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ABSTRACT
Food identification technology potentially benefits both food and
media industries, and can enrich human-computer interaction. We
assembled a food classification dataset consisting of 11,141 clips,
based on YouTube videos of 20 food types. This dataset is freely
available on Kaggle. We suggest the grouped holdout evaluation
protocol as evaluation method to assess model performance. As a
first approach, we applied Convolutional Neural Networks on this
dataset. When applying an evaluation protocol based on grouped
holdout, the model obtained an accuracy of 18.5%, whereas when
applying an evaluation protocol based on uniform holdout, the
model obtained an accuracy of 37.58%. When approaching this as
a binary classification task, the model performed well for most
pairs. In both settings, the method clearly outperformed reasonable
baselines. We found that besides texture properties, eating action
differences are important consideration for data driven eating sound
researches. Protocols based on biting sound are limited to textural
classification and less heuristic while assembling food differences.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→Clustering and classification; •Applied com-
puting → Sound and music computing.
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1 INTRODUCTION
Food is one of the most important elements that directly interact
with our body. Humans have evolved with delicate perception of
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food in order to survive and thrive. The sound of food is tightly
connected to the textural perception of food, and provides important
information on food quality (such as freshness, water content, and
palatability [5, 14, 16]). Eating sounds have also been studied for
their rich application potential [4, 15]. Diet tracking, for example,
is an area that could benefit greatly from classifying food based
on sound. Tracking of food can be important to monitor personal
health in daily life as well as in hospital settings to inform about
the nutritional excess or insufficiency of diets. At present, diet
tracking tends to rely on manually entering information for each
meal. Researchers within the nutrition and eating behaviour fields
have been trying to develop a more automated way to detect diet
and eating behaviours [15]. Dacremont (1995) looked into sound
spectrum features of 8 different foods eating by 60 subjects [3]. In
another research, Shuzo et al. (2010) successfully applied a sound
classification method for a portable eating behaviour detector with
a bone-conduction microphone [13]. However, the sound samples
in these studies were recorded in a carefully controlled situations
with high recording quality. The results might only be applicable
on body-contacting detectors. To the best of our knowledge, there
is no large-scale benchmark on eating sounds which resemble our
daily eating situations.

More recently, people have started to record eating sounds as
part of ‘ASMR’ (autonomous sensory meridian response) videos in
an effort to cause a pleasant tingling sensation in a listener. Setting
aside the fact that the act of eating food is necessarily creating
sound, the sound of eating can in itself be considered a form of
communication that provides information. In this case, the sound
of eating can provide information about what is being eaten. This
‘communication’ is not only available to human listeners, but can
also be captured and classified by computers.

Convolutional neural networks [6] have been applied to classify
large-scale featured noise like urban environment sounds [11, 12].
In these studies, large manually labelled sound data-sets were used
to train the model in classifying different sound sources. These
classification experiments often achieve excellent performances
since the sound categories have significantly different features,
which are also easy to distinguish for human listeners.

Our research aims to evaluate the performance of convolutional
neural networks on food eating sound classification with online
public-sourced training data, representing various eating condi-
tions, behaviours and recording qualities. Our contributions are the
following:

(1) We assemble a public sourced sound dataset from different
food types.

(2) We propose a corresponding evaluation protocol, based on
grouped holdout evaluation.
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(3) We experiment with convolutional neural networks to assess
baseline performance.

(4) We analyse distances of various food types using clustering
methods.

In the following sections we will review related work and explain
our approach in detail.

2 RELATEDWORK ON EATING SOUND
CLASSIFICATION

In previous work, sound features like amplitude, number of sound
bursts and mean peak height were evaluated to characterise the
texture of food products [4]. Aside of time-based parameters, spec-
trum composition of eating sounds were also studied in order to
understand the distinct sound features generated with certain food
textures [3]. The sound and texture correlations calculated from
these studies focused on preciseness and general representation.
However, as eating sound is generated through complex move-
ments and various mouth structures, new studies require a more
generalised view point to observe the textural sound features.

With the potential application of hospital eating behaviour moni-
toring, more recent studies focused on the development of wearable
eating monitors [15]. Based on previous studies on the relation
of sound parameters and textural perceptions, eating monitor re-
search evolved from feature based towards more data driven meth-
ods [1, 13]. These studies used high recording quality, involving
bone-conducted microphone or controlled experiment cabins. Re-
cent research explored gathering data in daily situations instead of
laboratories, while still using limited numbers of participants and
high quality recording methods [8, 10].

To the best of our knowledge, there have not been any top-down
data driven studies for generalised eating classification. Because
of challenges in recruiting participants and monitoring them, the
amount of data collected in previous studies is often limited.

3 DATA COLLECTION AND PREPARATION
All the sound clips used in this project were obtained from public
videos. The subsections below explain the protocol of video and
clip collection as well as the file construction of the dataset.

3.1 Video Collection and Clip Selection
The video materials were collected from YouTube, relying on its
availability and amount of content generated by the eating-themed
channels. Twenty food categories were selected from the top search
results of the term ‘eating sound’ based on their popularity and
food types. This criterion kept a balance of food types and made
sure that there are sufficient videos available for each food type.
By searching with each food type with ‘eating sound’ (e.g. ‘aloe
eating sound’), 11 to 14 videos of each of these 20 food types were
downloaded in their highest quality available (resulting in total 246
videos). The videos were screened to make sure that the content is
aligned with the title. All the videos were recorded inside a room,
but with various space properties (room reverb, obstruction etc.),
food varieties (e.g. burgers with/without salad), recording quality
and eating behaviours.

For each video, all available eating sounds were located and
processed into clips by cutting out talking, cutlery and packaging

sounds. Long clips with a repetitive sound profile were separated
into smaller pieces of similar lengths. After that, peak normalisation
gain targeting -1db was applied to all the clip regions (where 0 db
represents the distortion edge). Each food category yielded 279 to
873 clips, adding up to 11,141 clips in total, ranging from 1 to 22
seconds per clip.

The food types are listed below (with the number of clips indi-
cated in parentheses). Each food type involves a range between 11
to 14 source videos that were used to create the clips: Aloe (547),
Burger (596), Cabbage (500), Candied fruits (807), Carrots (661),
Chips (720), Chocolate (291), Drinks (293), Fries (645), Grapes (580),
Gummies (679), Ice-cream (728), Jelly (443), Noodles (412), Pickles
(873), Pizza (610), Ribs (489), Salmon (502), Soup (279), Chicken
wings (505). In order to make full use of the assembled clips, we
did not balance the dataset. Pickles is the largest class, representing
roughly 7.8% of the clips. Chocolate is the smallest class, represent-
ing roughly 2.6% of the data.

3.2 File Construction
The selected and labelled clips were published on kaggle.com under
PDDL license for public experiments.1 All the clips are in the PCM
WAV format, using a sample rate of 44.1kHZ and 24 bit depth. The
dataset consist of 20 folders, each containing all the clips of that
food. The clips were named with the food name, followed by the
video source and then clip number (e.g. 𝑎𝑙𝑜𝑒_10_02.𝑤𝑎𝑣 is the 2nd
clip from the 10th video of aloe). The data can be pre-processed in
different ways and used for various research or creation purposes.

4 EXPERIMENTS AND RESULTS
Our study used the aforementioned dataset to experiment with two
neural networks training tasks:

(1) 20-way classification task: trained by all data from 20 food
types. Given a sound clip, the model need to identify which
food type is the sound source. A majority class classifier
would obtain an accuracy of 7.8%.

(2) pairwise classification task: Performed for each pairs of the
20 categories (in total 190 pairs). Trained by one pair at a
time (e.g., aloe vs. burger). Given a sound clip, the model
need to tell which of the two food types it is. We would
expect the the majority class classifier to obtain an accuracy
between roughly 50% (for balanced pairs) and 75% (for the
least balanced pair, i.e., pickles vs. chocolate).

This section explains the process of data preparation, protocols,
model training of each task and their corresponding evaluation
results.

4.1 Data Pre-Processing
We translated the clips into a mel-frequency spectrogram using
the Python LibROSA module [9]. As such, each sound clip is repre-
sented as an image. We further used the image data pre-processing
functions of Keras [2] to get the spectrogram data ready for model
training. This method was adapted from previous research of large-
scale noise classification with various sample lengths [7].

1Eating Sound Collection (Version 1), Available on:
https://www.kaggle.com/mashijie/eating-sound-collection
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4.2 Model Construction
We built a sequential neural network model with the ADAM opti-
miser, as implemented in Keras [2]. The network architecture was
loosely inspired by the research on convolutional neural networks
for large-scale audio classification [7]. The network was made up
with six convolutional layers which have increasing filter density.
Dropout and pooling layers were included to compensate over-
fitting and improve model efficiency. The model was trained with
a learning rate of 0.0005 and applied categorical cross entropy as
loss function. After evaluating the trial results, the rate for each
dropout layer was tuned from 0.5 to 0.6 for better performance.

Figure 1: Pairwise classification result (accuracy), using the
grouped holdout protocol. The numbers in each cell denotes
the accuracy of the pairwise classification task on the inter-
secting food type column and row. The scale on the right
shows the color coding of the accuracy values.

4.3 Evaluation Protocols
Each video is split up into a range of clips that are taken from it.
Therefore, the protocols of training and validation splitting are dif-
ferent depending onwhether the video groupingwere considered as
affecting element. For this project we compared uniform holdout
and grouped holdout evaluation protocol. For the uniform holdout
protocol, clips from various videos are spread uniformly across
the training and validation data. As such, the model might pick
up patterns related to the person eating the food, rather than the
food itself. To alleviate this problem, we also applied the grouped
holdout protocol. The training and validation data was split by
groups of videos. For each food type, clips from 70 percent of the
videos were used for training and the rest were used for validation.
This protocol avoided clips from the same video being in both train-
ing and testing sets. Therefore, if the model picked up patterns of

certain videos (e.g., eating behaviour of the subject), those patterns
do not contribute to improve the test results. A similar procedure
is used for common benchmarks, such as the MNIST dataset.

4.4 20-way Classification Task
In this task, we compared the performance of the model using
the uniform holdout and grouped holdout evaluation protocols.
We evaluated on both models using 10 times repetition, to get
a stable performance estimate. Table 1 shows the results. Using
the uniform protocol, the model achieves 37.58% average accuracy
while when using themore challenging grouped protocol, themodel
achieves 18.5% average accuracy. This is only a first baseline result
to validate that there is a learnable concept in the data. We verified
that the performance is higher than Majority Class Classifier (7.8%,
calculated analytically). Furthermore, it can be seen that the model
benefits greatly from having access to different clips from the same
video. As such, the more challenging grouped evaluation protocol
is important to assess the real model in realistic settings.

Protocol Majority Class Convolutional NN
Uniform Holdout 7.8% 37.58% ± 0.7%
Grouped Holdout 7.8% 18.5% ± 1.3%

Table 1: Accuracy of the CNN using both the uniform and
grouped evaluation protocol. For comparison, the expected
performance of the Majority Class Classifier is also noted.

4.5 Pairwise Classification Task
In this task we focus on the more challenging grouped holdout
evaluation protocol. The training reached convergence within 80
epochs. Again, we report the average accuracy of 10 repetitions.
Figure 1 shows the results of each pairwise classification task. The
average accuracy and standard deviation per food type is shown
in Figure 2. Candied fruits, drinks, chip and soup sounds seem to
be relatively distinct and can easily be distinguished. On the other
hand, chocolate, ribs and salmon sounds seem to bemore ambiguous
and generally sound more alike. However, the unbalanced nature of
the various problems might be a confounding factor. Figure 3 shows
the dendrogram of thematrix result. Using accuracy as distance, this
graph clustered similarly-sounding food types (difficult to classify).
Some food types with similar texture properties are not clustered
together as assumed. This result is not aligned with the result of
previous work [1] which was mostly aligned with food textural
differences.

5 DISCUSSION
Food identification based on sound patterns is a challenging task.
Convolutional Neural Networks score on average 18.1% in the 20-
way classification task. The pairwise classification tasks achieved
various scores where some pairs could be classified up to 97%.
Some of the food pairs from the dataset were especially difficult
to classify, which may have caused the low performance of the
20-way classification task. Also, the clip separation methodology
used in this paper was aimed to avoid unwanted noise, but might



Figure 2: Boxplots of the average pairwise classification per-
formances per food. Each boxplot represents the accuracy
of a certain food type compared to all other food types.

Figure 3: Dendrogram generated from the result matrix us-
ing accuracy as distance.

have lost important feature clues in some clips compared to the
others. Experiments with longer clipsmight be an interesting option
to explore whether the model learns better with more featured
clues while trading off the effect of more noise. The dendrogram
result (Figure 3) suggests there might be other audio clues featuring
different food types rather than solely texture differences.

6 CONCLUSION
This research evaluated the performance of convolutional neu-
ral networks on food eating sound classification, based on online
public-sourced training data, representing various real-life eating
conditions, behaviours and recording qualities. As part of this study,
an eating sound dataset of 20 different food types was collected,
curated, and published on Kaggle. The experiment covered both
20-way classification and pairwise classification tasks. When us-
ing the grouped holdout evaluation protocol, the neural network
could identify certain food types from the 20 categories with 18.5%
accuracy. With the uniform protocol, the model achieved 37.58%
accuracy, indicating that the model might have learned patterns
related to specific videos for the food identification task. As such,
we recommend using the grouped holdout evaluation protocol for

this dataset. The model achieved promising binary classification
performance for many food pairs. However, we note that the fact
that the various pairs are imbalanced is a confounding factor. The
cluster results of food types show separation of different textural
composition for most of the food types. A few pairs of food types
with similar texture but different eating actions were distinctly sep-
arated. Therefore, aside of food textural differences, more elements
of eating behaviour should be considered when studying eating
sounds. The existing experimental protocols focusing on biting
sounds might eliminate important sound cues present in real-world
scenarios. Their inclusion might lead to better sound classification
results for the purposes of classifying food types on the basis of
sound in an uncontrolled environment.
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