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Abstract. Multi-codebook quantization (MCQ) is the task of express-
ing a set of vectors as accurately as possible in terms of discrete entries in
multiple bases. Work in MCQ is heavily focused on lowering quantization
error, thereby improving distance estimation and recall on benchmarks
of visual descriptors at a fixed memory budget. However, recent studies
and methods in this area are hard to compare against each other, be-
cause they use different datasets, different protocols, and, perhaps most
importantly, different computational budgets.

In this work, we first benchmark a series of MCQ baselines on an equal
footing and provide an analysis of their recall-vs-running-time perfor-
mance. We observe that local search quantization (LSQ) is in practice
much faster than its competitors, but is not the most accurate method
in all cases. We then introduce two novel improvements that render LSQ
(i) more accurate and (ii) faster. These improvements are easy to imple-
ment, and define a new state of the art in MCQ.

1 Introduction

The focus of this work is multi-codebook quantization (MCQ), an approach to
vector compression analogous to k-means clustering, where cluster centres arise
from the combinatorial combination of entries in multiple codebooks. Modern
systems for very large-scale approximate nearest neighbour (ANN) search typi-
cally rely on a data structure that shortlists candidates, followed by search using
the compressed representation obtained from a variant of MCQ [5, 16,17,32].

Systems for efficient large-scale search in high-dimensional spaces have im-
portant applications to prominent problems in machine learning and computer
vision. For example, Mussman et al. [24] use Gumbel variables to randomly per-
turb nearest neighbour queries and accelerate learning and inference in log-linear
models. Douze et al. [11] use a large-scale similarity graph constructed via MCQ
to improve learning in deep “low-shot” models. Guo et al. [14] use an MCQ-based
system to achieve state-of-the-art performance in maximum inner product search
(MIPS), and accelerate large-scale recommender systems. Finally, Blalock and
Guttag [7] use MCQ to reduce memory usage and accelerate large-scale data
mining applications.
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MCQ is an optimization problem over two latent variables that approximate
a given dataset: the codebooks and the codes (i.e., the assignments of the data
to those codebooks). The error of this approximation provides a bound for Eu-
clidean distance and dot-product approximations in ANN and MIPS. Therefore,
finding optimization methods that achieve low-error solutions is crucial for im-
proving the performance of MCQ applications.

In similarity search, our goal is often to tackle very large datasets, so it
is important that the optimization techniques scale gracefully — consider, for
example, the case where one wants to index one billion vectors using the classical
inverted file (IVF) [17]. An IVF partitions the dataset into K disjoint cells and
learns a quantizer for each subset. Typically, K € {2!2,2!3} so one has to run
the training method 4096 — 8192 times. If a method takes one hour to run,
then one has to wait roughly 6 — 12 months for training to complete. On the
other hand, if a method has a running time of one minute, then the total wait
time is reduced to roughly 3 — 6 days.? Unfortunately, running time is often
not reported in recent work on MCQ. Here, we focus on characterizing recent
methods for MCQ in terms of their running time vs accuracy trade-off, and
introduce novel improvements in both speed and accuracy to LSQ, a state-of-
the-art MCQ method.

Problem formulation. MCQ is the task of finding a set of codes B and (mul-
tiple) codebooks C that minimize quantization error on a given dataset X. Our
objective is to determine

in||X — CBJ|? 1
win|| X — CB}, ()

where X € R9*™ contains n d-dimensional vectors, and C' = [C},Cs, ..., Cy,] €
Rk i5 composed of m subcodebooks C; € R¥*" with d dimensions and h
entries each. Finally, B = [by,bs,...,b,] € {0,1}™"*" contains n binary codes,
each with m entries b; ; € {0, 1}" that select one entry from a different codebook
bl' = [biyl,bi’27 . ,bi’m]—r; in other VVO]I'dS7 Hbi,j”O =1 and ||b7;1j||1 =1.

MCAQ is useful for large-scale ANN search because, in this representation, the
FEuclidean distance between a query vector q and a compressed database vector
x; R = Zm C;b; ;, can be computed using the expansion

m

Ja =%l = lall} =2+ (@ Cybi) + 5l @)
j=1

When searching for nearest neighbours, the first term can be ignored, as it
is constant for all database vectors; the second term can be computed with m
lookups in precomputed dot-product tables, and it is typical to use one extra
codebook to quantize the third (scalar) term. Note that, when MCQ is used to

4 While in an IVF each cell can be learned in parallel, an argument similar to ours
can be made for overall compute. Compute time means energy, and means money.
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approximate dot-products (e.g., in MIPS) or convolutions, it is not necessary to
store the norm of the encoded vector, and the full memory budget can be used
to improve the quality of the approximation.

We typically set h = 256 [3,12,17,21,27,34], which means that each index into
a codebook can be stored using 8 bits. Thus, if we use m = {7,15} codebooks,
and set aside an extra table for storing the norm of the approximation with
h = 256 entries as well, the memory used per vector is only 64 (resp. 128) bits.

2 Related work

Early work in MCQ adopted orthogonal codebooks [12,17,26], which consider-
ably simplifies the problem and leads to very scalable solutions, at the expense
of accuracy. More recent work has focused on using non-orthogonal codebooks,
which increase accuracy but also result in increased computational costs, deter-
ring their wider adoption. For example, the recently released FAISS library® [15]
implements only orthogonal MCQ techniques. In this work, we aim to better
characterize and understand recent work in MCQ, with the goal of accelerating
and improving the performance of non-orthogonal MCQ techniques.

Non-orthogonal MCQ. Chen et al. [9] introduced non-orthogonal codebooks
for MCQ and proposed residual vector quantization (RVQ), a greedy optimiza-
tion method that runs k-means on each codebook in a sequential manner. Later,
Al et al. [1] and Martinez et al. [22] independently proposed enhanced RV(Q and
resp. stacked quantizers (SQ), a refinement of RVQ that obtains lower quantiza-
tion error, but maintains the same encoding complexity.

Babenko and Lempitsky [3] proposed additive quantization (AQ), which uses
an expectation-maximization (EM)-like approach for optimization. The authors
used beam search for updating the codes, and a conjugate gradient method for
the codebook update step. Although unaware of RVQ, this paper has proven in-
fluential due to its insights and proper characterization of the hard combinatorial
problems that arise in non-orthogonal MCQ. Later, Martinez et al. [21] intro-
duced local search quantization (LSQ), an encoding method based on iterated
local search [19] with iterated conditional modes (ICM), which improves upon
the accuracy vs computation tradeoffs of the beam search method of AQ, lead-
ing to overall higher recall. Initialization consists of OPQ followed by a simpler
version of optimized tree quantization (OTQ) [4].

Zhang et al. [34] proposed composite quantization (CQ), which minimizes
quantization error but also penalizes the deviation of cross-codebook terms from
an (also latent) constant. The method is also EM-like, and the authors use ICM
for the encoding step, and the L-BFGS [25] solver for the codebook update step.
Initialization consists of PQ followed by unconstrained MCQ (Expression 1).

Finally, Ozan et al. [27] introduced competitive quantization (CompQ), a
method that updates the codebooks with stochastic gradient descent (SGD),

® https://github.com/facebookresearch /faiss
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Table 1. Comparison between CQ and LSQ on SIFT1M using 64 bits.

Trained on Init 4 train Base encoding Total R@Q1

CQ [34] (C++) base set 45h -  45h 0.290
CQ [34] (C++) learn set 42 m 10s 422 m 0.162
LSQ [21] (Julia, C+4)  learn set 9.1m 435m 135 m 0.294

and updates the codes using beam search within a search space whose size is
controlled by a hyperparameter that trades-off accuracy and computation.

3 Comparative perfomance evaluation

While recent work has used different experimental setups, fortunately all studies
have reported results on the SIFT1M dataset at 64 bits. Thus, first we focus
on comparing the three methods that report the best results on this dataset:
CQ [34] (R@1 of 0.290), LSQ [21] (R@1 of 0.298) and CompQ [27] (R@1 of
0.352). We measure all our timings on a desktop with an 8-core i7-7700K CPU
@4.20 GHz, 32 GB of RAM and an NVIDIA Titan Xp GPU.

LSQ vs composite quantization (CQ). For LSQ, we use as a starting point
the publicly available implementation due to Martinez and Clement,® written in
Julia [6]. For CQ, we use the recently released implementation due to Zhang'.
This release is writen in multithreaded C++, and uses the heavily optimized
libraries MKL (for matrix operations) and 1ibLBFGS (for codebook update).

We let CQ use m = 8 codebooks and LSQ use m = 7 codebooks, plus an
extra codebook for the database norms. This means that both methods have the
same query time and use the same amount of memory. We run both methods
for 30 iterations, and use all the default hyperparameters as provided in their
respective code releases. To make the comparison more fair, we have ported OTQ
and LSQ encodings to C++ with OpenMP multithreading. These methods are
called from Julia, and we leave the rest of the code untouched.

The results reported by Zhang et al. [34] on SIFT1M were trained on the
base set. SIFT1M is provided with a learn set, and the more common protocol
is to learn the model parameters exclusively on the learn set [1,3,9,12, 17,21,

,26,27,35]. Thus, we also run the method limiting its parameter learning to
the learn set.

We report the results of our experiments on Table 1. LSQ achieves slightly
higher recall than CQ when CQ is trained on the base set, but LSQ has an
overall 20x faster running time. The running time of CQ decreases drastically
when we train it on the learn set, but the learned parameters do not generalize
well to the base set (RQ1 of 0.162). On the LabelMe22K and MNIST datasets

5 https://github.com/una-dinosauria/local-search-quantization
" https://github.com/hellozting/CompositeQuantization


https://github.com/una-dinosauria/local-search-quantization
https://github.com/hellozting/CompositeQuantization

LSQ++: Faster and more accurate multi-codebook quantization 5

Table 2. Comparison between Comp(Q and LSQ on SIFT1M using 64 bits.

Iters  Init Training Base encoding Total R@1
CompQ [27] (C++) 250 - 38h 0.352

LSQ [21] (Julia, C++) 25 26m 6.34m 5.8 m (32iters) 152 m 0.340
LSQ [21] (Julia, CUDA) 25 1.1m 28 m  29s (32iters) 4.4 m 0.340

(which traditionally do not have a learn partition), we have observed that LSQ
consistently achieves higher recall than CQ with roughly 10x faster running
times. From these results, we conclude that LSQ is faster, more accurate, and
more sample-efficient (i.e., it requires less training data) than CQ.

LSQ vs competitive quantization (CompQ). Since there is no publicly
available implementation of CompQ, we have tried to reproduce the reported
results ourselves, with moderate success. We have not, for example, been able
to reproduce the transform coding initialization reported in the paper, but have
instead used RVQ, which was reported to achieve slightly worse results. We
obtained a RQ1 of 0.346 using a beam search width of 32, and training for 250
epochs (the parameters of the best reported result). The small difference in recall
may be attributed to our different initialization.

However, the largest barrier to experimentation on our side is that our
CompQ implementation, written in Julia, takes roughly 40 minutes per epoch
to run. This means that our experiment on SIFT1M with 64 bits took almost
one week to finish. We contacted the Comp(Q authors, and they mentioned using
a multithreaded C++ implementation with pinned memory, an ad-hoc sort im-
plementation, and special handling of threads. Their implementation takes 551
seconds per epoch, or about 38 hours (~ 1.5 days) in total for 250 epochs on a
desktop with a 10-core Xeon E5 2650 v3 @2.3 GHz CPU. We compare CompQ
to LSQ using our multithreaded C++ implementation (same as in Table 1). We
also use m = 8 codebooks in total, which controls for query time and memory
use with respect to CompQ. We train for 25 iterations in total, and again use
all the default parameters of LSQ.

LSQ and CompQ live on opposite sides of the parallelism spectrum: while
Comp(Q uses stochastic gradient descent (SGD) with a batch size of 1, and is thus
primarily sequential, LSQ is EM-like, so it is very amenable to parallelization.
This means that CompQ is unlikely to benefit from a GPU implementation, as
these require fairly large batch sizes to deliver higher throughput than CPUs
(in fact, using large batch sizes to accelerate the training of large deep neural
networks with SGD is an active area of research [13,29]). To further explore the
consequences of this algorithmic trade-off, we used the publicly available CUDA
implementation of LSQ encoding [23] to accelerate training and base processing.
We also implemented OTQ encoding in CUDA.

We report the results of our experiments on Table 2. Our C++ implemen-
tation of LSQ is about 150x faster than CompQ and, when using a GPU, LSQ
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achieves roughly a 500x speedup over CompQ. However, the recall of LSQ lags
by 0.012 behind CompQ. Further research into Comp(Q may focus on finding
ways to increase its batch size, so that it can leverage modern GPUs.

Improving LSQ: Desiderata. In the light of these results, we suggest the
following criteria to improve LSQ:

(a) First, we would like to make LSQ more accurate, so that it can narrow the
gap with (and ideally, surpass) CompQ in terms of recall.

(b) Second, we would like to maintain the parallelism of LSQ, because it is a
distinctive feature that makes it fast in practice.

(¢) Finally, because LSQ is faster than its competitors, we want to find ways to
trade-off running time for accuracy. To make this trade-off more attractive
in practice, we would also like to decrease LSQ’s overall running time.

Next, we propose improvements to LSQ that satisfy all these criteria.

4 Lower running time with a fast codebook update

While benchmarking LSQ using a GPU, we noticed that the codebook update
step is the most computationally expensive part of LSQ. This is somewhat coun-
terintuitive, because encoding has historically been identified as the bottleneck
in MCQ [3,21]. However, recent hardware and algorithmic improvements have
upended this idea. In particular, out of the 2.8 minutes of training time for LSQ
with m = 8 codebooks and 25 iterations (last row of Table 2), 2.34 minutes
are spent updating the codebook C. Thus, decreasing the running time of the
codebook update step would significantly decrease the overall running time of
LSQ. Formally, the codebook update step amounts to determining

min|| X — CB|; (3)

the current state-of-the-art method for this step was originally proposed by
Babenko and Lempitsky [3], who noticed that finding C' corresponds to a least-
squares problem where C' can be found independently in each dimension. Since
B can be seen as a very sparse matrix, the authors proposed using iterative con-
jugate gradient (CG) methods in this step. This has the additional advantage
that B can be reused for the d problems that finding C' decomposes into. We
have identified two problems with this approach:

1. Explicit sparse matrix construction is inefficient. CG APIs typically
require that B be represented as an explicit sparse matrix. Although efficient
data structures for sparse matrices exist (e. g., the compressed sparse row of
numpy), in practice, B is stored as an m X n uint8 matrix. We would like
to use this representation and avoid using an additional data structure.

2. Failure to exploit the binary nature of B. The matrix B is composed ex-
clusively of ones and zeros (i.e., it is binary). Data structures used for sparse
matrices are commonly designed for the general case when the non-zero en-
tries are arbitrary real numbers, leaving room for additional optimization.
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Direct codebook update. We now introduce a method for fast codebook
update, which takes advantage of these two observations. First, we note that it is
possible to use a direct method instead of iterative CG, by rewriting Expression 3
as a regularized least-squares problem:

min|[ X — CB|% + A|C]/%- (4)

In this case, the optimal solution can be obtained by taking the derivative with
respect to C' and setting it to zero

C=XB"(BB" +\I)~L. (5)

While we are not interested in a regularized solution, we can still benefit from this
formulation by setting A to a very small value (A = 10~* in our experiments),
which simply renders the solution numerically stable. A crucial advantage of
this formulation is that the matrix BBT + A\I € R™"*™" is square, symmetric,
positive-definite and fairly compact; notably, its size is independent of n. Fur-
thermore, thanks to regularization, BB T +\I is guaranteed to be full-rank. Thus,
matrix inversion can be performed directly with the help of a Cholesky decom-
position in O(m3h?) time. Because matrix inversion is efficient, the bottleneck
of our method lies in computing BBT € N™'xXmh a5 well as XBT € R¥xmh,
We exploit the structure in B to accelerate both operations.

Computing BB . By indexing B across each codebook, B = [By, -+, BT,
BBT can be written as a block-symmetric matrix composed of m? blocks of size
h x h each:
B1B] BiB) ... BiB,],
ByB] By;B] ... ByB,|
BT | 0 T (6)
B..B{ BBy ...B,B,

Here, the diagonal blocks By B, are diagonal matrices themselves, and since
B is binary, their entries are a histogram of the codes in By. Moreover, the
off-diagonal blocks are the transpose of their symmetric counterparts: B NBJ—\'—/[ =
(B MB]—\;)T, and can be computed as bivariate histograms of the codes in B,
and By. Using these two observations, this method takes O(m?n) time, while
computing BB naively would take O(m?2h?n).

Computing X BT. We again take advantage of the structure of B to accelerate
this step. XBT can be written as a matrix of m blocks of size d x h each,

XB" =[XB],XB,,...,XB]]. (7)

Each block X BZT can be computed by treating the B;'— columns as binary vectors
that select the columns of X to sum together. This method takes O(mnd) time,
while computing X BT naively would take O(mhnd).
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Codebook update in CQ. Zhang et al. [34] propose a formulation similar to
Equation 5 for codebook update, which they use to warm-start the CQ optimiza-
tion process, but do not introduce regularization. Since BB is not guaranteed
to have full rank, the authors use SVD for computing its inverse, disregarding
solution components associated with small singular values. They also did not
exploit the sparsity in B to compute the other terms of the solution. In our
experiments, their method takes more than a minute to run, while our solution
runs in well under a second.

5 Higher recall with stochastic relaxations

Our goal in this Section is to make LSQ more accurate, while maintaining the
high level of parallelism and speed that it already enjoys in practice. To this
end, we note that LSQ is fast because its optimization process is EM-like, which
allows it to take advantage of highly parallel architectures. However, a well-
known problem with such EM-like approaches is their tendency to converge to
local minima. We also note that MCQ is analogous to k-means clustering (with
combinatorial codebooks). Many years of research into k-means have resulted in
a number of improvements to the original Lloyd’s algorithm (e.g., k-means++
initialization [2], or cluster closures for faster encoding [31]), so we look into the
literature for methods that may be adapted to improve MCQ.

5.1 Stochastic relaxations

A stochastic relaxation (SR), as formalized by Zeger et al. [33] in the early 1990s,
is a method that defines an approximation to simulated annealing, with the idea
of improving the quality of an approximation at reasonable computational costs.
The idea was originally proposed to improve k-means clustering, and here we
revisit and adapt it for MCQ.

Broadly defined, simulated annealing (SA) is a classical stochastic local search
(SLS) technique that iteratively works in 3 major steps: (1) define an optimiza-
tion state s, (2) create a new state s’ by randomly perturbing the current state:
s’ = m(s), and (3) decide whether to reject or accept the new state as the basis
for the next perturbation (for a broad review of the subject, see [15]). The ac-
ceptance probability in Step 3 is controlled by a parameter traditionally called
temperature, which is typically slowly decreased over many iterations of Steps 2
and 3. (Various temperature schedules have been proposed and used in the many
applications of simulated annealing). A stochastic relaxation modifies some of
the typical SA steps in order to make them more computationally efficient. We
now define these three steps for our method.

Defining a SA state: A functional view of MCQ. As a first step, we for-
mally define an optimization state in MCQ. Expression 1 is defined over two
latent variables, C' and B. We assume that the optimization state is fully deter-
mined given a single variable, either C' or B, which fully specifies the other via
a pre-defined function. Thus, we define
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— an encoder function C(X, B) — C, and
— a decoder function D(X,C) — B.

In our case, C amounts to the codebook-update step, for which we adopt the
method described in Section 4. Similarly, D amounts to updating the codes B;
in this case, we simply adopt the encoding method of LSQ. We have defined the
optimization state of MCQ in two ways, which will give rise to two SR methods.
The first method, called SR-C, uses the encoder function C, and the second
method, called SR-D, uses the decoder function D.

Perturbing the SA state. The next step is to define a way to perturb the
SA state at time-step ¢. We define two perturbation methods, one for SR-C and
one for SR-D. Since we have defined the state as fully-determined given either
variable via a proxy function, we can perturb the state by simply perturbing the
corresponding function used in SR-C or SR-D. We define the functions

— C*:=C(me(X,1),B) = C for SR-C, and
— D*:=D(X,np(C,i)) — B for SR-D.

me(X,1) — X + T(i) - € amounts to adding noise € to X, according to a
predefined temperature schedule T'(7). We choose to sample the noise from a zero-
mean Gaussian with a diagonal covariance proportional to X; in other words,
e~ N(0,X), where X = diag(cov(X)).

A major difference between k-means and MCQ is that, in MCQ, we use
multiple codebooks. This difference is particularly important in SR-D, where
the noise affects C', which represents m different codebooks. Since the centroids
are obtained by summing one entry from each codebook, perturbing C' amounts
to perturbing the centroids m times. We thus define the perturbation function
for SR-D slightly differently: 7p(C,i) — C + (T(i)/m) - e. In other words, we
multiply the noise by factor of 1/m in SR-D.

Temperature schedule. In simulated annealing, it is common to gradually
reduce the temperature, which controls the probability of accepting a new state
(the so-called Metropolis-Hastings criterion). In SR, following Zeger et al. [22],
we instead use the temperature to control the amount of noise added in each
time-step. We use the schedule

T(i) = (1= /D))", (®)

where I is the total number of iterations, i represents the current iteration, and
p € (0,1] is a tunable hyper-parameter. We have found that a value of p = 0.5
produces good results, and we use this parameter in all our experiments.

Acceptance criterion. The final building block of SA is an acceptance cri-
terion, which decides whether the new (perturbed) state will be accepted or
rejected. Following Zeger et al., we always accept the new state. As we will
show, this simple criterion gives excellent results in practice.
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Algorithm 1 EM-like approach to MCQ [3,21]

1: function LSQ(X,I)

2: B < initialization(X)
3 141 > Iteration counter
4 while : < I do
5 C < argming || X — CB||% > Codebook update
6 B + argming | X — CB|/% > Encoding step
7 1+1+1
8
9

10:

end while
return C, B
end function

Recap. To summarize, we have introduced two algorithms that define crude
approximations to simulated annealing: SR-C and SR-D. These approximations
are extremely simple to implement. To highlight this simplicity, we summarize
the EM-like approach to MCQ in Algorithm 1; notice that

— SR-C follows Algorithm 1 exactly, except that line 5 is replaced by
C + argming||mc(X, i) — CB||%, and

— SR-D follows Algorithm 1 exactly, except that line 6 is replaced by
B + argming||X — 7p(C,4)B|%.

In other words, SR-C and SR-D amount to adding noise in different parts
of the EM-like MCQ optimization pipeline, but the workhorse functions that
perform the codebook-update, as well as the encoding encoding step, remain
unchanged. This has multiple advantages. On one hand, this means that we
can fully maintain the parallelism of LSQ. On the other hand, if in the future
better codebook-update or encoding functions are found, they can be seamlessly
integrated into our pipelines. Finally, we note that our methods involve only
minimal computational overhead, as they only require the computation of the
covariance of either X (which can be computed once and re-used many times
in SR-C), or C, which is a compact variable independent of n. In practice, this
overhead is negligible: < 0.1 seconds for SR-C, and < 0.01 seconds for SR-D.
We refer to the combination of SR and fast codebook update as LSQ++.

6 Experimental evaluation

We quantify the impact of our codebook update method by measuring the time
it saves per LSQ iteration (i.e., between lines 4 and 8 in Algorithm 1), and with
a head-to-head large-scale evaluation against conjugate gradient (CG) methods.
We also measure the impact of SR-C and SR-D by reporting recall@N.

Datasets. We evaluate our contributions on five datasets. The first two datasets
are LabelMe22K [28] and MNIST. These datasets were originally created for
classification, and have only two partitions (training/test). We learn both B and
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Table 3. Total time per LSQ/LSQ++ iteration, depending on how we update C' (CG
or Cholesky), and how we update B (using a C++ or a CUDA implementation).

64 bits 128 bits 64 bits 128 bits
SIFT1M CG  Chol|CG  Chol  DeeplM CG  Chol|CG  Chol

Julia, C++ 142s 5.6s|385s 22.5s Julia, C+4+ 95s 7.2s|30.7s 2425
Julia, CUDA  6.8s 12s(203s 4.3s Julia, CUDA 33s 1.0s|106s 4.1s

C on the training set, and use the test set as queries. LabelMe22K has d = 512
dimensions, 20019 training vectors, and 2000 queries. MNIST has d = 784
dimensions, 60 000 training vectors, and 10000 queries.

The other three datasets are SIFT1M [17], DeeplM and VGG (called “Con-
vnet1M” in [21]). SIFT1M is a classical retrieval dataset of SIFT [20] features.
We have put together the DeeplM dataset, by sampling from the 10 million
example set provided with the recently introduced DeeplB dataset [5]. These
vectors come from the last convolutional layer of a GoogLeNet v3 [30] network,
and have been PCA-projected to 96 dimensions. The VGG dataset consists of
vectors from the CNN-M-128 network of Chatfield et al. [3] evaluated on Ima-
genet [10] images. These datasets have three partitions: train, query and base.
We follow the standard protocol, which uses the train set to learn the codebooks
C, and then uses those codebooks to encode the base set (i.e., obtain B); we
then use the query set to find approximate nearest neighbours in the compressed
base set [1,3,9,12,17,21,22,26,27]. SIFT1IM and VGG have d = 128 dimensions,
and DeeplM has d = 96 dimensions. The three datasets have 100000 training
vectors, 1M base vectors, and 10000 queries.

6.1 Fast codebook update

We show the time savings obtained due to our codebook update method on
Table 3. Our method saves anywhere from 2.3 (DeeplM, 64 bits) to 16 seconds
(SIFT1M, 128 bits) of training time per iteration. This has a bigger impact when
encoding is GPU-accelerated, as it results in 2.2 — 5.6x speedups in practice.

Large-scale experiments. On Figure 1, we show a “stress-test” comparison
between our method for fast codebook update and CG, using dataset sizes of
n = {10%,10%,10%,107}. We take the first n training vectors from the SIFT1B [17]
and DeeplB [5] datasets, and generate a random B. This is a specially easy case
for CG, and it takes only 2-3 iterations to converge. Even in this case, our method
is orders of magnitude faster than previous work, and stays under 10 seconds
in all cases, while CG takes up to 700 seconds for n = 107. Our method is only
slower on small training sets due to the complexity of matrix inversion, which is
independent of n.
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Fig. 1. Time for codebook update as a function of dataset size with up to 107 vectors.
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Fig. 2. Recall@1 as a function of time in the MNIST and LabelMe datasets.

6.2 Stochastic relaxations

To evaluate our second contribution, we report recall@l, which represents the
empirical probability, computed over the query set, that the actual nearest neigh-
bour of the query is returned as the first retrieved entry. We run every method
ten times on each dataset and report the average result to account for the ran-
domness in recall.

We compare our contributions against the classical orthogonal MCQ methods
PQ [17] and OPQ [12,206], as well as the more recent RVQ [9], ERVQ [1, 22],
CQ [34], and LSQ [21]. All methods use the same memory budget (64 or 128 bits
per vector), the same codebook size of h = 256, and require the same number
of table lookups to approximate a distance, so their query times are comparable
as well. We run all the methods for 25 iterations.

Recall@1. Figures 2 and 3 show the recall@1 obtained by different methods as
a function of time. We observe that SR-D obtains higher recall than LSQ in all
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Fig. 3. Recall@1 as a function of time in the SIFT1M, DeeplM and VGG datasets.

datasets, and for both 64 and 128 bits, except for SIFT1M at 128 bits. Our fast
codebook update method makes optimization faster than LSQ in all cases.

SR-C shows a more interesting behaviour. When using 64 bits, the method ei-
ther gives a small boost to LSQ, or has a small detrimental effect (LabelMe22K).
However, when using 128 bits, the method underperforms LSQ in all datasets,
except for DeeplM and VGG. We find this result rather interesting, as it suggests
that SR-C is better suited for deep features, which currently dominate a number
of machine learning and computer vision applications. However, its performance
on more classical benchmarks is somewhat disappointing.

We also note that, once we account for query time by dedicating one codebook
to store the database norms, RVQ [9] and ERVQ/SQ [1, 22] tend to perform
worse than PQ and OPQ — the only exception being the DeeplM and VGG
datasets again. Previous work controlled only for memory use (with increased
query time), so this detail was not obvious from previous benchmarks.

Finally, we also observe that CQ fails to generalize when trained on the learn
set, as is the standard protocol for SIFT1IM. The method, however, performs
well on LabelMe and MNIST, which do not have a separate learning set. This is
in line with our preliminary analysis, and suggests that CQ needs more training
data (which implies more training time) to generalize well.

Software. For our experiments, we wrote Rayuela.jl, a library that implements
PQ, OPQ, OTQ, RVQ, ERVQ, CompQ, LSQ and LSQ++ in Julia, with C++
and CUDA bindings for OTQ and LSQ/LSQ++ encoding — we do not include
CQ, because we want to release our library under an MIT licence, and the CQ
code, released under GPLv2, does not allow for stricter sublicensing. We believe
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Table 4. Comparison between CompQ, LSQ and LSQ++ on SIFT1M using 64 bits.

Iters  Init Training Base encoding  Total R@1

CompQ [27] (C++) 250 - - ~ 38h 0.352
LSQ [21] (Julia, CUDA) 25 1.1m 2.8 m 29 s (32 iters) 4.4 m 0.340
LSQ++ (Julia, CUDA) 25 1.1m 33s 29 s (32 iters) 2.1 m 0.346
LSQ++ (Julia, CUDA 50 2.2 m 1.1m 58 s (64 iters) 4.3 m 0.348

(

( )
LSQ++ (Julia, CUDA) 100 4.4 m 22m 19 m (128 iters) 85 m 0.351
LSQ++ (Julia, CUDA) 100 44 m 22m 3.9 m (256 iters) 10.5 m 0.353

that Rayuela.jl is the most comprehensive library of MCQ methods to date.
Rayuela.jl is available at https://github.com/una-dinosauria/Rayuela.jl.

Comparison to CompQ. In Table 4, we update the benchmark against CompQ.
Out of the box, LSQ++ (with SR-D) manages to reduce the gap to CompQ by
half, from 0.012 to 0.006, and is also faster due to the faster codebook update.

We iteratively double the computational budget of LSQ++ (trading off com-
putation for accuracy), and bring the difference in recall to 0.001 with 100 train-
ing iterations and 128 Base encoding ILS iterations. Doubling the budget of this
final step puts our method above CompQ by 0.001 in RQ1. Even under these
circumstances, LSQ-++ is still 200x faster than CompQ.

7 Conclusions

We have benchmarked recent non-orthogonal MCQ algorithms and have found
that (1) LSQ [21] is considerably faster than its competitors, (2) LSQ lags in
accuracy behind CompQ, and (3), when using a GPU, the computational bot-
tleneck of LSQ is, somewhat counterintuitively, the codebook update step.

Based on these observations, we have introduced two stochastic relaxation
methods for MCQ that provide inexpensive approximations to simulated an-
nealing, a technique widely used for hard combinatorial problems. One of these
methods (SR-D) consistently improves recall in LSQ at negligible computational
cost. We have also introduced a method for fast codebook updates that results
in faster training. Both of our contributions can be used as out-of-the-box im-
provements on top of LSQ and are simple to implement. Furthermore, these two
contributions increase the gap in running time between LSQ and its competitors,
and account for the difference in accuracy between LSQ and CompQ [27].
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