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Abstract. As restricted quantum computers are slowly becoming a
reality, the search for meaningful first applications intensifies. In this
domain, one of the more investigated approaches is the use of a special
type of quantum circuit - a so-called quantum neural network – to
serve as a basis for a machine learning model. Roughly speaking, as the
name suggests, a quantum neural network can play a similar role to a
neural network. However, specifically for applications in machine learning
contexts, very little is known about suitable circuit architectures, or model
hyperparameters one should use to achieve good learning performance. In
this work, we apply the functional ANOVA framework to quantum neural
networks to analyze which of the hyperparameters were most influential
for their predictive performance. We analyze one of the most typically
used quantum neural network architectures. We then apply this to 7
open-source datasets from the OpenML-CC18 classification benchmark
whose number of features is small enough to fit on quantum hardware
with less than 20 qubits. Three main levels of importance were detected
from the ranking of hyperparameters obtained with functional ANOVA.
Our experiment both confirmed expected patterns and revealed new
insights. For instance, setting well the learning rate is deemed the most
critical hyperparameter in terms of marginal contribution on all datasets,
whereas the particular choice of entangling gates used is considered
the least important except on one dataset. This work introduces new
methodologies to study quantum machine learning models and provides
new insights toward quantum model selection.

Keywords: Hyperparameter importance · Quantum Neural Networks ·
Quantum Machine Learning.

1 Introduction

Quantum computers have the capacity to efficiently solve computational problems
believed to be intractable for classical computers, such as factoring [42] or
simulating quantum systems [12]. However, with the Noisy Intermediate-Scale
Quantum era [33], quantum algorithms are confronted with many limitations (e.g.,
the number of qubits, decoherence, etc). Consequently, hybrid quantum-classical
algorithms were designed to work around some of these constraints while targeting
practical applications such as chemistry [27], combinatorial optimization [10],
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and machine learning [2]. Quantum models can exhibit clear potential in special
datasets where we have theoretically provable separations with classical models [22,
18, 35, 46]. More theoretical works also study these models from a generalization
perspective [8]. Quantum circuits with adjustable parameters, also called quantum
neural networks, have been used to tackle regression [25], classification [14],
generative adversarial learning [50], and reinforcement learning tasks [18, 44].

However, the value of quantum machine learning on real-world datasets is
still to be investigated in any larger-scale systematic fashion [13, 32]. Currently,
common practices from machine learning, such as large-scale benchmarking,
hyperparameter importance, and analysis have been challenging tools to use
in the quantum community [39]. Given that there exist many ways to design
quantum circuits for machine learning tasks, this gives rise to a hyperparameter
optimization problem. However, there is currently limited intuition as to which
hyperparameters are important to optimize and which are not. Such insights can
lead to much more efficient hyperparameter optimization [5, 11, 26].

In order to fill this gap, we employ functional ANOVA [16, 45], a tool for
assessing hyperparameter importance. This follows the methodology of [34, 41],
who employed this across datasets, allowing for more general results. For this,
we selected a subset of several low-dimensional datasets from the OpenML-CC18
benchmark [4], that are matching the current scale of simulations of quantum
hardware. We defined a configuration space consisting of ten hyperparameters
from an aggregation of quantum computing literature and software. We extend
this methodology by an important additional verification step, where we verify the
performance of the internal surrogate models. Finally, we perform an extensive
experiment to verify whether our conclusions hold in practice. While our main
findings are in line with previous intuition on a few hyperparameters and the
verification experiments, we also discovered new insights. For instance, setting
well the learning rate is deemed the most critical hyperparameter in terms of
marginal contribution on all datasets, whereas the particular choice of entangling
gates used is considered the least important except on one dataset.

2 Background

In this section, we introduce the necessary background on functional ANOVA,
quantum computing, and quantum circuits with adjustable parameters for super-
vised learning.

2.1 Functional ANOVA

When applying a new machine learning algorithm, it is unknown which hyperpa-
rameters to modify in order to get high performances on a task. Several techniques
for hyperparameter importance exist, such as functional ANOVA [36]. The latter
framework can detect the importance of both individual hyperparameters and in-
teraction effects between different subsets of hyperparameters. We first introduce
the relevant notations following, based upon the work by [16].
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Fig. 1: Examples of marginals for a quantum neural network with validation accuracy as
performance on the banknote-authentication dataset. The hyperparameters correspond
to the learning rate used during training (a), and the number of layers, also known
as depth (b), and their combination (c). The hyperparameter values for learning rate
are on a log scale. When considered individually, we see for instance that depth and
learning rate should not be set too high for better performances. However, when grouped
together, the learning rate seems most influential.

Let A be an machine learning algorithm that has n hyperparameters with
domains Θ1, . . . , Θn and configuration space Θ = Θ1× . . .×Θn. An instantiation
of A is a vector θ = {θ1, . . . , θn} with θi ∈ Θi (this is also called a configuration
of A). A partial instantiation of A is a vector θU = {θi1 , . . . , θik} with a subset
U = {i1, . . . , ik} ⊆ N = [n] = {1, . . . , n} of the hyperparameters fixed, and the
values for other hyperparameters unspecified. Note that θN = θ.

Functional ANOVA is based on the concept of a marginal of a hyperparameter,
i.e., how a given value for a hyperparameter performs, averaged over all possible
combinations of the other hyperparameters’ values. The marginal performance
âU (θU ) is described as the average performance of all complete instantiations θ
that have the same values for hyperparameters that are in θU . As an illustration,
Fig. 1 shows marginals for two hyperparameters of a quantum neural network
and their union. As the number of terms to consider for the marginal can be very
large, the authors of [16] used tree-based surrogate regression models to calculate
efficiently the average performance. Such a model yields predictions ŷ for the
performance p of arbitrary hyperparameter settings.

Functional ANOVA determines how much each hyperparameter (and each
combination of hyperparameters) contributes to the variance of ŷ across the
algorithm’s hyperparameter space Θ, denoted V. Intuitively, if the marginal has
high variance, the hyperparameter is highly important to the performance measure.
Such framework has been used for studying the importance of hyperparameters
of common machine learning models such as support vector machines, random
forests, Adaboost, and Residual neural networks [34, 41]. We refer to [16] for a
complete description and introduce the quantum supervised models considered
in this study along with the basics of quantum computing.
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2.2 Supervised learning with Parameterized Quantum Circuits

Basics of quantum computing In quantum computing, computations are
carried out by the manipulation of qubits, similarly to classical computing
with bits. A system of n qubits is represented by a 2n-dimensional complex
vector in the Hilbert space H = (C2)⊗n. This vector describes the state of
the system |ψ⟩ ∈ H of unit norm ⟨ψ|ψ⟩ = 1. The bra-ket notation is used to
describe vectors |ψ⟩, their conjugate transpose ⟨ψ| and inner-products ⟨ψ|ψ′⟩ in H.
Single-qubit computational basis states are given by |0⟩ = (1, 0)T , |1⟩ = (0, 1)T ,
and their tensor products describe general computational basis states, e.g.,
|10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0).

The quantum state is modified with unitary operations or gates U acting on
H. This computation can be represented by a quantum circuit (see Fig. 2). When
a gate U acts non-trivially only on a subset S ⊆ [n] of qubits, we denote such
operation U⊗1[n]\S . In this work, we use, the Hadamard gate H, the single-qubit
Pauli gates Z, Y and their associated rotations RX , RY , RZ :

H =
1√
2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
, RZ(w) = exp

(
−iw

2
Z
)
,
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(
0 −i
i 0

)
, RY (w) = exp

(
−iw

2
Y
)
, X =

(
0 1
1 0

)
, RX(w) = exp

(
−iw

2
X
)
,

(1)

The rotation angles are denoted w ∈ R and the 2-qubit controlled-Z gate
= diag(1, 1, 1,−1) as well as the

√
iSWAP given by the matrix

1√
2


√
2 0 0 0
0 1 i 0
0 i 1 0

0 0 0
√
2

 . (2)

Measurements are carried out at the end of a quantum circuit to obtain
bitstrings. Such measurement operation is described by a Hermitian operator
O called an observable. Its spectral decomposition O =

∑
m λmPm in terms

of eigenvalues λm and orthogonal projections Pm defines the outcomes of this
measurement, according to the Born rule: a measured state |ψ⟩ gives the outcome
λm and gets projected onto the state Pm |ψ⟩ /

√
p(m) with probability p(m) =

⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ. The expectation value of the observable O with respect to
|ψ⟩ is Eψ[O] =

∑
m p(m)λm = ⟨O⟩ψ. We refer to [30] for more basic concepts of

quantum computing, and follow with parameterized quantum circuits.

Parameterized Quantum Circuits A parameterized quantum circuit (also
called ansatz ) can be represented by a quantum circuit with adjustable real-
valued parameters θ. The latter is then defined by a unitary U(θ) that acts
on a fixed n-qubit state (e.g., |0⊗n⟩). The ansatz may be constructed using
the formulation of the problem at hand (typically the case in chemistry [27]
or optimization [10]), or with a problem-independent generic construction. The
latter are often designated as hardware-efficient.
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Fig. 2: Parameterized quantum circuit architecture example with 4 qubits and
ring connectivity (qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a
ring). The first layer of RX is the encoding layer Uenc, taking a data instance
x ∈ R4 as input. It is followed by the entangling part with Ctrl-Z gates. Finally a
variational layer Uvar is applied. Eventually, we do measurements to be converted
into predictions for a supervised task. The dashed part can be repeated many
times to increase the expressive power of the model.

For a machine learning task, this unitary encodes an input data instance
x ∈ Rd and is parameterized by a trainable vector θ. Many designs exist but
hardware-efficient parameterized quantum circuits [19] with an alternating-layered
architecture are often considered in quantum machine learning when no infor-
mation on the structure of the data is provided. This architecture is depicted
in an example presented in Fig. 2 and essentially consists of an alternation of
encoding unitaries Uenc and variational unitaries Uvar. In the example, Uenc is
composed of single-qubit rotations RX , and Uvar of single-qubit rotations Rz, Ry
and entangling Ctrl-Z gates, represented as in Fig. 2, forming the entangling part
of the circuit. Such entangling part denoted Uent, can be defined by connectivity
between qubits.

These parameterized quantum circuits are similar to neural networks where
the circuit architecture is fixed and the gate parameters are adjusted by a classical
optimizer such as gradient descent. They have also been named quantum neural
networks. The parameterized layer can be repeated multiple times, which increases
its expressive power like neural networks [43]. The data encoding strategy (such
as reusing the encoding layer multiple times in the circuit - a strategy called data
reuploading) also influences the latter [31, 40].

Finally, the user can define the observable(s) and the post-processing method
to convert the circuit outputs into a prediction in the case of supervised learning.
Commonly, observables based on the single-qubit Z operator are used. When
applied on m ≤ n qubits, the observable is represented by a 2m − 1 square
diagonal matrix with {−1, 1} values, and is denoted O = Z ⊗ Z ⊗ · · · ⊗ Z.

Having introduced parameterized quantum circuits, we present the hyperpa-
rameters of the models, the configuration space, and the experimental setup for
our functional ANOVA-based hyperparameter importance study.
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3 Methods

In this section, we describe the network type and its hyperparameters and define
the methodology that we follow.

3.1 Hyperparameters and configuration space

Many designs have been proposed for parameterized quantum circuits depending
on the problem at hand or motivated research questions and contributions. Such
propositions can be aggregated and translated into a set of hyperparameters and
configuration space for the importance study. As such, we first did an extensive
literature review on parameterized quantum circuits for machine learning [2,
14, 15, 17, 18, 21, 23–25, 32, 38, 44, 47–50] as well as quantum machine learning
software [1, 3, 7]. This resulted in a list of 10 hyperparameters, presented in Table 1.
We choose them so we balance between having well-known hyperparameters that
are expected to be important, and less considered ones in the literature. For
instance, many works use Adam [20] as the underlying optimizer, and the learning
rate should generally be well chosen. On the contrary, the entangling gate used
in the parameterized quantum circuit is generally a fixed choice.

From the literature, we expect data encoding strategy/circuit to be important.
We choose two main forms for Uenc. The first one is the hardware-efficient⊗n

i=1RX(xi). The second takes the following form from [3, 17, 14]:

Uenc(x) = Uz(x)H
⊗n (3)

Uz(x) = exp

−iπ

 n∑
i=1

xiZi +

n∑
j=1,
j>i

xixjZiZj


. (4)

Using data-reuploading [31] results in a more expressive model [40], and this
was also demonstrated numerically [18, 31, 44]. Finally, pre-processing of the input
is also sometimes used in encoding strategies that directly feed input features
into Pauli rotations. It also influences the expressive power of the model [40]. In
this work, we choose a usual activation function tanh commonly used in neural
networks. We do so as its range is [−1, 1], which is the same as the data features
during training after the normalization step.

The list of hyperparameters we take into account is non-exhaustive. It can be
extended at will, at the cost of more software engineering and budget for running
experiments.

3.2 Assessing Hyperparameter Importance

Once the list of hyperparameters and configuration space are decided, we perform
the hyperparameter importance analysis with the functional ANOVA framework.
Assessing the importance of the hyperparameters boils down to four steps. Firstly,
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Table 1: List of hyperparameters considered for hyperparameter importance for
quantum neural network, as we named them in our Tensorflow-Quantum code.

Hyperparameter Values Description

Adam learning rate [10−4, 0.5]
(log)

The learning rate with which the quantum neural net-
work starts training. The range was taken from the
automated machine learning library Auto-sklearn [11].
We uniformly sample taking the logarithmic scale.

batchsize 16,
32,
64

Number of samples in one batch of Adam used during
training

depth {1, 2,
· · · , 10}

Number of variational layers defining the circuit

is data encoding
hardware efficient

True,
False

Whether we use the hardware-efficient circuit⊗n
i=1 RX(xi) or an IQP circuit defined in Eq.3 to en-

code the input data.
use reuploading True,

False
Whether the data encoding layer is used before each
variational layer or not.

have less rotations True,
False

If True, only use layers of RY , RZ gates as the varia-
tional layer. If False, add a layer of RX gates.

entangler operation cz,
sqiswap

Which entangling gate to use in Uent

map type ring,
full,
pairs

The connectivity used for Uent. The ring connectivity
use an entangling gate between consecutive indices (i, i+
1), i ∈ {1, . . . , n} of qubits. The full one uses a gate
between each pair of indices (i, j), i < j. Pairs connects
even consecutive indices first, then odd consecutive ones.

input activation
function

linear,
tanh

Whether to input tanh(xi) as rotations or just xi.

output circuit 2Z,
mZ

The observable(s) used as output(s) of the circuit. If 2Z,
we use all possible pairs of qubit indices defining Z ⊗Z.
If mZ, the tensor product acts on all qubits. Note we
do not use single-qubit Z observables although they
are quite often used in the literature. Indeed, they are
provably not using the entire circuit when it is shallow.
Hence we decided to use Z ⊗ Z instead. Also, a single
neuron layer with a sigmoid activation function is used
as a final decision layer similar to [38].

the models are applied to various datasets by sampling various configurations
in a hyperparameter optimization process. The performances or metrics of the
models are recorded along. The sampled configurations and performances serve
as data for functional ANOVA. As functional ANOVA uses internally tree-based
surrogate models, namely random forests [6], we decided to add an extra step with
reference to [34]. As the second step, we verify the performance of the internal
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surrogate models. We cross-evaluate them using regression metrics commonly
used in surrogate benchmarks [9]. Surrogates performing badly at this step are
then discarded from the importance analysis, as they can deteriorate the quality
of the study. Thirdly, the marginal contribution of each hyperparameter over all
datasets can be then obtained and used to infer a ranking of their importance.
Finally, a verification step similar to [34] is carried out to confirm the inferred
ranking previously obtained. We explain such a procedure in the following section.

3.3 Verifying Hyperparameter Importance
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Fig. 3: Performances of 1 000 quantim
machine learning models defined by dif-
ferent configurations of hyperparame-
ters over each dataset. The metric of
interest in the study is the 10-fold cross-
validation accuracy. We take the best-
achieved metric per model trained over
100 epochs.

When applying the functional ANOVA
framework, an extra verification step is
added to confirm the output from a more
intuitive notion of hyperparameter impor-
tance [34]. It is based on the assumption
that hyperparameters that perform badly
when fixed to a certain value (while other
hyperparameters are optimized), will be
important to optimize. The authors of [34]
proposed to carry out a costly random
search procedure fixing one hyperparam-
eter at a time. In order to avoud a bias
to the chosen value to which this hyperpa-
rameter is fixed, several values are chosen,
and the optimization procedure is carried
out multiple times. Formally, for each hy-
perparameter θj we measure y∗j,f as the
result of a random search for maximiz-
ing the metric, fixing θj to a given value
f ∈ Fj , Fj ⊆ Θj . For categorical θj with
domain Θj , Fj = Θj is used. For numeric
θj , the authors of [34] use a set of 10 val-
ues spread uniformly over θj ’s range. We
then compute y∗j = 1

|Fj |
∑
f∈Fj

y∗j,f , representing the score when not optimizing

hyperparameter θj , averaged over fixing θj to various values it can take. Hyper-
parameters with lower value for y∗j are assumed to be more important, since the
performance should deteriorate more when set sub-optimally.

In our study, we extend this framework to be used on the scale of quantum
machine learning models. As quantum simulations can be very expensive, we
carry out the verification experiment by using the predictions of the surrogate
instead of fitting new quantum models during the verification experiment. The
surrogates yield predictions ŷ for the performance of arbitrary hyperparameter
settings sampled during a random search. Hence, they serve to compute y∗j,f .
This is also why we assessed the quality of the built-in surrogates as the second
step. Poorly-performing surrogates can deteriorate the quality of the random
search procedure.
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Table 2: List of datasets used in this study. The number of features is obtained
after a usual preprocessing used in machine learning methods, such as one-hot-
encoding.

Dataset
OpenML
Task ID

Number of
features

Number of
instances

breast-w 15 9 699
diabetes 37 8 768
phoneme 9952 5 5 404
ilpd 9971 11 583
banknote-authentication 10093 4 1 372
blood-transfusion-service-center 10 101 4 748
wilt 146820 5 4 839

4 Dataset and inclusion criteria

To apply our quantum models and study the importance of the previously
introduced hyperparameters, we consider classical datasets. Similarly to [34],
we use datasets from the OpenML-CC18 benchmark suite [4]. In our study, we
consider only the case where the number of qubits available is equal to the number
of features, a common setting in the quantum community. As simulating quantum
circuits is a costly task, we limit this study to the case where the number of
features is less than 20 after preprocessing1. Our first step was to identify which
datasets fit this criterion. We include all datasets from the OpenML-CC18 that
have 20 or fewer features after categorical hyperparameters have been one-hot-
encoded, and constant features are removed. Afterward, the input variables are
also scaled to unit variance as a normalization step. The scaling constants are
calculated on the training data and applied to the test data.

The final list of datasets is given in Table 2. In total, 7 datasets fitted the
criterion considered in this study. For all of them, we picked the OpenML Task
ID giving the 10-fold cross-validation task. A quantum model is then applied
using the latter procedure, with the aforementioned preprocessing steps.

5 Results

In this section, we present the results obtained using the hyperparameters and
the methodology defined in Section 3 with the datasets described in Section 4.
First, we show the distribution of performances obtained during a random search
where configurations are independently sampled for each dataset. Then we carry
out the surrogate verification. Finally, we present the functional ANOVA results

1 A 10-fold cross-validation run in our experiment takes on average 262 minutes for
100 epochs with Tensorflow Quantum [7].
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in terms of hyperparameter importance with marginal contributions and the
random search verification per hyperparameter.

5.1 Performance distributions per dataset

For each dataset, we sampled independently 1 000 hyperparameter configurations
and run the quantum models for 100 epochs as budget. As a performance
measure, we recorded the best validation accuracy obtained over 100 epochs.
Fig. 3 shows the distribution of the 10-fold cross-validation accuracy obtained
per dataset. We observe the impact of hyperparameter optimization by the
difference between the least performing and the best model configuration. For
instance, on the wilt dataset, the best model gets an accuracy close to 1, and the
least below 0.25. We can also see that some datasets present a smaller spread
of performances. ilpd and blood-transfusion-service-center are in this case. It
seems that hyperparameter optimization does not have a real effect, because
most hyperparameter configurations give the same result. As such, the surrogates
could not differentiate between various configurations. In general, hyperparameter
optimization is important for getting high performances per dataset and detecting
datasets where the importance study can be applied.

5.2 Surrogate verification

Functional ANOVA relies on an internal surrogate model to determine the
marginal contribution per hyperparameter. If this surrogate model is not accurate,
this can have a severe limitation on the conclusions drawn from functional
ANOVA. In this experiment, we verify whether the hyperparameters can explain
the performances of the models. Table 3 shows the performance of the internal
surrogate models. We notice low regression scores for the two datasets (less than
0.75 R2 scores). Hence we remove them from the analysis.

5.3 Marginal contributions

For functional ANOVA, we used 128 trees for the surrogate model. Fig. 4(a,b)
shows the marginal contribution of each hyperparameter over the remaining 5
datasets. We distinguish 3 main levels of importance. According to these results,
the learning rate, depth, and the data encoding circuit and reuploading strategy
are critical. These results are in line with our expectations. The entangler gate,
connectivity, and whether we use RX gates in the variational layer are the least
important according to functional ANOVA. Hence, our results reveal new insights
into these hyperparameters that are not considered in general.

5.4 Random search verification

In line with the work of [34], we perform an additional verification experiment
that verifies whether the outcomes of functional ANOVA are in line with our
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Table 3: Performances of the surrogate models built within functional ANOVA
over a 10-fold cross-validation procedure. We present the average coefficient of
determination (R2), root mean squared error (RMSE), and Spearman’s rank
correlation coefficient (CC). These are common regression metrics for bench-
marking surrogate models on hyperparameters [9]. The surrogates over ilpd and
blood-transfusion-service-center obtain low scores (less than .75 R2), hence we
remove them from the study.

Dataset R2 score RMSE CC

breast-w 0.8663 0.0436 0.9299
diabetes 0.7839 0.0155 0.8456
phoneme 0.8649 0.0285 0.9282
ilpd 0.1939 0.0040 0.4530
banknote-authentication 0.8579 0.0507 0.9399
blood-transfusion-service-center 0.6104 0.0056 0.8088
wilt 0.7912 0.0515 0.8015
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Fig. 4: The marginal contributions per dataset are presented as a) the variance contri-
bution and b) the difference between the minimal and maximal value of the marginal of
each hyperparameter. The hyperparameters are sorted from the least to most important
using the median. We distinguish from the plot 3 main levels of importance.

expectations. However, the verification procedure involves an expensive, post-hoc
analysis: a random search procedure fixing one hyperparameter at a time. As our
quantum simulations are costly, we used the surrogate models fitted on the current
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dataset considered over the 1 000 configurations obtained initially to predict the
performances one would obtain when presented with a new configuration.

Fig. 5 shows the average rank of each run of random search, labeled with
the hyperparameter whose value was fixed to a default value. A high rank im-
plies poor performance compared to the other configurations, meaning that
tuning this hyperparameter would have been important. We witness again
the 3 levels of importance, with almost the same order obtained. However,
the input activation function is deemed more important while batchsize is less.
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Fig. 5: Verification experiment of the
importance of the hyperparameters. A
random search procedure up to 500 it-
erations excluding one parameter at a
time is used. A lower curve means the
hyperparameter is deemed less impor-
tant.

More simulations with more datasets
may be required to validate the impor-
tance. However, we retrieve empirically
the importance of well-known hyperparam-
eters while considering less important ones.
Hence functional ANOVA becomes an in-
teresting tool for quantum machine learn-
ing in practice.

6 Conclusion

In this work, we study the importance of
hyperparameters related to quantum neu-
ral networks for classification using the
functional ANOVA framework. Our ex-
periments are carried out over OpenML
datasets that match the current scale
of quantum hardware simulations (i.e.,
datasets that have at most 20 features
after pre-processing operators have been
applied, hence using 20 qubits). We se-
lected and presented the hyperparameters
from an aggregation of quantum computing literature and software. Firstly, hyper-
parameter optimization highlighted datasets where we observed high differences
between configurations. This underlines the importance of hyperparameter opti-
mization for these datasets. There were also datasets that showed little difference.
These led us to extend the methodology by adding an additional verification
step of the internal surrogate performances. From our results, we distinguished 3
main levels of importance. On the one hand, Adam’s learning rate, depth, and
the data encoding strategy are deemed very important, as we expected. On the
other hand, the less considered hyperparameters such as the particular choice of
the entangling gate and using 3 rotation types in the variational layer are in the
least important group. Hence, our experiment both confirmed expected patterns
and revealed new insights for quantum model selection.

For future work, we plan to further investigate methods from the field of
automated machine learning to be applied to quantum neural networks [5, 26,
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11]. Indeed, our experiments have shown the importance of hyperparameter
optimization, and this should become standard practice and part of the protocols
applied within the community. We further envision functional ANOVA to be
employed in future works related to quantum machine learning and understanding
how to apply quantum models in practice. For instance, it would be interesting
to consider quantum data, for which quantum machine learning models may
have an advantage. Plus, extending hyperparameter importance to techniques
for scaling to a large number of features with the number of qubits, such as
dimensionality reduction or divide-and-conquer techniques, can be left for future
work. Finally, this type of study can also be extended to different noisy hardware
and towards algorithm/model selection and design. If we have access to a cluster
of different quantum computers, then choosing which hardware works best for
machine learning tasks becomes possible. One could also extend our work with
meta-learning [5], where a model configuration is selected based on meta-features
created from dataset features. Such types of studies already exist for parameterized
quantum circuits applied to combinatorial optimization [28, 29, 37].
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Quantum machine learning beyond kernel methods. CoRR abs/2110.13162 (2021)

18. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Parametrized quantum
policies for reinforcement learning. In: Advances in Neural Information Processing
Systems 34. pp. 28362–28375 (2021)

19. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M.,
Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2015)

21. Liu, J.G., Wang, L.: Differentiable learning of quantum circuit born machines.
Physical Review A 98, 062324 (2018)

22. Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up in
supervised machine learning. Nature Physics 17(9), 1013–1017 (2021)

23. Marshall, S.C., Gyurik, C., Dunjko, V.: High dimensional quantum machine learning
with small quantum computers. CoRR abs/2203.13739 (2022)

24. Mensa, S., Sahin, E., Tacchino, F., Barkoutsos, P.K., Tavernelli, I.: Quantum
machine learning framework for virtual screening in drug discovery: a prospective
quantum advantage. CoRR abs/2204.04017 (2022)

25. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical
Review A 98, 032309 (2018)

26. Mohr, F., van Rijn, J.N.: Learning curves for decision making in supervised machine
learning - A survey. CoRR abs/2201.12150 (2022)

27. Moll, N., et al: Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Science and Technology 3(3), 030503 (2018)

28. Moussa, C., Calandra, H., Dunjko, V.: To quantum or not to quantum: towards
algorithm selection in near-term quantum optimization. Quantum Science and
Technology 5(4), 044009 (2020)
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