
LCDB 1.0: An Extensive Learning Curves
Database for Classification Tasks

Felix Mohr1, Tom J. Viering2(�), Marco Loog2,3, and Jan N. van Rijn4

1 Universidad de La Sabana, Colombia
felix.mohr@unisabana.edu.co

2 Delft University of Technology, The Netherlands
{t.j.viering,m.loog}@tudelft.nl

3 University of Copenhagen, Denmark
4 Leiden University, The Netherlands
j.n.van.rijn@liacs.leidenuniv.nl

Abstract. The use of learning curves for decision making in supervised
machine learning is standard practice, yet understanding of their be-
havior is rather limited. To facilitate a deepening of our knowledge, we
introduce the Learning Curve Database (LCDB), which contains empir-
ical learning curves of 20 classification algorithms on 246 datasets. One
of the LCDB’s unique strength is that it contains all (probabilistic) pre-
dictions, which allows for building learning curves of arbitrary metrics.
Moreover, it unifies the properties of similar high quality databases in
that it (i) defines clean splits between training, validation, and test data,
(ii) provides training times, and (iii) provides an API for convenient ac-
cess (pip install lcdb). We demonstrate the utility of LCDB by analyzing
some learning curve phenomena, such as convexity, monotonicity, peak-
ing, and curve shapes. Improving our understanding of these matters is
essential for efficient use of learning curves for model selection, speeding
up model training, and to determine the value of more training data.

Keywords: Learning Curves · AutoML · Meta-learning

1 Introduction

Learning curves provide the prediction performance of a learning algorithm
against the dataset size it has used for training. Such curves provide essential
information for decision making [27, 35]. For example, they can be extrapolated
to determine the value of gathering more data or can be used to speed up train-
ing by selecting a smaller dataset size that still reaches sufficient accuracy. In
addition, learning curves can provide useful information for model selection [2,
26]. Particularly important questions concern the performance in the limit and
the training set size at which the learning curves of two algorithms cross, as
this can tell us when one learning algorithm should be preferred over the other.
To make use of learning curves for these purposes, it is essential that we know
their shape (exponential, power law, etc.) so that we can reliably extrapolate or
interpolate them for these tasks.



Unfortunately, there is a gap between common assumptions made by meth-
ods used for the above purposes and empirical evidence that would justify those
assumptions. For instance, a common assumption is that learning curves be-
have well, i.e., more data leads to better performance. This assumptions is made
for example in the extrapolation of learning curves for decision making [26, 8,
17]. However, a recent study [35] has collected a variety of results from litera-
ture, which illustrate that learning curves can display surprising shapes, such as
multiple local minima, peaks, or curves that deteriorate with more data. These
examples all illustrate that, in practice, there are clear gaps in our understanding
of learning curves and their potential behavior. This limits the practical use of
such curves, since correct extrapolations or interpolations depend crucially on
the accuracy of learning curve models.

Empirical knowledge on learning curves is surprisingly scarce and often af-
flicted with severe limitations. Two recent surveys [35, 27] give an extensive
overview of the learning curve literature including empirical studies. One of the
main problems of current studies is that the number of datasets and/or algo-
rithms considered is small: Gu et al. [14] study two classifiers and eight datasets,
Perlich et al. [30] examine two classifiers and 36 datasets, Li [23] use eight classi-
fiers on three datasets, and recently Brumen et al. [3] considered four classifiers
on 130 datasets. Other issues include that (i) the data acquired is not openly
shared, hence not easily accessible, (ii) the focus is on specific performance met-
rics, or (iii) only a single train/test split is considered, providing a weak estimate
for the out-of-sample learning curve and limiting the reliability of analysis.

To overcome these limitations and facilitate research on learning curves and
their behavior, this work introduces the Learning Curve Database (LCDB), a
high quality and extensive database of classification task learning curves. The
current version of LCDB provides already over 150GB of ground truth and pre-
diction vectors of 20 classification algorithms from the scikit-learn library on 246
datasets. These prediction vectors have been recorded for models being trained
on an amount of instances (called anchors) that are rounded multiples of

√
2.

Instead of training each learner only once at each anchor, we created 25 splits
in order to be able to obtain more robust insights into the out-of-sample per-
formance. This makes it, in various respects, the biggest database for learning
curves available today.

Note that, in the context of neural networks, a database called LCBench
(Learning Curve Benchmark) [37] contains the performance of neural nets versus
the number of epochs. Following [35] we call such curves training curves, to
illustrate the difference with our learning curves which plot performance versus
training set size. Because the LCDB investigates learning curves, and LCBench
investigates training curves, these databases are incompareable.

LCDB is the first to provide (probabilistic) predictions together with the
ground-truth labels. The availability of probabilistic predictions makes it possible
to compute one’s own choice of metrics, like AUROC or log-loss, rather then have
to deal with precomputed ones. Curve data is provided for 25 stratified splits at
each anchor for training, validation, and test data, enabling the construction of



different curve types. Moreover, runtimes are provided for model training and
prediction to study its dependence on sample size.

Other benefits of LCDB are that it enables (i) the a-posteriori analysis of
the shape of curves for different learners and of function classes describing such
shapes, (ii) the study of the relationship between training and test curves, (iii)
the simultaneous analysis of learning curves, e.g., whether or not they intersect
or if such intersection can be predicted, (iv) research into principled models for
the runtime behavior of the algorithms, (v) benchmarking algorithm selection
problems, and (vi) quick insights into the “difficulty” of datasets, which can be
useful for the design of such benchmarks.

To showcase the utility of LCDB, we provide initial results on three of the
above-mentioned analyses: (i) a study of the presence of three shape properties:
monotonicity, convexity, and peaking, (ii) the identification of crossing behavior
for all pairs of learners on all datasets, and (iii) an analysis of the goodness of
fit of a set of model classes, both for the case of capturing the whole curve and
predicting higher anchor performance from a set of lower anchor performances.
A major insight of the study is that there is great support for the hypothesis
that error-rate curves are largely (even though usually not perfectly) monotonic,
convex, and mostly free of peaks (double descent). A second major insight is
that typical learning curve models considered in literature, such as the 2 or 3
parameter power law, exponential and logarithmic models, may be significantly
outperformed by 4 parameter models when used for extrapolation. We find that
mmf4 performs the best overall with wbl4 a close second, but our results should
be interpreted with care, as we ran into various issues with fitting.

2 The Learning Curve Database

To understand and motivate the way how LCDB is designed, Sect. 2.1 briefly
recalls the formal definition of the learning curves and terminology. While an
intuition on learning curves is common sense, recent surveys [35, 27] show that
there is a variety of performance curves (with similar terminology), which can
quickly lead to confusion on what the exact subject of interest is. Our learning
curves plot generalization performance versus training set size.

2.1 Formal Background on Learning Curves

Out-of-Sample Learning Curves. We consider learning curves in the con-
text of supervised machine learning. We follow the definition of Mohr and van
Rijn [27], which assumes some instance space X and a label space Y. A dataset
D ⊂ {(x, y) | x ∈ X , y ∈ Y} is a finite relation between the instance space and
the label space. We denote with D the set of all possible datasets. A learning
algorithm is a function a : D×Ω → H , where H = {h | h : X → Y} is the space
of hypotheses and Ω is a source of randomness, such as the random seed.

The performance of a learning algorithm is the performance of the hypothesis
it produces. For a hypothesis h, this performance is measured as Rout(h) :=



∫
X ,Y loss(y, h(x)) dPX×Y . Here, loss(y, h(x)) ∈ R is the penalty for predicting

h(x) for instance x ∈ X when the true label is y ∈ Y, and PX×Y is the joint
probability measure PX×Y on X × Y underlying the analyzed data. To assess
the performance of a learner a, we average the performance once more over the
input data and randomness of the learner, which determine the hypothesis:

C(a, s) =
∫

Rout(a(Dtr , ω))dPs
X×YdPΩ , (1)

where dPs
X×Y is the distribution over i.i.d. sampled training sets Dtr of size s.

Considering Eq. (1) as a function of the number of observations for a fixed
learner a yields a learning curve of learner a. That is, the observation learning
curve is the function C(a, ·) : N → R, which is a sequence of performances,
one for each training size. There are other types of closely related curves, most
notably those based on the number of iterations or epochs used during training
(training curves), which we do not consider. See [35, 27] for details.

Empirical Learning Curves. While we are generally interested in the true
learning curve defined in Eq. (1), we cannot determine it in practice. First, the
out-of-sample error Rout is unknown because the measure PX×Y is unknown.
Next, the necessity to average over the oftentimes uncountable set of all possible
train sets and random seeds adds additional problems.

In practice, we therefore have to rely on empirical learning curves. An em-
pirical learning curve is any set of estimates of a true learning curve at different
training set sizes, which are called anchors. At anchor s, this estimate is obtained
by (i) creating one (hold-out) or several (cross-validation) splits (Dtr ,Dte) such
that |Dtr | = s, (ii) obtaining for each such split a hypothesis via h = a(Dtr , ω)
using a unique random seed each time, and (iii) then computing the empiri-
cal risk Rin(h, D̃) := 1

|D̃|

∑
(x,y)∈D̃ loss(y, h(x)). Averaging these estimates for

D̃ = Dte yields an estimate of the curve in Eq. (1) at anchor s:

Ĉ(s) := Ĉ(a,D , s) =
1

k

k∑
i=1

Rin(a(D
i
tr, ωi),D

i
te). (2)

Since it is usually clear from the context which learner a and dataset D are used,
we typically omit them in the notation and only write Ĉ(s). Note that we can
also use D̃ = Dtr to approximate a train curve, or even use a mixture of both,
instead of the test performance curve.

LCDB stores, for all points in D , the ground truth and prediction obtained
from a trained learner (hypothesis) a(D i

tr, ωi) for various splits. With this, the
empirical learning curve in Eq. (2) can be recovered for any concrete measure
Rin, and replacing D i

te with D i
tr also allows us to compute the curve of training

performances. Thereby and in contrast to previous works relying only on one split
[3], LCDB can be used to approximate the out-of-sample curve more reliably.



...

...

Fig. 1. Procedure to create training data for learners in LCDB: First an 90%/10%
outer split is sampled. The 90% learning data fold is further sampled into different
independent 90%/10% splits for essential training and validation respectively. Training
data at different anchors is sampled independently from D i,j

train.

2.2 Data Collection Methodology

The goal of LCDB is to provide learning curves for model selection processes. In
model selection, it is usually not enough to have test data, but at time of selecting
a model, one typically evaluates models, which requires validation data. If the
model selection technique itself is supposed to be cross-validated, one arrives at
a concept called nested cross validation. To simulate such processes, we need an
explicit separation between training, validation and test data.

With this in mind, LCDB does not increase the data available for training
in a monotonic way, as for example employed in [3], but assumes independent
training portions at every anchor. That is, when training a classifier on the set
S1 of instances and later on the set S2 of instances, where |S1| < |S2|, then we do
not want that S2 ⊃ S1. Instead, we conceive that the training samples used for
S1 and S2 are drawn independently from a pool of available training instances.
While a monotonic approach makes sense in the context of data acquisition, for
model selection we are interested in estimates of the out-of-sample performance,
which is not compatible with systematic dependencies of the training data used
at different points on the learning curve.

To reach this goal and also incorporate the idea of validation data, LCDB
is based on nested splits itself. The procedure is illustrated in Fig. 1. On each
dataset, we consider m outer splits of 90%/10%. These splits help to assess the
performance of, say, model selection approaches in a simulated cross-validation.
Note that all splits in LCDB are stratified. The test folds do not need to be
disjoint and we simply create several independent hold-out splits. Since we need
to store all the predictions, the test fold is essentially bounded to 5000 instances
in LCDB, which we consider to be large enough for a satisfying approximation.
Now let (D i

learn,D
i
test) the i-th such split. From the learning set D i

learn, n further
inner splits of 90%/10% are derived. The inner splits can serve, for instance, to
simulate cross-validations conducted by the model selection approach itself. Let
D i,j = (D i,j

train,D
i,j
valid) be the j-th such inner split derived from the i-th outer

split. Note that [3] neither compute outer nor several inner splits but basically
create one 80%/20% split.

For each training set, we compute the prediction vectors and probabilities
according to a geometric schedule [31] for all three sets: training, validation, and
test. Formally, for each train set D i,j

train with 1 ≤ i ≤ m, 1 ≤ j ≤ n, we create



a series D i,j,1
train,D

i,j,2
train, . . . so that sk := |D i,j,k

train| = ⌈2 7+k
2 ⌉, where the smallest

dataset size is 16 (for k = 1). A learner is trained using D i,j,k
train, and then the

prediction vectors (and probabilities) are computed for all instances in D i,j,k
train,

D i,j
valid, and D i

test, respectively. From these, it is possible to compute arbitrary
metrics on the training data, the validation data, and the test data afterwards.
In the initial setup of LCDB, we have m = n = 5; further splits can be reliably
added in the future thanks to the seeded architecture of the LCDB code.

Note that, at the time of working with LCDB, the distinction between outer
and inner splits is optional and can be omitted if one simply wants to get em-
pirical learning curves for learners. To obtain the performance at a particular
anchor, one can proceed as follows. For each of the m × n train sets D i,j,k

train for

anchor sk, the prediction vectors of the validation set D i,j
valid and the test set

D i
test after having trained on D i,j,k

train are available. These can simply be merged
in order to compute some metric, say, the error rate at sk. This gives m · n
performance estimates for each anchor.

2.3 Datasets

In this initial version, LCDB contains learning curves for 246 datasets. The
large majority of these datasets was already used in AutoML [9] or is part of
published benchmarks [13]. Our main criterion for the source of the data is
API-based reproducibility, in order to enable a closed algorithm that is able to
fully reproduce results without the need of manually downloading the datasets.
To this end, we chose OpenML.org [34] as a source, which, in contrast to other
repositories like UCI, offers an official API in both Java and Python. The datasets
themselves represent a large range over various properties such as the number
of instances, features, and classes. For details, we refer to the supplement.

Many datasets need to be preprocessed before learning can take place. To
cope with that, we applied two (admittedly arbitrary) pre-processing steps. First,
all missing values were replaced by the column median for numerical and by the
column mode for categorical attributes. Then, all categorical attributes were
binarized into a Bernoulli encoding. Features were not scaled, as we have not
implemented pipelines yet. Classifiers sensitive to scaling of features (such as
Nearest Neighbours, SVM’s, etc.) may be disadvantaged.

2.4 Classifiers

In this initial work, we considered only classifiers from the scikit-learn library
[29]. Using their default hyper-parameters, the 20 considered classifiers are (we
here show class names and, in parentheses, abbreviations used in figures and the
discussion): SVC (linear, poly, rbf, sigmoid), LinearDiscriminantAnalysis (LDA),
QuadraticDiscriminantAnalysis (QDA), ExtraTreesClassifier (Extra Trees), Gra-
dientBoostingClassifier (Grad. Boost), RandomForestClassifier (RF), Logisti-
cRegression (LR), PassiveAggressiveClassifier (PA), Perceptron, RidgeClassifier



(Ridge), SGDClassifier (SGD), BernoulliNB, MultinomialNB, KNeighborsClas-
sifier (kNN), MLPClassifier (MLP), DecisionTreeClassifier (DT), ExtraTreeClas-
sifier (Extra Tree). Note the difference between ExtraTreeClassifier (single tree)
and ExtraTreesClassifier (ensemble).

2.5 Availability via PyPI (pip)

The learning curves are available5 in two formats. First, there are the raw sets of
ground truth and prediction vectors, which can be downloaded in separate zip
files, one for each dataset. These files are space-consuming as for some datasets,
the learning curve files accumulate to more than 10GB when unpacked. The
second option is to download learning curves that have been pre-compiled for
specific metrics such as accuracy, log-loss, and the F1-measure. In the latter
format, the data can also be accessed directly through an API in Python via a
package that can be installed with pip install lcdb.

3 Illustrative Usage of LCDB

To efficiently perform model selection, or to estimate the added value of more
data collection, etc., it is essential to develop good and accurate insight into
learning curve behaviour. We consider the following three, relevant questions.

1. What is the probability, for each learner, to exhibit a learning curve that is
(i) monotone, (ii) convex, or (iii) peaked?

2. What is the probability that learner A starts off worse than learner B, but
exhibits better performance on the full data, i.e., the learning curve of A
crosses the one of B (from above)?

3. What is the goodness of fit/extrapolation performance of some learning curve
models when interpolating or extrapolating the curve?

We focus on error-rate curves, but LCDB can easily facilitate other metrics.
Our interest is in answering the above questions for the true, i.e., out-of-sample
learning curves, as defined in Eq. (1), and LCDB allows us to estimate these

by averaged empirical curves Ĉ as per Eq. (2). The mean is here formed across
both the different outer and inner splits of the data. Since the initial version of
LCDB comes with 5 · 5 = 25 training sets, we get a much better estimate of the
mean compared to previous works, such as [3] that only consider a single split.
In what follows, we formulate the necessary definitions immediately in terms of
Ĉ as a proxy of C.

3.1 Curve Properties: Monotonicity, Convexity, and Peaking

Background. Knowledge about properties like monotonicity [24], convexity
[26], and peaking is important to justify particular extrapolation techniques

5 Raw data: https://openml.github.io/lcdb/; Code: https://github.com/fmohr/lcdb



based on optimistic extrapolation [26] or curve models that assume such shapes,
like the inverse power law, exponential, or logarithmic functions [8, 17]. We here
consider decreasing learning curve models as typically expected for error rates,
but the modification of our experiments to alternative models is straightforward.

While all three properties are binary and either are or are not present for
a concrete function, it is helpful to consider some degree of monotonicity and
of convexity. For instance, if the learning curve only has some tiny oscillation
somewhere in the curve but is monotone and convex anywhere else, we would
still want to consider it largely well-behaved, even though not perfect.

Clearly, there is no unique way in which a degree of monotonicity or convex-
ity can be measured and we merely propose some specific operationalizations.
Whether or not these are meaningful eventually depends on the context of appli-
cation. Now, assuming descending curves (an assumption implicit in its original
definition), we take as the degree of violation of monotonicity the highest positive
increase observed at any anchor on the empirical curve:

ϵmono = max
si,i<T

{
max

(
0, Ĉ(si+1)− Ĉ(si)

)}
,

where T is the highest available anchor index. Similarly, we compute such a
violation for convexity:

ϵconv = max
si,i<T−1

{
max

(
0, Ĉ(si+1)− 1

2

(
Ĉ(si) + Ĉ(si+2)

))}
.

We note that, for learning curves over a finite range of anchors, monotonicity
and convexity are mutually neither necessary nor sufficient criteria. To illustrate
this, the bottom right plot in Fig. 2 shows two examples of learning curves
that are monotone but not convex and two examples that are convex but not
monotonically decreasing.

Peaking [35], also called sample-wise double descent/ascent, is a classic phe-
nomenon, currently studied in neural networks [25, 28]. It refers to the curve
showing worsened performance, after initial performance improvements, before
eventually starting to consistently improve again at larger anchor sizes. It has
been observed for different types of performance curves, including learning curves
as functions of the sample size used for training [28]. In a sense, peaking is a
special form of non-monotonicity that often occurs at a specific location in the
learning curve, typically around the point where model complexity and sample
size coincide. Given its prominence, we study it also separately. While one could,
in principle, measure the extent of temporary deterioration, we here choose to
measure whether such a phenomenon occurs or not in a binary fashion:

peak =
r
∃i < T : Ĉ(si) < Ĉ(si+1)) ∧

(
∃u > i,∀v ≥ u : Ĉ(sv−1) > Ĉ(sv))

)z
.

Results. The top row of Fig. 2 summarizes the monotonicty (left) and convex-
ity (right) results over all learners and datasets, effectively giving the general
cumulative distribution of the maximum violation. The different colors show



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Maximum average violation of monotonicity

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Empirical Cumulative Density of Compliance with Monotonicity

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Maximum average violation of convexity

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Empirical Cumulative Density of Compliance with Convexity

SV
C 

(li
ne

ar
)

SV
C 

(p
ol

y)
SV

C 
(rb

f)
SV

C 
(s

ig
m

.)
LD

A
QD

A
Ex

tra
 Tr

ee
s

Gr
ad

. B
oo

st RF LR PA
Pe

rc
ep

tro
n

Ri
dg

e
SG

D
Be

rn
ou

li 
NB

M
ul

tin
. N

B
kN

N
M

LP DT
Ex

tra
 Tr

ee

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rc

en
ta

ge
 o

f d
at

as
et

s w
ith

 D
D First anchor: 16

First anchor: 64
First anchor: 256

0.0 0.2 0.4 0.6 0.8 1.0
Relative Training Size (Compared to Maximum Available Training Data)

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Peaking (LDA on 554)
Peaking (Ridge on 1042)
Monotone, not convex (Multin. NB on 1068)
Monotone, not convex (Bernouli NB on 1468)
Convex, not monotone (LDA on 399)
Convex, not monotone (SGD on 1086)

Fig. 2. Insights into shape properties of learning curves. Numbers in legend are dataset
IDs at OpenML.org. Top row: cumulative distribution of the degree of violation of
monotonicity (left) and concavity (right) for different entry points of analysis (blue,
orange green for analysis starting at anchor 16, 64, and 256, respectively). Bottom left:
Relative frequency (across datasets) of peaking per learner. Bottom right: Some sample
learning curves with non-standard properties.

different entry points of analysis. Clearly, if we were to consider learning curves
starting from a single training instance, we would expect high variation in the
observations and possibly non-monotonicities even in the true curve. For this
reason, it can be meaningful to start to study the learning curve only past some
minimum training size [20, 21, 32]. As can be seen in the figure, the probability
of violations is significantly reduced with increasing entry point from 16 (blue)
to 256 (green) via 64 (orange).

The bottom left panel of Fig. 2 provides insights into peaking. It shows, per
learner, how often peaking can be observed, i.e., the relative number of datasets
on which it is observed. As can be seen, sample-wise peaking in error-rate curves
is rather rare and many learners do not exhibit this property at all. The right
plot shows some example of curves where peaking was detected. It also shows
two examples failing to be monotone and two failing to be convex.

3.2 Learning Curve Crossing

We now consider the probability that some learner A will outperform learner
B at the highest available training size (effectively |D i,j

train|) given that it has a
worse initial performance.

The results are summarized in Fig. 3. It shows that there is indeed quite a
number of algorithms that start off worse than others, but recover and exceed the
performance of the competitor. In particular, for learners commonly considered
strong, such as Gradient Boosting or Random Forests, there is a high probability



SV
C 

(li
ne

ar
)

SV
C 

(p
ol

y)
SV

C 
(rb

f)
SV

C 
(s

ig
m

.)
LD

A
QD

A
Ex

tra
 Tr

ee
s

Gr
ad

. B
oo

st RF LR PA
Pe

rc
ep

tro
n

Ri
dg

e
SG

D
Be

rn
ou

li 
NB

M
ul

tin
. N

B
kN

N
M

LP DT
Ex

tra
 Tr

ee

Learner A

SVC (linear)
SVC (poly)

SVC (rbf)
SVC (sigm.)

LDA
QDA

Extra Trees
Grad. Boost

RF
LR
PA

Perceptron
Ridge

SGD
Bernouli NB

Multin. NB
kNN
MLP

DT
Extra Tree

Le
ar

ne
r B

P(A starts worse than B)

SV
C 

(li
ne

ar
)

SV
C 

(p
ol

y)
SV

C 
(rb

f)
SV

C 
(s

ig
m

.)
LD

A
QD

A
Ex

tra
 Tr

ee
s

Gr
ad

. B
oo

st RF LR PA
Pe

rc
ep

tro
n

Ri
dg

e
SG

D
Be

rn
ou

li 
NB

M
ul

tin
. N

B
kN

N
M

LP DT
Ex

tra
 Tr

ee

Learner A

P(A starts worse than B and
finishes better)

SV
C 

(li
ne

ar
)

SV
C 

(p
ol

y)
SV

C 
(rb

f)
SV

C 
(s

ig
m

.)
LD

A
QD

A
Ex

tra
 Tr

ee
s

Gr
ad

. B
oo

st RF LR PA
Pe

rc
ep

tro
n

Ri
dg

e
SG

D
Be

rn
ou

li 
NB

M
ul

tin
. N

B
kN

N
M

LP DT
Ex

tra
 Tr

ee

Learner A

P(A finishes better than B|
A starts worse than B)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Probabilities associated with the two events (i) that learner A (columns) starts
off worse than learner B (rows) and (ii) that learner A finishes better than learner
B. For each combination of learners for A and B, the left plot shows the empirical
probability of event (i), the middle plot the joint probability of events (i) and (ii), and
the right plot the probability of (ii) given (i). Darker colors show higher probabilities.

to eventually outperform the other learners (dark green columns). The opposite
is hardly ever the case (light green rows). For other algorithms, the opposite
is the case, e.g., the Perceptron hardly ever takes the lead if it starts off bad
(light green column), but is often outperformed in the long run, even if starts
off comparatively well (dark green row).

The above formulation focuses on the value of the learning curve at the
maximum training size available, but it could be the case that one or even both
of the learning curves have not yet converged at that training size. In another
view, one could ask for extrapolation models and then answer the same question
as above, based on some potential training size that exceeds the available data.

3.3 Learning Curve Fitting and Extrapolation

Background. Many parametric models have been proposed in literature for
modeling learning curves [35]. Typical examples are power laws, exponentials
and logarithmic models. Table 1 provides an overview, where last1 is a baseline
that takes the last point on the learning curve that it observes, and always
predicts this value. This is a simple baseline that is also used in [22] for example.

Several benchmarks have been performed to determine the best parametric
model for empirical learning curves [14, 3, 10, 19, 18, 5, 33, 3], but all have their
limitations [35]. First, most studies benchmark only 3 to 6 curve models [3], or
leave out models with bias terms, so that non-zero asymptotic cannot be modeled
[10]. A comprehensive experiments encompassing all models proposed remains
missing, making any conclusive comparison difficult. Additional complications
arise from the fact that some studies [6, 10, 33, 19] fit exponentials or power laws
by transforming the data and performing the usual least squares procedure in
the transformed space [35]. Finally, not all works evaluate the results of curve



Model Formula Used in Model Formula Used in

last1 a [22] vap3 exp
(
a+ b

x
+ c log(x)

)
[14]

pow2 −ax−b [10][14][33][19] expp3 c− exp ((−b+ x)a) [18]
log2 −a log (x) + b [33][10][14][19][4][3] expd3 c− (−a+ c) exp(−bx) [18]
exp2 a exp(−bx) [10][33][19] logpow3 a/ ((x exp(−b))c + 1) [8]

lin2 ax+ b [10][33][19][4] pow4 a− b (d+ x)−c [18]

ilog2 −a/ log (x) + b [18] mmf4 (ab+ cxd)/(b+ xd) [14]

pow3 a− bx−c [14][18] wbl4 −b exp(−axd) + c [14]

exp3 a exp(−bx) + c [4][18][3] exp4 c− exp(−axd + b) [18]

Table 1. The 16 learning curve models under consideration. x is the size of the training
set and a, b, c, d are parameters to be estimated. Some model performance increase
rather than decrease. last1 is a baseline (horizontal line), the number in the abbreviation
indicates the number of parameters.

fitting with help of statistical tests [14, 19, 18], which casts some doubt on the
significance of their findings. Most studies found evidence that learning curves
are modeled best by pow2, pow3, log2 or exp3 [35].

In this work, we therefore aim to compare all parametric models for learning
curves so far suggested in the literature, perform model evaluation on unseen
curve data (to avoid overfitting concerns [35]), and we aim to use a careful fitting
approach, which is the same for all models (except exp4 - see Supplement), and
perform statistical tests to determine significance of our findings.

We evaluate curve fitting in terms of the Mean Squared Error (MSE) with
(1) the points seen during curve fitting (train anchors, so interpolation), (2)
the points that are not seen during fitting (test anchors, extrapolation), (3)
extrapolating to the last anchor. This is a common procedure [14, 3]. One thing
to note is that curve fitting is more difficult than one may expect, to cope with
this we use 5 random restarts and we discard failed fits (for example, MSE’s
larger than 100). In the following, we focus on the main findings; an extensive
report with many more details can be found in the supplement.

Results. Our main findings are summarized in Fig. 4 and 5 and Table 2. Since
the semantics differ between the figures, we discuss them one at a time.

Figure 4 shows the performance for the different curve models in the form of
(empirical) cumulative densities with respect to the prediction error. Here, we
aggregate over models that were fit with all available anchors up to a size of 20%
of the maximum available training size for fitting. Both plots show the curves
that are at some point of time on top of the others in solid and all the others
(somewhat dominated models) in dotted curves. The left plot shows how well
the models can accommodate to the anchors they have seen (the training MSE).
Unsurprisingly, we find that the more parameters the better the fits, except for
exp3 who performs as well as the 2 parameter models.

The right plot shows how well each model can predict the performance for all
upcoming anchors (on average). Here, roles have changed somewhat. It indicates



��
��

��
��

��
�


��
�	

��
��

��
��

��
��

��
�

%�����!�����

���

���

��	

���

��

���
��

%�
����" ��������� !

��
��

��
�


��
��

��
��

��
�

��
�

%�����!�����

����"�!"������ !

�%��
�%��

�%�	
�%���

�%���
�����

��!"�
����

����
�����$� �

���	
��$�

��$�
��$	

#���
$��	

Fig. 4. The Cumulative Density Functions (CDF) for the Mean Squared Error (MSE)
for all curve models for interpolation on the train anchors and extrapolation to all test
anchors, summarized over all curve fitting experiments.

�	


���
��"��
���������
�������!�
���
����

�	��"��

��� ���

��
�"���
	�������� 	�	� �"���

	��� ��!�
��
� �����!���
��	� ��!�
���
 �"��
���� �����
���
 !���
���� ����

�������������������
	
����

������#��
����
����

������"�
��������
����!���
���
�#��
�����#���

����#��� 
��	 �����


��� ��� �

��� ��"�
	��	 �#��
	��
 ��"�
	�
� �����"���
	��� "���
	��� ����

������ ������������

�	
�

������#��
���������
����	��"�

��������
�����#��
����!���
���
�#���

�
������ 
��� �#���


��� ��"�
	�

 ��� �
	�
� ��"�
	��� �#��
	��� �����"���
	��� "���
���� ����

������ ������������
	
��

������#��
���	�����
�������"�
���������

�����#��
���������
�����#���
���
�#��� ���� !���


��� ��"�
	��� �����"���
	��� ��"�
	��� �#��
��	� ����
���� "���
���	 ��� �

������ ������������

Fig. 5. Critical diagrams for the ranks for the extrapolation to the last anchor. “all”
considers all experiments, 10% fits learning curves up to 10% of the total dataset, etc.
If two are connected by a red line, the pairwise test did not find significant differences
between their performance. If a model doesn’t have a line to the axis it’s significantly
different from all others. Numbers indicate rank (lower is better).

lin2, exp2 are definitely not suitable for extrapolation, and to a lesser extend
we can also already rule out pow2.

Since these plots are very aggregated and do not say anything about signifi-
cance, we visualize ranks in Critical Diagrams (CD) [7] following the approach of
[16] in Figure 5. These figures show the ranking of the different models (lower val-
ues are better) while statistically not significantly different ones are tied with red
bars. We use the same statistical tests as [3, 16], Friedman’s test [11] to judge
if there are significant differences between curve models, and we use pairwise
Wilcoxon signed-rank tests [36] to compare pair of curve models with Holm’s
alpha correction [15] following [16] with α = 0.05.

The obtained ranks from the Friedman tests are given in Table 2. We par-
tition all curve fitting experiments into 6 sets: “all”, where all experiments are
used, “5%”, where all anchors up to exactly 5% of the training set size are
used for fitting, “10%”, “20%”, “40%” and “80%”. For all these partitions and
performance measures we find significant differences from the Friedman test.



Table 2. Summarized ranks according to the Friedman test for the squared loss to
extrapolation to the last anchor. “all” considers all experiments, 10% fits a learning
curves up to 10% of the total dataset, etc. Blue / larger numbers means a worse rank,
yellow / smaller number indicate a better rank. The last row gives the rank for the
MSE on the train anchors over all experiments.

curve last1 pow2 log2 exp2 lin2 ilog2 pow3 exp3 vap3 expp3 expd3 logp3 pow4 mmf4 wbl4 exp4

all 6.34 10.32 9.58 14.89 14.10 7.95 7.26 8.75 8.66 7.79 8.18 6.86 5.95 6.08 6.58 6.71

5% 7.27 9.28 8.72 14.68 13.93 6.82 7.41 8.23 9.48 7.24 7.88 7.25 6.48 6.91 7.28 7.14

10% 7.14 9.95 9.10 15.02 14.17 7.16 7.09 8.57 9.03 7.33 8.13 6.72 6.19 6.55 6.96 6.87

20% 6.77 10.46 9.48 15.05 14.15 7.73 7.00 8.98 8.52 7.52 8.47 6.50 5.98 6.10 6.58 6.70

40% 6.12 10.74 9.79 14.84 13.92 8.45 7.19 9.30 8.41 7.88 8.54 6.59 5.69 5.77 6.33 6.44

80% 5.16 11.02 10.24 14.40 13.62 9.29 7.34 9.48 8.20 8.27 8.53 6.84 5.65 5.59 6.12 6.25

trn 15.58 11.89 11.51 13.65 12.85 11.25 7.67 8.60 7.04 7.59 7.02 7.60 3.28 2.64 3.76 4.07

In Figure 5 the critical diagrams are shown (the ranks in this Figure corre-
spond with those in Table 2). However, due to space limitations, the figure only
shows the ranks for extrapolations to the last anchor; the supplement also con-
tains CD plots for curve fitting and extrapolation performance across the whole
upcoming curve (all test anchors) and interpolation on the train anchors. The
results for extrapolating to all test anchors is quite similar to extrapolation to
the last anchor, but differences between models are larger.

In accordance with the previous observations, we again see that exp2 and
lin2 indeed do not perform well, and the performances log2 and pow2 are only
slightly better. That is unsurprising, since pow2 and exp2 cannot converge to a
non-zero error rate, and log2 diverges in the limit. Surprisingly, exp3, which can
model non-zero error in the limit, obtains a similar ranking and gets progressively
worse with more training anchors, indicating it is indeed not suitable. These
models are followed by vap3, expp3, expd3 that obtain similar ranks.

There is also a group that often tie and attain, generally, much better ranks.
pow3, ilog2, logpower3 especially works well for small sample sizes and tie often.
Nevertheless, for larger sample sizes especially ilog2 and logpower3 deteriorate
a lot. If little anchors are used it is hard to distinguish performances. However,
if more than 20% of the data is used, a new group of overall best model appears,
which are mmf4, wbl4, pow4, exp4. These models tie often according to the
pairwise tests, but mmf4 and wbl4 together significantly outperforms the others,
especially for 20%-80%. Finally, the baseline last1 doesn’t perform well for
less than 20% data, but improves its rank the larger the percentage, and even
wins significantly from all others at 80%. This is expected since the curve often
plateaus for large sample sizes and no fitting is done. For ‘all’ mmf4 performs
significantly better than all others with wbl4 second and last1 third.

4 Discussion and Conclusion

The learning curve database (LCDB) provides the first extensive collection of
learning curves easily accessible and readily deployable for the in-depth study
of learning curves behavior. Importantly, the database provides probabilistic



predictions that allows the study a wide range of standard and specialized per-
formance metrics. The most important aspects of these learning curves have
been utilized in a PyPI package, for easy and fast usage.

Our preliminary study of LCDB already provides some insights: for error-rate
learning curves, we found that the large majority of learning curves is, largely,
well-behaved, in that they are monotone, convex, and do not show peaking.
We also established empirical estimates of the probability that learning curves
cross. Furthermore, our curve fitting experiments emphasize the need for more
robust fitting. While we have taken some steps to rule out biases from curve
fitting issues, our curve fitting results warrant further analysis to rule this out
completely. In contrast to other benchmarks that generally extrapolate curves
with 2 or 3 parameter power laws, exponentials or logarithmic models, we find
that 4 parameter models are quite competitive, with mmf4 obtaining the best
overall results and wbl4 a close second. Not surprisingly, the amount of anchors
used for training seems to influence which curve model performs best. Of course,
many research questions remain, which we hope can be successfully addressed
with LCDB. For instance, does it make sense to smooth learning curves for
model selection or curve extrapolation? Can meta-features [2], like the number
of instances, be used to reliably predict (i) whether curves intersect, (ii) if they
are monotone or convex, (iii) or which curve model will be accurate? Which non-
parametric extrapolation techniques work best and in what case? In how far can
training curves support the extrapolation task? Finally, our paper did not touch
upon the aspect of training runtimes, which are however also part of LCDB and
can be used to develop sophisticated runtime models. These and many additional
interesting learning curve problems can now be efficiently investigated.

LCDB is designed to be a continual database that can and will be extended
over time and also integrated with other services. Needless to say that we will
seek to add new learning curves to LCDB for new datasets. The main challenge
here is to assure that the training runtimes will be comparable: while all the
data in the initial database has been generated with the same hardware, this
is not necessarily the case for upcoming datasets. Addressing this issue, e.g.,
by normalizing the runtimes based on calibration techniques is an interesting
research question in itself. To further improve the exploitation of LCDB, parts
of it will be integrated with OpenML.org in the immediate future.

It should be clear that there are also various technical extensions that could
be desirable. First and most natural, an extension towards other learning prob-
lems like regression would be useful. Next, LCDB should be extended to cover
machine learning pipelines instead of learners only. This is however a tough un-
dertaking since the space of pipelines is large, and it is not clear how to select
a reasonable subset of those; also storing the prediction vectors for an increased
number of learners is a logistic issue. Third, an extension of LCDB for mono-
tonically increasing training sets would be great in order to allow analyses for
data acquisition situations instead of only model selection situations as covered
currently. In all, we expect that LCDB will be of great use to address many
further interesting and valuable research questions concerning learning curves.



References

1. Benavoli, A., Corani, G., Mangili, F.: Should we really use post-hoc tests based on
mean-ranks? Journal of Machine Learning Research 17(1), 152–161 (2016)

2. Brazdil, P., van Rijn, J.N., Soares, C., Vanschoren, J.: Metalearning: Applications
to Automated Machine Learning and Data Mining. Springer, 2nd edn. (2022)

3. Brumen, B., Cernezel, A., Bosnjak, L.: Overview of machine learning process mod-
elling. Entropy 23(9) (2021)

4. Brumen, B., Rozman, I., Heričko, M., Černezel, A., Hölbl, M.: Best-fit learning
curve model for the C4.5 algorithm. Informatica 25(3), 385–399 (2014)

5. Cohn, D., Tesauro, G.: Can neural networks do better than the vapnik-chervonenkis
bounds? In: Advances in Neural Information Processing Systems 3. pp. 911–917
(1991)

6. Cortes, C., Jackel, L.D., Solla, S.A., Vapnik, V., Denker, J.S.: Learning curves:
Asymptotic values and rate of convergence. In: Advances in Neural Information
Processing Systems 6. pp. 327–334. Morgan Kaufmann (1993)

7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

8. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial In-
telligence. pp. 3460–3468. AAAI Press (2015)

9. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems 28. pp. 2962–2970 (2015)

10. Frey, L.J., Fisher, D.H.: Modeling decision tree performance with the power law.
In: Proceedings of the Seventh International Workshop on Artificial Intelligence
and Statistics. Society for Artificial Intelligence and Statistics (1999)

11. Friedman, M.: A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

12. Garcia, S., Herrera, F.: An extension on “statistical comparisons of classifiers over
multiple data sets” for all pairwise comparisons. Journal of Machine Learning
Research 9(89) (2008)

13. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An
open source automl benchmark. arXiv preprint arXiv:1907.00909 (2019)

14. Gu, B., Hu, F., Liu, H.: Modelling classification performance for large data sets.
In: Advances in Web-Age Information Management. Lecture Notes in Computer
Science, vol. 2118, pp. 317–328. Springer (2001)

15. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics pp. 65–70 (1979)

16. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learn-
ing for time series classification: a review. Data Mining and Knowledge Discovery
33(4), 917–963 (2019)

17. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction
with bayesian neural networks. In: 5th International Conference on Learning Rep-
resentations. OpenReview.net (2017)

18. Kolachina, P., Cancedda, N., Dymetman, M., Venkatapathy, S.: Prediction of learn-
ing curves in machine translation. In: The 50th Annual Meeting of the Association
for Computational Linguistics. pp. 22–30. The Association for Computer Linguis-
tics (2012)



19. Last, M.: Predicting and optimizing classifier utility with the power law. In: Work-
shops Proceedings of the 7th IEEE International Conference on Data Mining. pp.
219–224. IEEE Computer Society (2007)

20. Leite, R., Brazdil, P.: Improving progressive sampling via meta-learning on learning
curves. In: Machine Learning: ECML 2004. Lecture Notes in Computer Science,
vol. 3201, pp. 250–261. Springer (2004)

21. Leite, R., Brazdil, P.: Selecting classifiers using metalearning with sampling land-
marks and data characterization. In: Proceedings of the 2nd Planning to Learn
Workshop (PlanLearn) at ICML/COLT/UAI. pp. 35–41 (2008)

22. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
Bandit-based configuration evaluation for hyperparameter optimization. In: 5th
International Conference on Learning Representations. OpenReview.net (2017)

23. Li, Y.: An investigation of statistical learning curves: do we always need big data?
Master’s thesis, University of Canterbury (2017)

24. Loog, M., Viering, T., Mey, A.: Minimizers of the empirical risk and risk mono-
tonicity. In: Advances in Neural Information Processing Systems 32. pp. 7478–7487
(2019)

25. Loog, M., Viering, T.J., Mey, A., Krijthe, J.H., Tax, D.M.J.: A brief prehistory of
double descent. Proceedings of the National Academy of Sciences 117(20), 10625–
10626 (2020)

26. Mohr, F., van Rijn, J.N.: Towards model selection using learning curve cross-
validation. In: 8th ICML Workshop on Automated Machine Learning (2021)

27. Mohr, F., van Rijn, J.N.: Learning curves for decision making in supervised machine
learning - A survey. CoRR abs/2201.12150 (2022)

28. Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep
double descent: Where bigger models and more data hurt. In: 8th International
Conference on Learning Representations. OpenReview.net (2020)

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. Journal of Machine Learning Research 12, 2825–2830 (2011)

30. Perlich, C., Provost, F.J., Simonoff, J.S.: Tree induction vs. logistic regression: A
learning-curve analysis. Journal of Machine Learning Research 4, 211–255 (2003)

31. Provost, F.J., Jensen, D.D., Oates, T.: Efficient progressive sampling. In: Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 23–32. ACM (1999)

32. van Rijn, J.N., Abdulrahman, S.M., Brazdil, P., Vanschoren, J.: Fast algorithm
selection using learning curves. In: Advances in Intelligent Data Analysis XIV.
Lecture Notes in Computer Science, vol. 9385, pp. 298–309. Springer (2015)

33. Singh, S.: Modeling performance of different classification methods: deviation from
the power law. Project Report, Department of Computer Science, Vanderbilt Uni-
versity, USA (2005)

34. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: Networked science
in machine learning. SIGKDD Explorations 15(2), 49–60 (2014)

35. Viering, T.J., Loog, M.: The shape of learning curves: a review. CoRR
abs/2103.10948 (2021)

36. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in
statistics, pp. 196–202. Springer (1992)

37. Zimmer, L., Lindauer, M., Hutter, F.: Auto-pytorch tabular: Multi-fidelity met-
alearning for efficient and robust autodl. IEEE Transactions on Pattern Analysis
and Machine Intelligence 43(9), 3079 – 3090 (2021)


