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Abstract

Recently, Babenko and Lempitsky [3] introduced Addi-
tive Quantization (AQ), a generalization of Product Quan-
tization (PQ) where a non-independent set of codebooks is
used to compress vectors into small binary codes. Unfor-
tunately, under this scheme encoding cannot be done in-
dependently in each codebook, and optimal encoding is an
NP-hard problem. In this paper, we observe that PQ and AQ
are both compositional quantizers that lie on the extremes
of the codebook dependence-independence assumption, and
explore an intermediate approach that exploits a hierarchi-
cal structure in the codebooks. This results in a method
that achieves quantization error on par with or lower than
AQ, while being several orders of magnitude faster. We per-
form a complexity analysis of PQ, AQ and our method, and
evaluate our approach on standard benchmarks of SIFT and
GIST descriptors, as well as on new datasets of features ob-
tained from state-of-the-art convolutional neural networks.

1. Introduction
Vector quantization has established itself as a default

approach to scale applications such as visual recognition
and image retrieval. Quantization is usually performed
on large datasets of local descriptors (e.g., SIFT [13]),
or global representations (e.g., VLAD [12] or Fisher vec-
tors [17]). Recent work has also explored the performance-
vs.-compression trade-off in state-of-the-art features ob-
tained from deep convolutional neural networks [6]. Out-
side the computer vision community, vector quantization is
also studied in information theory, multimedia retrieval and
unsupervised learning.

Vector quantization is usually posed as the search for a
set of codewords (i.e., a codebook) that minimize quantiza-
tion error. The problem can be solved in a straightforward
manner with the k-means algorithm which, unfortunately,
scales poorly for large codebooks. While larger codebooks
achieve lower quantization error, the downside is that en-
coding and search times scale linearly with codebook size.
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Figure 1. Encoding as performed with Stacked Quantizers, shown
for 4 subcodebooks. Left: the vector is passed through a series of
quantizers, with residuals further encoded down the line. Right: A
geometric interpretation of our approach. After recursively encod-
ing residuals, the representation is additive in the encodings, and
the quantization error is the remaining residual.

Several algorithms, such as kd-trees and hierarchical k-
means, alleviate the search and encoding problems by in-
dexing the codebook with complex data structures [14],
achieving sublinear search time as a trade-off for recall.
These approaches, however, have a large memory footprint,
since all the uncompressed vectors must be kept in memory.

Another line of research considers approaches with an
emphasis on low memory usage, compressing vectors into
small binary codes. While for a long time hashing ap-
proaches were the dominant trend [10, 19], they were
shown to be largely outperformed by Product Quantiza-
tion (PQ) [11]. PQ is a compositional vector compression
algorithm that decomposes the data into orthogonal sub-
spaces and quantizes each subspace independently. As a
result, vectors can be encoded independently in each sub-
space, and distances between uncompressed queries and the
database can be efficiently computed through a series of ta-
ble lookups. This combination of small memory footprint,
low quantization error and fast search makes PQ a very at-
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tractive approach for scaling computer vision applications.
Recently, Babenko and Lempitsky [3] introduced Addi-

tive Quantization (AQ), a generalization of PQ that retains
its compositional nature, but is able to handle subcodebooks
of the same dimensionality as the input vectors. With a few
caveats, AQ can also be used for fast approximate nearest
neighbour search and consistently achieves lower quantiza-
tion error than PQ. However, since the codebooks are no
longer pairwise orthogonal (i.e., no longer independent),
encoding cannot be done independently in each subspace.
In [3], beam search was proposed as a solution to this prob-
lem, but this results in very slow encoding, which greatly
limits the scalability of the proposed solution.

In this paper, we first analyze PQ and AQ as composi-
tional quantizers, under a framework that makes the simpli-
fying assumptions of PQ w.r.t. AQ rather evident. We next
investigate the computational complexity implications re-
sulting from the differences between AQ and PQ, and finally
derive an intermediate approach that retains the expressive
power of AQ, while being only slightly slower than PQ.

Our approach compares favourably to AQ in 3 ways: (i)
it consistently achieves similar or lower quantization error
(and therefore, lower error than PQ), (ii) it is several orders
of magnitude faster and (iii), it is also simpler to implement.

2. Background and related work
We introduce some notation mostly following [15]. We

review the vector quantization problem, the scalability ap-
proaches proposed by PQ and AQ, and discuss their advan-
tages and disadvantages.

2.1. Vector quantization

Given a set of vectors X = {x1,x2, . . . ,xn}, the objec-
tive of vector quantization is to minimize the quantization
error, i.e., to determine

min
C,b

1

n

∑
x∈X
‖x− Cb‖22, (1)

where C ∈ Rd×k contains k cluster centers, and b ∈
{0, 1}k is subject to the constraints ‖b‖0 = 1 and ‖b‖1 =
1. That is, b may only index into one entry of C. C is
usually referred to as a codebook, and b is called a code.

If we let X = [x1,x2, . . . ,xn] ∈ Rd×n contain all the
x ∈ X , and similarly let B = [b1,b2, . . . ,bn] ∈ {0, 1}k×n
contain all the codes, the problem can be expressed more
succinctly as determining

min
C,B

1

n
‖X − CB‖22. (2)

Without further constraints, one may solve expression 2
using the k-means algorithm, which alternatively solves for

B (typically exhaustively computing the distance to the k
clusters in C for each point in X) and C (finding the mean
of each cluster) until convergence. The performance of k-
means is better as the size of the codebook, k, grows larger
but, unfortunately, the algorithm is infeasible for large code-
book sizes (for example, k = 264 clusters would far exceed
the memory capacity of current machines). The challenge
is thus to handle large codebooks that achieve low quanti-
zation error while having low memory overhead.

2.2. Compositional quantization models

One way of scaling the codebook size looks at compo-
sitional models, where smaller subcodebooks can be com-
bined in different ways to potentially represent an exponen-
tial number of clusters. Compositional quantization can be
formulated similarly to k-means, but restricted to a series of
constraints that introduce interesting computational trade-
offs. The objective function of compositional quantization
can be expressed as

min
Ci,bi

1

n

∑
x∈X
‖x−

m∑
i

Cibi‖22, (3)

that is, the vector x can be approximated not only by a sin-
gle codeword indexed by its code b, but by the addition of
its encodings in a series of codebooks. We refer to the Ci

as subcodebooks, and similarly call the bi subcodes. We let
each subcodebook contain h cluster centres: Ci ∈ Rd×h,
and each subcode bi remains limited to having only one
non-zero entry: ‖bi‖0 = 1, ‖bi‖1 = 1. Since each bi

may take a value in the range[1, 2, . . . , h], and there are m
subcodes, the resulting number of possible cluster combi-
nations is equal to hm, i.e., superlinear in m. Now we can
more succinctly write expression 3 as

‖X − CB‖22 = ‖X − [C1, C2, . . . , Cm]


B1

B2

...
Bm

‖22, (4)

where Bi = [bi1,bi2, . . . ,bin] ∈ {0, 1}h×n. As we will
show next, AQ, PQ and Optimized Product Quantization
(OPQ) [15, 9] belong to this family of models.

2.2.1 Product Quantization

PQ can be formulated right away with Eq. 4 under the
constraint that all the subcodebooks be pairwise orthogo-
nal [15]:

∀i, j : i 6= j → C>i Cj = 0h×h, (5)



that is, C is blockwise diagonal [15]:

C = [C1, C2, . . . , Cm] =


D1 0 . . . 0
0 D2 0
...

. . .
...

0 0 . . . Dm

 , (6)

where the entries Di ∈ R(d/m)×h are the only non-zero
components of C. This constraint assumes that the data
in X was generated from a series of mutually independent
subspaces (those spanned by the subcodebooks Ci), which
is rarely the case in practice. There are, however, some ad-
vantages to this formulation.

The subcodebook independence of PQ offers 3 main
advantages,

1. Under the orthogonality constraint we can efficiently
learn the subcodebooks Ci by independently running k-
means on d/m dimensions. The complexity of k-means
is O(nkdi) for n datapoints, k cluster centres, d dimen-
sions and i iterations. PQ solves m d/m-dimensional
k-means problems with h cluster centres each, resulting
in a complexity of O(mnh(d/m)i) = O(nhdi); i.e.,
training PQ is as complex as solving a k-means problem
with h cluster centres.

2. Once training is done, the encoding of the database can
also be performed efficiently in O(nhd) (in line with k-
means), which is essential for very large databases.

3. Distance computation between a query q and a en-
coded vector

∑m
i=1 Cibi is efficient because the sub-

codebooks are orthogonal, and therefore the total dis-
tance is equal to the sum of the distances in each sub-
space [11]: ‖q −∑m

i=1 Cibi‖22 =
∑m

i=1‖qi −Dibi‖22,
where q = [q1,q2, . . . ,qm], and qi ∈ Rd/m. These dis-
tances can be precomputed for each query and quickly
evaluated with m table lookups. This is called Asym-
metric Distance Computation in [11] and is the mecha-
nism that makes PQ attractive for fast approximate near-
est neighbour search.

2.2.2 Optimized Product Quantization

One of the main disadvantages of PQ is that X is forced
to fit in a model that assumes that the data was generated
from statistically independent subspaces. Lower quanti-
zation error can be achieved if more degrees of freedom
are added to the model. In particular, since rotation is a
distance-preserving operation, it seems natural to experi-
ment with codebook rotations that minimize quantization
error. In OPQ, the objective function becomes [15]

min
R,C,B

1

n
‖X −RCB‖22, (7)

where C and B are expanded as in Eq. 4, and R belongs to
the Special Orthogonal Group SO(d). In this sense, PQ is a
special case of OPQ where R is the d-dimensional identity
matrix: R = Id. Independently, Ge et al. [9] and Norouzi
& Fleet [15] proposed an iterative method similar to Iter-
ative Quantization [10] that optimizes R in expression 7.
Notice, however, that the orthogonality constraint is main-
tained from PQ to OPQ.

Lower quantization error can be achieved if the indepen-
dence assumption is not enforced, at the cost of more com-
plex encoding and distance computation. These trade-offs
were first introduced in [3] and called Additive Quantiza-
tion (AQ). We briefly review AQ here.

2.2.3 Additive Quantization

In AQ, the subspaces spanned by the subcodebooks Ci are
not mutually orthogonal (i.e., not mutually independent).
Formally, and although not explicitly stated in [3], AQ
solves the formulation of Eq. 3 without any further con-
straints. This makes of AQ a strictly more general model
than PQ/OPQ. However, this complexity comes at a cost.

The subcodebook dependence of AQ comes with 3
main disadvantages with respect to PQ/OPQ,

1. The distance between a query q and a encoded vector∑m
i=1 Cibi cannot be computed with m table lookups.

However, it can be found using the identity

‖q−
m∑
i=1

Cibi‖22 =

‖q‖22 −
m∑
i=1

2〈q, Cibi〉+ ‖
m∑
i=1

Cibi‖22 (8)

where the first term is a constant and does not affect
the query ranking; the second term can be precomputed
and stored for fast evaluation with m table lookups, and
the third term can either be precomputed and quantized
for each vector in the database (at an additional memory
cost), or can be computed on the fly as

‖
m∑
i=1

Cibi‖22 =

m∑
i

‖Cibi‖22 + 2

m∑
i 6=j

〈Cibi, Cjbj〉 (9)

where the terms can also be precomputed and retrieved
in m table lookups. Thus, AQ has either a time (2m



vs. m lookups) or memory overhead (for storing the
quantized result of Eq. 9) during distance computation
with respect to PQ. Although this may sound as a ma-
jor problem for AQ, it was shown in [3] that sometimes
the distortion error gain can be high enough that allocat-
ing memory from the code budget to store the result of
Eq. 9 results in better recall and faster distance compu-
tation compared to PQ/OPQ. This motivates us to look
for better solutions to the AQ formulation.

2. For a given set of subcodebooks Ci and a vector x, en-
coding amounts to choosing the optimal set of codes
bi that minimize quantization error ‖x−∑m

i=1 Cibi‖22.
Unfortunately, without the orthogonality constraint the
choice of bi cannot be made independently in each sub-
codebook. This means that, in order to guarantee op-
timality, the search for the best encoding must be done
over a combinatorial space of codewords. Moreover, it
was shown in [3] that this problem is equivalent to in-
ference on a fully connected pairwise Markov Random
Field, which is well-known to be NP-hard [7].

Since brute force search is not possible, one must settle
for a heuristic search method. Beam search was pro-
posed as a solution in [3], resulting in rather slow encod-
ing. Beam search is done in m iterations. At iteration
i the distance is computed from each of the b candidate
solutions to the set of k · (m − i) plausible candidates
(in the m− i codebooks that have not contributed to the
candidate solution). At the end of the iteration we have
b2 candidate solutions, from which the top b are kept as
seeds for the next iteration [3]. The complexity of this
process is O(m2mbhd) = O(m3bhd), where b is the
search depth. As we will show, this makes the original
solution of AQ impractical for very large databases.

3. Training consists of learning the subcodebooks Ci and
subcodebook assignments bi that minimize expres-
sion 3. A typical approach is to use coordinate descent
by fixing the subcodebooks Ci while updating the codes
bi (encoding), and later fixing bi while updating Ci

(codebook update). As a side effect of slow encoding,
we find that training is also very slow in AQ. While this
might seem as a minor weakness of AQ (since training
is usually done off-line, without tight time constraints),
having faster training also means that for a fixed time
budget we can handle larger amounts of training data.
In the quantization setting, this means that we can use a
larger sample to better capture the underlying distribu-
tion of the database.

In [3], codebook update is done by solving the over-
constrained least-squares problem that arises from Eq. 4
when holding B fixed and solving for C. Fortunately,
this decomposes into d independent subproblems of n

equations over mh variables [3]. This corresponds to an
optimal codebook update in the least squares sense. We
find that compared to encoding this step is rather fast,
and thus focus on speeding up encoding.

3. Stacked Vector Quantizers
Within the subcodebook dependence-independence

framework introduced in Section 2, we can see that PQ
and OPQ assume subcodebook independence, while
AQ embraces the dependence and tries to solve a more
complex problem. As we will show next, there is a fertile
middle ground between these approaches. We propose a
hierarchical assumption, which has the advantage of being
fast to solve while maintaining the expressive power of AQ.
We now introduce our proposed approach to compositional
quantization.

Stacking Quantizers. Due to the superior performance of
AQ, we want to maintain its key property: subcodebook de-
pendence. However, we look for a representation that can
compete with PQ in terms of fast training and good scalabil-
ity, for which fast encoding is essential. We propose to use a
hierarchy of quantizers (see Figure 1, left), where the vector
is sequentially compressed in a coarse-to-fine manner.

Encoding. Fast encoding is at the heart of our approach.
We assume that the subcodebooks Ci have a hierarchical
structure, where C1 gives the coarsest quantization and CM

the finest. Encoding is done greedily. In the first step, we
choose the code b1 that most minimizes the quantization
error ‖x − C1b1‖22. Since all the subcodebooks are small,
the search for b1 can be done exhaustively (as in k-means).

Next, we compute the first residual r1 = x− C1b1. We
now quantize r1 using the codewords in C2, choosing the
one that minimizes the quantization error ‖r1 − C2b2‖22.
This process is repeated until we run out of codebooks to
quantize residuals, with the last residual rm being equal to
the total quantization error (see Figure 1, right). Now it is
clear that we satisfy our first desired property, as the repre-
sentation is additive in the encodings: x ≈∑m

i=1 Cibi, and
the codewords all are d-dimensional (i.e., not independent
of each other).

The complexity of this step is O(mhd) for m subcode-
books, each having h subcodewords, and a vector of dimen-
sionality d. This corresponds to a slight increase in compu-
tation with respect to PQ (O(hd)), but is much faster than
AQ (O(m3bhd)). Given that encoding is only slightly more
expensive than PQ, we can say that we have also achieved
our second desired property.

Initialization. The goal of initialization is to create a
coarse-to-fine set of codebooks. This can be achieved by
simply performing k-means on X , obtaining residuals by
subtracting the assigned codewords, and then performing k-
means on the residuals until we run out of codebooks.
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Figure 2. Quantization error on SIFT1M, GIST1M and ConvNet1M 128. SQ shows the biggest performance advantage on deep features.

Formally, in the first step we obtain C1 from the cluster
centres computed by k-means on X , and we obtain residuals
by subtracting R1 = X − C1B1. In the second step we
obtain C2 from k-means on R1, and the residuals are refined
to R2 = R1 − C2B2. This process continues until we run
out of codebooks (notice how this both is analogous to, and
naturally gives rise to, the fast encoding proposed before).
By the end of this initialization, we have an initial set of
codebooks C = [C1, C2, . . . , Cm] that have a hierarchical
structure, and with which encoding can be performed in a
greedy manner.

The computational cost of this step is that of running k-
means on n vectors m times, i.e., O(mnhdi) for subcode-
books of size h, dimensionality d and i k-means iterations.

Codebook refinement. The initial set of codebooks can
be further optimized with coordinate descent. This step is
based on the observation that, during initialization, we as-
sume that in order to learn codebook Ci we only need to
know codebooks C1, C2, . . . , Ci−1. However, after initial-
ization all the codebooks are fixed. This allows us to fine-
tune each codebook given the value of the rest.

Although it is tempting to use the least-squares-optimal
codebook update proposed in [3], we have found that this
tends to destroy the hierarchical subcodebook structure re-
sulting from initialization. Without a hierarchical structure
encoding cannot be done fast, which is one of the key prop-
erties that we wish to maintain. We therefore propose an ad
hoc codebook refinement technique that preserves the hier-
archical structure in the codebooks.

Let us define X̂ as the approximation of X from its en-
coding

X̂ = CB. (10)

Now, let us define X̂−i as an approximation to the
original dataset X obtained using the learned codebooks
[C1, C2, . . . , Cm] and codes B = [B>1 , B>2 , . . . , B>n ]> , ex-
cept for Ci, i.e.,

X̂−i = X̂ − CiBi. (11)

We can now see that the optimal value of Ci given the
rest of the codebooksis obtained by running k-means on
X − Xi−1, i.e., the residual after removing the contribu-
tion of the rest of the codebooks. Since we already know
the cluster membership to Ci (i.e., we know Bi) either from
initialization or the previous iteration, we need to update
only the cluster centres instead of restarting k-means (sim-
ilar to how OPQ updates the codebooks given an updated
rotation [9, 15]).

Enforcing codebook hierarchy is of the essence. There-
fore, we run our codebook update in a top-down manner.
We first update C1 and update all codes. Next, we update C2

and update codes again. We repeat the process until we have
updated Cm, followed by a final update of the codes. Up-
dating the codes after each codebook update ensures that the
codebook hierarchy is maintained. A round of updates from
codebooks 1 to m amounts to one iteration of our codebook
refinement.

The algorithm involves encoding using m codebooks in
the first pass, m − 1 in the second pass, m − 2 in the third
pass and so on until only one set of codes is updated. This
means that the time complexity of the codebook refinement
procedure is quadratic in the number of codebooks. This
is a significant increase with respect to PQ/OPQ, which are
linear in m during their training, but also represents an im-
portant reduction against the cubic scaling of AQ. Also, no-
tice that the training usually has to be done only once with a
small data sample, and database encoding remains efficient.

4. Experiments

Our main interest is to reduce quantization error because
it has been demonstrated to lead to better retrieval recall,
mean average precision and classification performance [3,
9, 11, 15]. We also demonstrate two applications of our
method: (i) approximate nearest neighbour search and (ii)
classification performance with compressed features. In all
our experiments we use codebooks of size h = 256; this
means that 2, 4, 8 and 16 codebooks generate codes of 16,
32, 64 and 128 bits.
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Figure 3. Quantization error on deep features with different dimensionalities. The non-independent approaches AQ and SQ clearly outper-
form PQ and OPQ. SQ achieves the best performance when using 8 and 16 codebooks (64 and 128 bits per feature) in all cases.

Datasets. We test our method on three datasets. The
first two are SIFT1M and GIST1M, introduced in [11].
SIFT1M consists of 128-dimensional SIFT [13] descriptors,
and GIST1M consists of 960-dimensional GIST [16] de-
scriptors. Since hand-crafted features are consistently be-
ing replaced by features obtained from deep convolutional
neural networks, we also consider a dataset of deep fea-
tures: ConvNet1M-128. We obtained ConvNet1M-128 by
computing 128-dimensional deep learning features on the
ILSVRC-2012 training dataset [8] using the CNN-M-128
network provided by Chatfield et al. [5] and then subsam-
pling equally at random from all classes. This network fol-
lows the architecture proposed by Zeiler and Fergus [20],
with the exception that the last fully-connected layer was
reduced from 4096 to 128 units. It has been shown that this
intra-net compression has a minimal effect on classification
performance [5], and exhibits state-of-the-art accuracy on
image retrieval [6]. However, to the best of our knowledge
we are the first to benchmark quantization techniques on
deep learning features. We obtained the features from a
central 224× 224 image crop without further data augmen-
tation. In the three datasets 100 000 vectors are given for
training, 10 000 for query and 1 000 000 for database.

Baselines. We compare against 3 baselines. The first one
is AQ as proposed by Babenko and Lempitsky [3], which
consists of beam search for encoding and a least-squares
codebook update in an iterative manner. As in [3], we set
the beam search depth b to 16 during training and to 64 for
the database encoding. Although [3] does not mention the
number of iterations used during training, we found that 10
iterations reproduce the results reported by the authors and,
as we will show, this is already several orders of magnitude
slower than our approach. Since encoding scales cubically
with the number of codebooks, for code lengths of 64 and
128 bits (8 and 16 codebooks respectively) we use the hy-
brid APQ algorithm suggested in [3], where the dataset is
first preprocessed with OPQ, and then groups of 4 subcode-
books are refined independently with AQ. APQ was pro-
posed for practical reasons, as otherwise AQ would require

several days to complete given more than 4 subcodebooks:
the need for this approximation starts to show the poor scal-
ability of AQ. Since no code for AQ is available, we wrote
our own implementation and incorporated the optimizations
suggested in [3]. We will make all our code available, in-
cluding this baseline.

The second baseline is Optimized Product Quantiza-
tion [9, 15], which was briefly introduced in Section 2. We
use the publicly available implementation by Norouzi &
Fleet1, and set the number of optimization iterations to 100.
The third baseline is Product Quantization [11]. We slightly
modified the OPQ code to create this baseline. We also use
100 iterations in PQ.

4.1. Quantization Error

Our main quantization results are shown on Figure 2.
First, we observe that our method has a performance sim-
ilar to AQ on SIFT1M and GIST1M. This is already good
news, given the better scalability of our method. Moreover,
we note that SQ obtains a large advantage on the deep fea-
tures of ConvNet1M-128 when using 8 and 16 codebooks.
We find this result rather encouraging, as deep features are
likely to replace hand-crafted descriptors such as SIFT and
GIST in the foreseeable future.

OPQ achieves a large gain compared to PQ in GIST1M,
and this gap is only slightly improved by AQ and SQ. Since
both SIFT1M and ConvNet1M-128 have low dimensional-
ity (128), and GIST1M has high-dimensional descriptors
(960), it remains unclear whether the advantages of AQ
and SQ are only restricted to low-dimensional descriptors.
We investigate this question by benchmarking the methods
on 1024-, 2048- and 4096-dimensional deep features ob-
tained in a similar manner to ConvNet1M-128, but using
using the CNN-M-1024, CNN-M-2048 and CNN-M net-
works from [5] respectively. The quantization results on
these datasets are shown on Figure 3. While the PQ-to-
OPQ gap is still present for high-dimensional features, we
see that AQ and SQ maintain a performance gap from OPQ

1https://github.com/norouzi/ckmeans

https://github.com/norouzi/ckmeans
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Figure 4. Recall@N on the SIFT1M, GIST1M and Convnet1M-128 datasets. Because of limited space, we consider only 32-bit codes (4
codebooks). We confirm previous observations [3, 15, 9] that correlate quantization error with nearest neighbour search performance: our
method has the best recall for all values of N in the SIFT1M and GIST1M datasets. SQ is slightly outperformed by AQ on ConvNet1M-128,
but still performs much better than PQ and OPQ. We show results for longer codes in the supplementary material.

similar to that observed on the 128-dimensional features.
Moreover, our method remains the clear winner for 8 and
16 codebooks, and largely competitive with AQ for 4 code-
books. These results suggest that codebook independence
hurts the compression of deep features particularly badly
and motivates more research of compositional quantization
methods that follow the formulation of expression 3.

4.2. Approximate Nearest Neighbour Search

We demonstrate the performance of our method on fast
search of K nearest neighbours with recall@N curves [11].
These curves represent the probability of the true K near-
est neighbours being in a retrieved list of N neighbours
for varying N . We set K = 1 and observe little vari-
ability for other values. Our main results are shown on
Figure 4. As expected, lower quantization error lets us
achieve higher recall on SIFT1M and GIST1M, although
on GIST1M OPQ and AQ achieve very competitive perfor-
mance. On ConvNet1M-128, our method was slightly out-
performed by AQ; however, this trend is reversed for longer
codes, consistent with the quantization error of Fig. 2. We
show results on longer codes in the supplementary material.

4.3. Large-Scale Object Classification

We study the trade-off in classification performance
vs. compression rate on the ILSVRC-2012 dataset us-
ing deep learning features. We trained a linear SVM on
the 1.2 million uncompressed examples provided, and pre-
processed the features with L2 normalization, which was
found to improve performance in [5]. The 50 000 images
in the validation set were preprocessed similarly and com-
pressed before evaluation. This scenario is particularly use-
ful when one wants to search for objects in large unlabelled
datasets [1, 4], and in retrieval scenarios where classifiers
are applied to large collections of images in search for high
scores [6, 18]. Notice that in this scenario, the only oper-
ation needed between the support vectors and the database
descriptors is a dot product; as opposed to distance compu-
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Figure 5. Top-5 classification error on the ILSVRC-2012 dataset
as a function of compression. The dotted black line corresponds
to performance without compression. The left pane shows per-
formance using 128-dimensional deep features, and the right pane
shows performance for 1024-dimensional deep features.

tation, this can be done with m lookups in AQ and SQ, the
same as for PQ and OPQ. We report the classification error
taking into account the top 5 predictions.

Classification results are shown on Figure 5. We ob-
serve a similar trend to that seen in our quantization re-
sults, with PQ and OPQ consistently outperformed by
AQ and SQ. Using 128-dimensional features our method
performs similarly to AQ using 4 codebooks, but shows
better performance for larger code sizes. Using 1024-
dimensional features AQ and SQ are practically equiva-
lent but, curiously, it seems like the 128-dimensional fea-
tures are more amenable to compression: for all com-
pression rates the 128-dimensional features outperform
the 1024-dimensional features ([0.2646, 0.2293, 0.2101]
vs. [0.2917, 0.2562, 0.2246] in top-5 error), even though
when uncompressed the 1024-dimensional features perform
slightly better (0.1999 vs. 0.1893). This suggests that, if
quantization is planned as part of a large-scale classifica-
tion pipeline, low-dimensional features should be preferred
over high-dimensional ones. It is also noticeable that for
extreme compression rates (e.g., 32 bits) PQ and OPQ have
error rates in the 35-45% range, while AQ and SQ degrade
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Figure 6. Left: Training time vs. Quantization error of the bench-
marked methods on the ConvNet1M-128 training dataset (100K
features). For clarity, we plot each 50 iterations for PQ and OPQ
and each 25 iterations for SQ after initialization. PQ and OPQ
complete 100 iterations after 286 and 336 seconds respectively
(4.8 and 5.6 minutes), SQ takes ∼1500 seconds for initialization
and ∼1000 seconds for 100 iterations of codebook refinement (42
minutes in total). APQ takes ∼2.7 hours for 10 iterations. Right:
Encoding of the database set of 1M features. PQ and OPQ take
∼5 seconds, SQ ∼20 seconds, and APQ ∼9.2 hours.

more gracefully and maintain a 25-30% error rate.

4.4. Running times

Figure 6 shows the running time for training and
database encoding for PQ/OPQ, APQ and SQ on the
ConvNet1M-128 dataset using 8 codebooks (64 bits). All
measurements were taken on a machine with a 3.20 GHz
processor using a single core. We can see that SQ ob-
tains most of its performance advantage out of initializa-
tion, but codebook refinement is still responsible for a 20%
decrease to the final quantization error (0.12 to 0.10). We
also see that APQ largely improves upon its OPQ initializa-
tion, but these iterations are extremely expensive compared
to PQ/OPQ, and 3 iterations take almost as much computa-
tion as the entire SQ optimization. Beyond training (which
arguably is not too big of a problem, since it only has to be
done once), encoding the database with the learned code-
books is extremely expensive with APQ (9.2 hours), while
for PQ/OPQ and SQ it stays in the 5-20 second range. Pro-
jecting these numbers to the encoding of a dataset with 1
billion features such as SIFT1B [11] suggests that PQ/OPQ
would need about 1.5 hours to complete, and SQ would
need around 6 hours; however, APQ would need around
1.05 years (!). Although all these methods are highly par-
allelizable, these numbers highlight the importance of fast
encoding for good scalability.

5. Conclusions and future work

We have introduced Stacked Quantizers as an effective
and efficient approach to compositional vector compres-
sion. After analyzing PQ and AQ in terms of their codebook
assumptions, we derived a method that combines the best

of both worlds, being only slightly more complex than PQ,
while maintaining the representational power of AQ. We
have demonstrated state-of-the-art performance on datasets
of SIFT, GIST and, perhaps most importantly, deep convo-
lutional features.

Future work will look at the integration of our pipeline
with non-exhaustive indexing techniques such as the in-
verted file [11] or the inverted multi-index [2]. We also plan
to investigate the use of optimization approaches that have
proven useful in network-like architectures such as stochas-
tic gradient descent and conjugate gradient.
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