, Lecture Notes in Computer Science, vol. 11353, pp. 115–130. Springer (2018)

6. Biedenkapp, A., Marben, J., Lindauer, M., Hutter, F.: Cave: Configuration assessment,
visualization and evaluation. In: Learning and Intelligent Optimization: 12th International
Conference, LION 12, Kalamata, Greece, June 10–15, 2018, Revised Selected Papers 12,
pp. 115–130. Springer (2019)

7. Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M., Mantovani, R.G.,
van Rijn, J.N., Vanschoren, J.: Openml benchmarking suites. In: Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks (2021)

8. Brazdil, P., van Rijn, J.N., Soares, C., Vanschoren, J.: Metalearning: Applications to
Automated Machine Learning and Data Mining, 2nd edn. Springer (2022)

9. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
10. Broughton, M., et al.: Tensorflow quantum: A software framework for quantum machine

learning. arXiv:2003.02989 (2020)
11. Caro, M.C., Gil-Fuster, E., Meyer, J.J., Eisert, J., Sweke, R.: Encoding-dependent general-

ization bounds for parametrized quantum circuits. Quantum 5, 582 (2021)
12. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren

plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791
(2021)

13. Du, Y., Huang, T., You, S., Hsieh, M.H., Tao, D.: Quantum circuit architecture search
for variational quantum algorithms. npj Quantum Information 8(1), 62 (2022). DOI
10.1038/s41534-022-00570-y. URL https://doi.org/10.1038/s41534-022-00570-y

14. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmarking of
hyperparameter optimizers via surrogates. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pp. 1114–1120. AAAI Press (2015)

15. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Efficient benchmarking of
hyperparameter optimizers via surrogates. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pp. 1114–1120. AAAI Press (2015)

16. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm.
arXiv:1411.4028 (2014)

17. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0:
Hands-free automl via meta-learning. J Machine Learn Res 23(261), 1–61 (2020)

18. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Review of Modern Physics 86,
153–185 (2014)

19. G’omez, R.B., O’Meara, C., Cortiana, G., Mendl, C.B., Bernab’e-Moreno, J.: Towards
autoqml: A cloud-based automated circuit architecture search framework. 2022 IEEE
19th International Conference on Software Architecture Companion (ICSA-C) pp. 129–136
(2022)

20. Google: Cirq: A python framework for creating, editing, and invoking noisy intermediate
scale quantum circuits (2018). URL https://github.com/quantumlib/Cirq

21. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy
for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214
(2019). DOI 10.22331/q-2019-12-09-214. URL https://quantum-journal.org/papers/
q-2019-12-09-214/

22. Haug, T., Self, C.N., Kim, M.S.: Quantum machine learning of large datasets using
randomized measurements. Machine Learning: Science and Technology 4(1), 015005 (2023).
DOI 10.1088/2632-2153/acb0b4

23. Havĺıček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gam-
betta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747),
209–212 (2019)

https://doi.org/10.1038/s41534-022-00570-y
https://github.com/quantumlib/Cirq
https://quantum-journal.org/papers/q-2019-12-09-214/
https://quantum-journal.org/papers/q-2019-12-09-214/

Title Suppressed Due to Excessive Length 21

24. Heimann, D., Hohenfeld, H., Wiebe, F., Kirchner, F.: Quantum deep reinforcement learning
for robot navigation tasks. CoRR abs/2202.12180 (2022)

25. Hooker, G.: Generalized functional anova diagnostics for high-dimensional functions of
dependent variables. Journal of Computational and Graphical Statistics 16(3), 709–732
(2007)

26. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter
importance. In: Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, JMLR Workshop and Conference Proceedings, vol. 32, pp. 1130–1144 (2014)

27. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Identifying key algorithm parameters and
instance features using forward selection. In: Learning and Intelligent Optimization: 7th
International Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected
Papers 7, pp. 364–381. Springer (2013)

28. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning - Methods,
Systems, Challenges. Springer (2019)

29. Jerbi, S., Fiderer, L.J., Poulsen Nautrup, H., Kübler, J.M., Briegel, H.J., Dunjko, V.:
Quantum machine learning beyond kernel methods. Nature Communications 14(1), 517
(2023)

30. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Parametrized quantum policies
for reinforcement learning. In: Advances in Neural Information Processing Systems 34, pp.
28362–28375 (2021)

31. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta,
J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets. Nature 549(7671), 242–246 (2017)

32. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International
Conference on Learning Representations (2015)

33. Kulshrestha, A., Safro, I.: Beinit: Avoiding barren plateaus in variational quantum algo-
rithms. In: 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE), pp. 197–203 (2022). DOI 10.1109/QCE53715.2022.00039

34. Larocca, M., Czarnik, P., Sharma, K., Muraleedharan, G., Coles, P.J., Cerezo, M.: Di-
agnosing barren plateaus with tools from quantum optimal control. Quantum 6, 824
(2022)

35. Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, Norwell, MA, USA (2001)

36. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel
bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1),
6765–6816 (2017)

37. Liu, J.G., Wang, L.: Differentiable learning of quantum circuit born machines. Physical
Review A 98, 062324 (2018)

38. Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up in super-
vised machine learning. Nature Physics 17(9), 1013–1017 (2021)

39. Marshall, S.C., Gyurik, C., Dunjko, V.: High dimensional quantum machine learning with
small quantum computers. CoRR abs/2203.13739 (2022)

40. Mathur, N., Landman, J., Li, Y.Y., Strahm, M., Kazdaghli, S., Prakash, A., Kerenidis, I.:
Medical image classification via quantum neural networks (2021)

41. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus
in quantum neural network training landscapes. Nature Communications 9(1), 1–6
(2018). DOI 10.1038/s41467-018-07090-4. URL https://www.nature.com/articles/
s41467-018-07090-4

42. Mensa, S., Sahin, E., Tacchino, F., Barkoutsos, P.K., Tavernelli, I.: Quantum machine
learning framework for virtual screening in drug discovery: a prospective quantum advantage.
CoRR abs/2204.04017 (2022)

43. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical
Review A 98, 032309 (2018)

44. Mohr, F., van Rijn, J.N.: Learning curves for decision making in supervised machine
learning - A survey. CoRR abs/2201.12150 (2022)

45. Moll, N., et al: Quantum optimization using variational algorithms on near-term quantum
devices. Quantum Science and Technology 3(3), 030503 (2018)

46. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards algorithm
selection in near-term quantum optimization. Quantum Science and Technology 5(4),
044009 (2020)

https://www.nature.com/articles/s41467-018-07090-4
https://www.nature.com/articles/s41467-018-07090-4

22 Charles Moussa et al.

47. Moussa, C., Gordon, M.H., Baczyk, M., Cerezo, M., Cincio, L., Coles, P.J.: Resource
frugal optimizer for quantum machine learning. arXiv:2211.04965 (2022). URL https:
//arxiv.org/abs/2211.04965

48. Moussa, C., van Rijn, J.N., Bäck, T., Dunjko, V.: Hyperparameter importance of quantum
neural networks across small datasets. In: P. Pascal, D. Ienco (eds.) Discovery Science, pp.
32–46. Springer Nature Switzerland, Cham (2022)

49. Moussa, C., Wang, H., Bäck, T., Dunjko, V.: Unsupervised strategies for identifying optimal
parameters in quantum approximate optimization algorithm. EPJ Quantum Technology
9(1) (2022)

50. Napp, J.: Quantifying the barren plateau phenomenon for a model of unstructured varia-
tional ans\”{a} tze. arXiv preprint arXiv:2203.06174 (2022)

51. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press (2011)

52. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a
universal quantum classifier. Quantum 4, 226 (2020)

53. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of
barren plateaus in quantum convolutional neural networks. Physical Review X 11(4),
041011 (2021). DOI 10.1103/PhysRevX.11.041011. URL https://journals.aps.org/prx/
abstract/10.1103/PhysRevX.11.041011

54. Peters, E., Caldeira, J., Ho, A., Leichenauer, S., Mohseni, M., Neven, H., Spentzouris, P.,
Strain, D., Perdue, G.N.: Machine learning of high dimensional data on a noisy quantum
processor. npj Quantum Information 7(1), 161 (2021)

55. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018)
56. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2018, pp. 2367–2376. ACM (2018)

57. Sack, S.H., Medina, R.A., Michailidis, A.A., Kueng, R., Serbyn, M.: Avoiding barren
plateaus using classical shadows. PRX Quantum 3(2), 020365 (2022)

58. Sagingalieva, A.B., Kurkin, A., Melnikov, A.A., Kuhmistrov, D., Perelshtein, M.R., Mel-
nikov, A.A., Skolik, A., Dollen, D.V.: Hyperparameter optimization of hybrid quantum
neural networks for car classification. ArXiv abs/2205.04878 (2022)

59. Sajjan, M., Li, J., Selvarajan, R., Sureshbabu, S.H., Kale, S.S., Gupta, R., Singh, V., Kais,
S.: Quantum machine learning for chemistry and physics. Chemical Society Reviews 51(15),
6475–6573 (2022)

60. Saltelli, A., Sobol, I.: Sensitivity analysis for nonlinear mathematical models: Numerical
experience. Matematicheskoe Modelirovanie 7 (1995)

61. Sauvage, F., Sim, S., Kunitsa, A.A., Simon, W.A., Mauri, M., Perdomo-Ortiz, A.:
Flip: A flexible initializer for arbitrarily-sized parametrized quantum circuits. CoRR
abs/2103.08572 (2021)

62. Schetakis, N., Aghamalyan, D., Boguslavsky, M., Griffin, P.: Binary classifiers for noisy
datasets: a comparative study of existing quantum machine learning frameworks and some
new approaches. CoRR abs/2111.03372 (2021)

63. Schuld, M., Killoran, N.: Is quantum advantage the right goal for quantum machine
learning? Prx Quantum 3(3), 030101 (2022)

64. Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of
variational quantum-machine-learning models. Physical Review A 103, 032430 (2021)

65. Sharma, A., van Rijn, J.N., Hutter, F., Müller, A.: Hyperparameter importance for image
classification by residual neural networks. In: Discovery Science - 22nd International
Conference, Lecture Notes in Computer Science, vol. 11828, pp. 112–126. Springer (2019)

66. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. Siam Review 41, 303–332 (1999)

67. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of pa-
rameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum
Technologies 2(12), 1900070 (2019)

68. Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum
algorithm for deep q-learning. Quantum 6, 720 (2022)

69. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Mathematical
Modelling and Computational Experiments 1(4), 407–414 (1993)

70. Sweke, R., Seifert, J., Hangleiter, D., Eisert, J.: On the quantum versus classical learnability
of discrete distributions. Quantum 5, 417 (2021)

https://arxiv.org/abs/2211.04965
https://arxiv.org/abs/2211.04965
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041011
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.041011

Title Suppressed Due to Excessive Length 23

71. Wang, H., Gu, J., Ding, Y., Li, Z., Chong, F.T., Pan, D.Z., Han, S.: Quantumnat: quantum
noise-aware training with noise injection, quantization and normalization. In: Proceedings
of the 59th ACM/IEEE Design Automation Conference, pp. 1–6 (2022)

72. Wang, H., Li, Z., Gu, J., Ding, Y., Pan, D.Z., Han, S.: Qoc: quantum on-chip training
with parameter shift and gradient pruning. In: Proceedings of the 59th ACM/IEEE Design
Automation Conference, pp. 655–660 (2022)

73. Wossnig, L.: Quantum machine learning for classical data. CoRR abs/2105.03684 (2021)
74. Zhang, K., Liu, L., Hsieh, M.H., Tao, D.: Escaping from the barren plateau via gaussian

initializations in deep variational quantum circuits. Advances in Neural Information
Processing Systems 35, 18612–18627 (2022)

75. Zhang, S.X., Hsieh, C.Y., Zhang, S., Yao, H.: Differentiable quantum architecture search.
Quantum Science and Technology 7(4), 045023 (2022)

76. Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning
and loading random distributions. npj Quantum Information 5(1), 103 (2019)

24 Charles Moussa et al.

A Marginals of hyperparameters

2 4 6 8 10
Depth

0.78

0.79

0.80

0.81

0.82

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

10 4 10 3 10 2 10 1

Learning rate

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
learning_rate and depth

Learning rate (log)

8
6

4
2

Dep
th

2
4

6
8

10

va
l_b

in
ar

y_
ac

cu
ra

cy

0.700
0.725
0.750
0.775
0.800
0.825
0.850

2 4 6 8 10
Depth

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

10 4 10 3 10 2 10 1

Learning rate

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
learning_rate and depth

Learning rate (log)

8
6

4
2

Dep
th

2
4

6
8

10

va
l_b

in
ar

y_
ac

cu
ra

cy

0.600
0.625
0.650
0.675
0.700
0.725
0.750

2 4 6 8 10
Depth

0.654

0.656

0.658

0.660

0.662

0.664

0.666

0.668

0.670

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

10 4 10 3 10 2 10 1

Learning rate

0.650

0.655

0.660

0.665

0.670

0.675

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
learning_rate and depth

Learning rate (log)

8
6

4
2

Dep
th

2
4

6
8

10

va
l_b

in
ar

y_
ac

cu
ra

cy

0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695

2 4 6 8 10
Depth

0.65

0.70

0.75

0.80

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

10 4 10 3 10 2 10 1

Learning rate

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Va
l b

in
ar

y
ac

cu
ra

cy

predicted val_binary_accuracy
std

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
learning_rate and depth

Learning rate (log)

8
6

4
2

Dep
th

2
4

6
8

10

va
l_b

in
ar

y_
ac

cu
ra

cy

0.65
0.70
0.75
0.80
0.85
0.90
0.95

Fig. 9: Marginals of hyperparameters for a quantum neural network with validation accuracy
as performance metric on four datasets (from top to below, the order is breast-w, phoneme,
diabetes, wilt). The hyperparameters correspond to the number of layers, also known as depth
(left column), the learning rate used during training (middle column), and their combination
(right columns).

Title Suppressed Due to Excessive Length 25

B KDE priors of important hyperparameters

10 4 10 3 10 2 10 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

(a)

learning rate

1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ilit

y

(b)

depth

Fig. 10: Priors obtained for the top-2 important hyperparameters (learning rate (a) and depth
(b)) for a quantum neural network. The x-axis denotes the values, while the y-axis denotes the
probability of the value being sampled.

	Introduction
	Background
	Methods
	Dataset and inclusion criteria
	Results of Hyperparameter Importance
	Limitations
	Conclusion
	Marginals of hyperparameters
	KDE priors of important hyperparameters

