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Abstract

Algorithm selection (AS) techniques – which involve choosing
from a set of algorithms the one expected to solve a given prob-
lem instance most efficiently – have substantially improved
the state-of-the-art in solving many prominent AI problems,
such as SAT, CSP, ASP, MAXSAT, and QBF. Although sev-
eral AS procedures have been introduced, not too surprisingly,
none of them dominates all others across all AS scenarios.
Furthermore, these procedures have parameters whose opti-
mal values vary across AS scenarios. This holds specifically
for the machine learning techniques that form the core of cur-
rent AS procedures and for their hyperparameters. Therefore,
to successfully apply AS to new problems, algorithms and
benchmark sets, two questions need to be answered: (i) how
to select an AS approach and (ii) how to set its parameters
effectively. We address both of these problems simultaneously
by using automated algorithm configuration. Specifically, we
demonstrate that we can use algorithm configurators to auto-
matically configure claspfolio 2, which implements a large
variety of different AS approaches and their respective param-
eters in a single highly parameterized algorithm framework.
We demonstrate that this approach, dubbed AutoFolio, can
significantly improve the performance of claspfolio 2 on 11
out of the 12 scenarios from the Algorithm Selection Library
and leads to new state-of-the-art algorithm selectors for 9 of
these scenarios.

Introduction
Over the last decade, tremendous progress in Boolean con-
straint solving technology has been achieved in several areas
within AI, notably SAT, ASP, CSP, Max-SAT and QBF. In
all of these areas, multiple algorithms with complementary
solving strategies exist, and none dominates all others on all
kinds of problem instances. This fact can be exploited by
algorithm selection (AS) (Rice 1976) methods, which use
characteristics of individual problem instances (so-called in-
stance features) to choose a promising algorithm for each
instance. Algorithm selectors have empirically proven to im-
prove the state of the art for solving heterogeneous instance
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Figure 1: Factors by which the selection approach re-
implemented in claspfolio 2 outperformed the single best
algorithm w.r.t. PAR10 (without unsolved test instances),
which counts each timeout as 10 times the given runtime
cutoff, based on 10-fold cross validation.

sets and, as a result, have won many prizes at competitions.
For instance, SATzilla (Xu et al. 2008) won several categories
in multiple SAT Competitions, and claspfolio 1 (Gebser et al.
2011) won the NP-track of the 2011 ASP Competition.

Although many new AS approaches have been proposed
over the years (cf. (Kotthoff 2014)), there are only two flex-
ible frameworks that allow for re-implementing and com-
paring these existing approaches in a fair and uniform way:
LLAMA (Kotthoff 2013) and claspfolio 2 (Hoos, Lindauer,
and Schaub 2014). Of these, claspfolio 2 is more comprehen-
sive, encompassing strategies from 3S (Kadioglu et al. 2011),
aspeed (Hoos et al. 2014), claspfolio 1 (Gebser et al. 2011),
ISAC (Kadioglu et al. 2010), ME-ASP (Maratea, Pulina, and
Ricca 2013) and SATzilla (Xu et al. 2008).

Figure 1 illustrates the performance benefits these selec-
tion strategies (as realized in claspfolio 2) yield across the

9

Algorithm Configuration: Papers from the 2015 AAAI Workshop



Compute Features

Instance

Select Algorithm Solve Instance
with Algorithm

Algorithm
Portfolio

Figure 2: Workflow of algorithm selection

wide range of AS benchmarks in the Algorithm Selection
Library.1 We observe that each approach has strengths and
weaknesses on different scenarios. The SATzilla’11-like ap-
proach (the default of claspfolio 2) performs best overall, but
it is only best on half the scenarios, with the approaches 3S,
aspeed or ISAC yielding better performance in the remaining
cases. Also, each of the approaches used a fixed parameter
setting and might therefore fall short of its full potential. For
example, imputation of missing instance features is not used
at all in Figure 1; while it does not improve performance on
some scenarios (e.g., ASP-POTASSCO), it yields improve-
ments on others (e.g., SAT12-RAND, allowing claspfolio 2 to
outperform the single best algorithm by a factor of 1.2 with
the SATzilla’11-like approach).

Facing a new algorithm selection problem, we thus have
to answer three salient questions: (i) which selection ap-
proach to use; (ii) how to set the parameters of the selection
approach effectively; and (iii) how to set techniques augment-
ing pure AS, such as pre-solving schedules (Xu et al. 2008;
Kadioglu et al. 2011). Instead of the common manual trial-
and-error approach, we propose to automatically answer
these questions by using algorithm configuration (Hutter
et al. 2009) to configure flexible AS frameworks, such as
claspfolio 2. While manual configuration is error-prone, bi-
ased by humans and requires a lot of human time and expert
knowledge, the approach we introduce here is fully automatic,
unbiased, and leverages the full power of a broad range of AS
methods. It thus facilitates an easier and more effective use
of algorithm selection and makes AS techniques accessible
to a broader community.

Specifically, we present AutoFolio, a general approach
for applying algorithm configuration to algorithm selection
and provide an open-source implementation2 based on the
algorithm configurators SMAC (Hutter, Hoos, and Leyton-
Brown 2011) and ParamILS (Hutter et al. 2009) and the
algorithm selector claspfolio 2 (Hoos, Lindauer, and Schaub
2014). The last column of Figure 1 previews the result of
AutoFolio, showing that the approach significantly improves
the performance of claspfolio 2 on all but one scenario.

Algorithm Selection and Configuration
In this section, we briefly introduce standard approaches to
algorithm selection and algorithm configuration that form the
basis of our AutoFolio approach.

Algorithm Selection. Figure 2 shows the workflow of algo-
rithm selection (Rice 1976; Huberman, Lukose, and Hogg
1997). For a given problem instance, we first compute fea-

1www.aslib.net
2http://www.cs.uni-potsdam.de/wv/autofolio/
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Figure 3: Workflow of algorithm configuration

tures; these are numerical characteristics, such as the number
of variables or clauses in a SAT formula. Based on these fea-
tures, an appropriate algorithm from an algorithm portfolio
is selected to solve the given instance. The overall workflow
is subject to a runtime cutoff.

One major challenge in algorithm selection is to find a
mapping from instance features to algorithms. In the gen-
eral offline algorithm selection approach we consider, this is
done based on training data. Specifically, given a portfolio of
algorithms A and a set of problem training instances I , we
use as training data a performance matrix of size |I| × |A|
and a feature matrix containing a fixed-size feature vector for
each i ∈ I . Based on this training data, we learn a mapping
from instance features to algorithms using machine learning
techniques, such as k-NN (Maratea, Pulina, and Ricca 2013),
g-means (Kadioglu et al. 2010) or Random Forests (Xu et
al. 2011). We note that state-of-the-art portfolio-based ap-
proaches, such as SATzilla (Xu et al. 2012) and 3S (Kadioglu
et al. 2011), often use further techniques (such as pre-solving
algorithm schedules) to increase their performance and thus
do not solely rely on algorithm selection.

Algorithm Configuration. Figure 3 shows the basic work-
flow of algorithm configuration. The configuration task is
carried out for a parameterized target algorithm with a given
configuration space and a set of training problem instances;
furthermore, the configurator is given a performance metric
to optimize (e.g., runtime or solution quality the target al-
gorithm achieves) and a configuration budget (e.g., the total
runtime allowed for the configuration process). The config-
uration space is the cross-product of the parameters (which,
for discrete parameters, is exponential in the number of target
algorithm parameters). Furthermore, the configuration space
can be structured, i.e., a parameter p1 can be conditional
on another parameter p2 such that the value of p1 is only
relevant if p2 is set to a specific value. Therefore, the configu-
ration consists of top-level (non-conditional) parameters and
conditional parameters. The configurators we consider in the
following work as follows. In each iteration, a configuration
is selected from the configuration space and the target algo-
rithm is run with this configuration on one or several problem
instances. Performance data collected from these runs is used
by the configurator to select the next configuration to investi-
gate. After the given configuration budget is exhausted, the
configurator returns the best known parameter configuration
it found until then.
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Algorithm 1: Configuration Procedure of an Algorithm
Selector

Input : algorithm configurator AC, algorithm selector
AS, configuration space C of AS, data of
algorithm scenario D (with performance and
feature matrix), number of folds k

1 randomly split D into D1 . . .Dk

2 start AC with D1 . . .Dk as meta instances, use average
as meta performance metric and AS with C as target
algorithm

3 while configuration budget remaining do
4 AC selects configuration c ∈ C and

meta instance i ∈ {1 . . . k}
5 AS(c) trains on D\Di, assesses its performance on

Di and returns that performance to AC
6 return Best configuration c of AS found by AC

Configuration of Algorithm Selectors
We now present our AutoFolio approach, using algorithm
configurators to automatically configure algorithm selectors.
To apply algorithm configuration in this context, we need to
specify a parameterized selector to be configured, a configu-
ration space for this selector, and the problem instances used
for evaluating the performance of the selector. We note that
these latter instances are specific algorithm selection scenar-
ios; we call these meta-instances to distinguish them from
the problem instances (e.g., SAT instances) that are part of
each algorithm selection scenario.

Meta-instances. For the configuration process, we need a
performance estimation of the algorithm selector on some
data D. We can gain such an estimate by training the selector
on a subset of the data and evaluating its performance on
another subset of the data disjoint from that used for train-
ing. However, the particular subsets chosen can affect the
performance of this approach quite strongly (in particular, on
heterogeneous data). Therefore, a better approach is to use
k-fold cross validation: we randomly split D into k equally-
sized parts D1, . . . ,Dk, iteratively assess how well the selec-
tor performs on Di when trained on D\Di, and then average
the results. Following Thornton et al. (2013), we use each
of these splits as one meta-instance within the configuration
process, see Algorithm 1. We note that modern configurators,
such as FocusedILS (Hutter et al. 2009), irace (López-Ibáñez
et al. 2011) and SMAC (Hutter, Hoos, and Leyton-Brown
2011) can discard configurations when they perform poorly
on a subset of meta-instances and therefore do not have to
evaluate all k cross-validation folds for every configuration.

For each algorithm selection scenario, we hold back a
test set of instances that is not touched during the configura-
tion process in order to obtain an unbiased evaluation of the
configured selector’s performance. Since we could split our
instances into configuration and testing set in many different
ways, one such split does not necessarily yield a representa-
tive performance estimate. Therefore, to yield more confident
results, we perform an additional outer cross-validation: we

consider multiple configuration/testing set splits, configure
the selector for each configuration set, assess its final config-
urations on the respective test data sets, and average results.

Configuration Space of Selectors. Most existing algo-
rithm selectors implement one specific algorithm selection
approach using one specific machine learning technique.
We note, however, that most selection approaches in prin-
ciple admit more flexibility, and in particular could be used
with a range of machine learning techniques. For example,
SATzilla’11 (Xu et al. 2011) uses voting on pairwise per-
formance predictions obtained from cost-sensitive random
forest classifiers, but, in principle, other cost-sensitive binary
classifiers could be used instead of random forests.

Based on this observation, we consider a hierarchically
structured configuration space with a top-level parameter that
decides the overall algorithm selection approach — e.g., a
regression approach, as used in SATzilla’09 (Xu et al. 2008)
or a k-NN approach, as used in ME-ASP (Maratea, Pulina,
and Ricca 2013). For most selection approaches, we can then
choose between different machine learning techniques, e.g.,
ridge regression, lasso regression or support vector regression
for a regression approach. Each of these machine learning
techniques can again have its own (hyper-)parameters.

Besides the selection approach, further techniques are
used for preprocessing the training data (e.g., z-score fea-
ture normalization as a feature preprocessing step or log-
transformation of runtime data as performance preprocessing
step). Preprocessing techniques can be configured indepen-
dently from the selection approach, and are therefore also
handled by top-level parameters. These include binary param-
eters that enable or disable feature groups that are defined by
the specific algorithm selection scenarios. We note that, ac-
cording to the definition of the Algorithm Selection Library1,
each feature group enables a list of instance features that are
computed with a common block of feature computation code,
and jointly incur the cost for running this code.

We use a third group of parameters to control pre-solving
schedules (Kadioglu et al. 2011; Xu et al. 2011), including
parameters that determine the time budget for pre-solving
and the number of pre-solvers used. Pre-solving is known to
be effective in selection scenarios, where (a) some instances
can be solved very quickly by some solvers or (b) the algo-
rithm selector poorly selects algorithms, e.g., because of poor
instance features. As Figure 1 shows, the algorithm sched-
ules of aspeed are effective on some scenarios but not on all.
Pre-solving techniques can be freely combined with selection
approaches; because they are not always needed, we added a
top-level binary parameter that completely activates or deacti-
vates the use of pre-solvers; all other pre-solving parameters
are conditional on this switch.

Figure 4 shows the complete configuration space of clasp-
folio 2 (Hoos, Lindauer, and Schaub 2014)3, which we used
as the basis for AutoFolio. It covers five different algorithm
selection approaches and for each of them, three different ma-
chine learning techniques (where appropriate). Furthermore,
it supports several preprocessing strategies and pre-solving
schedules computed by aspeed.

3http://www.cs.uni-potsdam.de/claspfolio/
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Figure 4: Configuration space of claspfolio 2, including 19 categorial parameters, 12 integer valued parameters and 11 continous
parameters. Additionally, there is a binary parameter for each feature group of the algorithm scenario. Parameters in double
boxes are top-level parameters; single boxes represent algorithm selection approaches based on classes of machine learning
techniques, dashed boxes machine learning techniques and dotted boxes lists of low-level parameters.

We chose the default configuration of claspfolio 2 (used to
initialize the algorithm configurator) to be a SATzilla’11-
like configuration since it was shown to be effective on
ASP (Hoos, Lindauer, and Schaub 2014), SATzilla’11 is also
strong on SAT (Xu et al. 2012) and based of the results of Fig-
ure 1. This configuration uses pairwise cost-sensitive random
forest classifiers, at most three pre-solvers and z-score feature
normalization. Since we assume no prior knowledge about
the algorithm selection scenarios, the default configuration
uses all available instance features. We note that these in-
stance features introduce substantial computational overhead
on algorithm selection scenarios with large feature computa-
tion times (such as industrial SAT instances).

We chose claspfolio 2 as the basis for AutoFolio, because
it has been designed to be flexible and is known to perform
well (Hoos, Lindauer, and Schaub 2014). We note, that in
principle, other selectors, such as SATzilla (Xu et al. 2008),
ISAC (Kadioglu et al. 2010) and SNNAP (Collautti et al. 2013)
could be generalized in a similar way.

Next to using claspfolio 2 as its algorithm selection
framework, our current (first) instance of AutoFolio em-
ploys two complementary state-of-the-art algorithm configu-
rators, SMAC (Hutter, Hoos, and Leyton-Brown 2011)4. and
ParamILS (Hutter et al. 2009)5. Like the choice of selectors,
this choice of configurators can also be changed in the future.

Empirical Performance Analysis
In this section, we empirically analyze the performance of
our AutoFolio approach (in these experiments based on clasp-
folio 2 using sklearn 0.15.0 (a widely used machine learn-
ing package for Python, see Pedregosa et al. 2011), SMAC
2.06.01, and ParamILS 2.3.7 as described in the previous
section). We ran AutoFolio on the twelve algorithm selec-
tion scenarios that make up the Algorithm Selection Library.
These scenarios comprise a wide variety of hard combinato-
rial problems; each of them includes the performance data of
a range of solvers (between 2 and 31) for a set of instances,
and instance features organized in feature groups with associ-

4http://www.aclib.net/smac/
5http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

ated costs. We refer to the library’s website1 for the details
on all scenarios but point out that using this common library
allows us to compare AutoFolio in a fair and uniform way
against other algorithm selection methods.

Algorithm Configuration Setup. Following standard prac-
tice, we performed multiple (in our case, 16) independent
runs for each of our two configurators and then selected the
configuration of claspfolio 2 with the best performance on
training data. Each configurator run was allocated a total time
budget of 2 CPU days. As a performance metric, we used
penalized average runtime with factor 10 (PAR10), which
counts each timeout as 10 times the given runtime cutoff
(runtime cutoffs differ between the ASlib scenarios). We fur-
ther show how the optimization of PAR10 influenced other
metrics, such as number of timeouts and PAR1. The time re-
quired to evaluate a single configuration of claspfolio 2 varied
between 2 CPU seconds and 1 CPU hour, mostly depending
on the difficulty of optimizing pre-solving schedules.

To obtain a robust estimate of AutoFolio’s performance,
we used 10-fold outer cross validation, i.e., we configured
claspfolio 2 ten times for each scenario (with different config-
uration set/test set splits). Therefore, in total, we performed
a total of 16 · 2 · 10 = 320 configurations runs of 2 CPU
days for each of the twelve ASlib benchmarks, requiring a
total of 7 680 CPU days. We performed these experiments
on a cluster equipped with two Octa-Core Intel Xeon E5-
2670 (2.6 GHz, 20 MB cache) CPUs and 64 GB RAM each,
running Hat Enterprise Linux 6.4.

We note that although our thorough evaluation of AutoFolio
required this substantial compute power, applying it to a new
benchmark set with a given training-test split would only
require 32 independent configuration runs of two days each.

Analysis of Configuration Process. In Table 1, we com-
pare the performance of claspfolio 2’s default configuration
(SATzilla’11-like, as discussed in the previous section) with
that of the configuration optimized by AutoFolio. For all se-
lection scenarios, AutoFolio achieved better performance on
training data, and improved performance on test data was
obtained on all but one scenario. Performance improvements
on test data were statistically significantly at α = 0.1 and
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Training Test
Scenario ∅ PAR10 ∅#TOs ∅ PAR1 ∅ PAR10

∑
#TOs ∅ PAR1

Default Config. Default Config. Default Config. Default Config. Default Config. Default Config.
ASP-POTASSCO 120.9 88.9?? 16.1 10.6 41.2 36.4 132.5 123.0 20 19 43.1 38.3

CSP-2010 376.8 167.3?? 8.8 1.9 128.2 113.7 356.9 413.3 9 11 123.9 129.8

MAXSAT12-PMS 296.3 119.3?? 7.0 2.2 99.7 57.5 285.3 169.9? 7 4 103.5 62.7

PREMARSHALLING 2552.1 1360.6?? 30.0 13.8 502.7 417.9 2185.1 1663.7? 28 20 462.8 434.0

QBF-2011 1001.8 760.9?? 21.4 14.9 270.9 251.8 937.1 924.9 22 21 250.2 268.7

SAT11-HAND 6918.0 4370.2?? 25.2 14.6 1168.7 1035.1 7561.1 5935.8? 31 24 1194.8 1135.0

SAT11-INDU 7722.3 4749.5?? 32.7 18.9 1260.8 1016.2 7981.5 7536.8 38 36 1280.0 1196.6

SAT11-RAND 3264.5 745.7?? 26.9 4.3 530.9 308.4 3593.5 1294.8?? 32 10 572.9 363.4

SAT12-ALL 1723.2 909.5?? 182.4 93.6 350.1 204.9 1615.0 925.8?? 187 106 348.4 207.9

SAT12-HAND 1896.3 912.4?? 69.7 31.5 341.7 209.8 1859.9 968.2?? 75 38 342.6 208.4

SAT12-INDU 1192.1 581.9?? 72.3 32.2 286.5 178.5 1182.8 638.3?? 80 41 281.6 177.4

SAT12-RAND 678.5 358.8?? 44.8 23.3 161.5 89.9 695.8 382.9?? 51 28 161.3 91.6

Table 1: Results for AutoFolio with outer 10-fold cross validation (∅ denotes arithmetic mean). To avoid artificial inflation of
PAR10 scores, problem instances that were not be solved by any solver were removed from the test sets. The best PAR10 values
for each scenario are shown in bold face; cases where the performance difference to the next best entry is statistically significant
(according to a permutation test with 100 000 permutations) at α = 0.1 and α = 0.05, are marked with ? and ??, respectively.

α = 0.05 for eight and five scenarios, respectively, according
to a permutation test with 100 000 permutations.

The performance improvement on the training data of CSP-
2010 did not transfer to test data, due to over-tuning to the
special characteristics of the training data. We note, however,
that in each of its folds, only 1 to 2 timeouts were encoun-
tered, causing the observed performance differences to be
statistically insignificant. There were also some (smaller)
over-tuning effects for QBF-2011 and SAT11-INDU. For
ASP-POTASSCO, we note that the default configuration of
claspfolio 2 was manually optimized on this scenario (Hoos,
Lindauer, and Schaub 2014), and AutoFolio found very simi-
lar configurations with nearly identical performance.

On PREMARSHALLING, AutoFolio solved 8 additional
problem instances and reduced PAR10 by more than 20%;
nevertheless, this performance difference was only weakly
significant (at α = 0.1). This is due to the strong constraints
on the pre-solving schedule in the default configuration of
claspfolio 2 (at most 3 solvers for at most 256 seconds).
While more extensive pre-solving schedules decrease the
number of timeouts on PREMARSHALLING, they also intro-
duce overhead on most of the other instances in this scenario,
making it harder for AutoFolio to achieve more significant
performance improvements. Similar considerations apply to
the MAXSAT12-PMS and SAT11-HAND scenarios.

Which Choices Lead to Good Performance?. We exam-
ined the 120 configurations optimized by AutoFolio (12 sce-
narios × 10-fold outer cross validation) to obtain some in-
sights into which choices are made. First of all, as we ex-
pected, AutoFolio used only a subset of feature groups for
the SAT scenarios, since the computational cost associated
with some features is not recouped by improvements in al-
gorithm runtime. We found that feature imputation was used
in 83% of the configurations; especially on the SAT sce-
narios, which include many missing features. However, it
did not matter which of the imputation strategies were used
(we implemented most frequent value, mean or median as

Figure 5: Frequency of algorithm selection approaches.

imputation strategies).
The pre-solving schedule turned out to be an important

component that was used in 73% of the configurations. The
parameters controlling the details of the schedule, i.e., num-
ber of pre-solvers and maximal time of pre-solving, varied
across validation folds and selection scenarios.

As we initially assumed, no algorithm selection strategy
dominated all others, see Figure 5. Overall, the pairwise
classification approach was chosen most frequently (55%;
33% in combination with random forests, as in SATzilla’11).

Comparison Against Other Selectors. In Table 2, we com-
pare AutoFolio with the random forest regression approach
used in ASlib (Bischl et al. 2014), SATzilla’11 (Xu et al.
2011), SNNAP (1.5.0; Collautti et al. (2013)) and ISAC (im-
plementation in SNNAP 1.5.0; Kadioglu et al. (2010)).6
SATzilla’11 does not support the ASlib format and we can
only compare to published results (with different cross valida-
tion splits) for the three SAT 2011 scenarios (Xu et al. 2012).
We note that ASlib(RF), ISAC and SNNAP are pure algorithm

6Other state-of-the-art selectors, such as 3S (Kadioglu et al.
2011) and CSHC (Malitsky et al. 2013), are not publicly available
with their training procedures, and we were therefore unable to train
them on our scenarios.
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Oracle SB ASlib (RF) SATzilla’11 SNNAP ISAC AutoFolio SB/af
ASP-POTASSCO 21.3 534.2 124.8 NA 203.8 291.9 123 4.3
CSP-2010 107.7 1087.5 378 NA 1087.5 1027 413.3 2.6
MAXSAT12-PMS 40.8 2111.6 294.5 NA 895 786.4 169.9 12.4
PREMARSHALLING 227.6 7002.9 3921.9 NA 9042.1 5880.8 1663.7 4.2
QBF-2011 96 9172.4 1038.9 NA 7386.2 3813.5 924.9 9.9
SAT11-HAND 709.4 17966 9637.1 6138.1 9940.9 14592.9 5935.8 3.0
SAT11-INDU 420 8985.7 7465.8 5889.3 6632.6 8461.2 7536.8 1.3
SAT11-RAND 227.4 14938.6 4856.9 990.2 4859 3140.4 1294.8 11.5
SAT12-ALL 93.8 2968 1843.3 NA 1427.5 2989.3 925.8 3.2
SAT12-HAND 113.3 3929.2 2556.1 NA 2180.5 4110.8 968.2 4.1
SAT12-INDU 88.2 1366.8 1058.3 NA 789.0 1409.5 638.3 2.1
SAT12-RAND 46.9 568.6 618.3 NA 593.1 434.5 382.9 1.5

Table 2: Performance comparison between AutoFolio (af ), single best solver (SB) – selected based on PAR10 on the training
set – as a baseline, the oracle (also known as VBS) as a bound on the optimal performance of an algorithm selector and other
algorithm selectors, using 10-fold cross validation and PAR10 scores, with unsolved instances removed from the test set to avoid
artificially inflating PAR10 scores. The best performance value for each scenario is shown in bold face.

selectors, whereas SATzilla and claspfolio 2 additionally use
pre-solver schedules. Since SNNAP and ISAC do not support
feature groups and their associated costs, we measured their
performance using the default feature groups defined in the
ASlib scenarios. Overall, AutoFolio performed best on eight
out of twelve scenarios.

We note that the SAT11 scenarios comprise a relative small
number of problem instances, so that the training set for clasp-
folio 2 was small (only 243 instances, due the two levels of
10-fold cross-validation used in our experiments). Thus, the
potential for over-tuning was higher on these scenarios. Some-
what as a surprise to us, AutoFolio used a k-NN approach
on SAT11-INDU which, in our experience, yields more over-
tuning than pairwise classification. Therefore, we re-ran the
SAT11 experiments with a reduced AutoFolio configuration
space that fixed the AS approach to pairwise classification.
This yielded better results than SATzilla’11 on all three scenar-
ios, with PAR10 scores of 4918.6 on SAT11-HAND, 5778.2
on SAT11-INDU and 888.2 on SAT11-RAND.

Related Work
As far as we know, this is the first time that algorithm con-
figuration is used to optimize algorithm selection. A related
approach for general supervised machine learning is Auto-
WEKA (Thornton et al. 2013), a system that addresses the
combined problem of selecting a machine learning algorithm
from the WEKA framework (Hall et al. 2009) and optimiz-
ing its hyperparameters. Auto-WEKA and AutoFolio use the
same cross-validation mechanism to define meta instances
for the configuration process. Even though machine learning
is also part of algorithm selectors, AutoFolio has to consider
many other aspects in its configuration space, such as pre-
solving, cost-sensitive approaches, and feature steps.

The AutoFolio approach is not limited to using a partic-
ular algorithm configurator or algorithm selection frame-
work. In principle, other configurators, such as irace (López-
Ibáñez et al. 2011) or gga (Ansótegui, Sellmann, and Tierney
2009), or other selectors, such as LLAMA (Kotthoff 2013),

SNNAP (Collautti et al. 2013) or ISAC (Kadioglu et al. 2010)
could be used. However, the selector should be highly param-
eterized to cover a wide range of approaches, which, to our
best knowledge, is so far only the case for claspfolio 2.

Algorithm configuration and algorithm selection have pre-
viously been combined in a different way, by using algorithm
configuration to find good parameter settings of a highly pa-
rameterized algorithm and then using algorithm selection
to choose between these on a per-instance basis. Two sys-
tems implement this approach to date: ISAC (Kadioglu et al.
2010) and Hydra (Xu, Hoos, and Leyton-Brown 2010). ISAC
first clusters training problem instances into homogeneous
subsets, uses a configurator to find a good solver parameter-
ization for each cluster, and then uses a selector to choose
between these parameterizations. Hydra iteratively adds new
solver parameterizations to an initially empty portfolio-based
selector, at each step tasking a configurator to find the solver
parameterization that will most improve the portfolio.

A previous application of a meta-solving strategy to an-
other meta-solving strategy was the self-configuration of
ParamILS (Hutter et al. 2009). However, in contrast to the
substantial improvements we achieve for claspfolio 2, that
self-configuration only yielded a small improvement over
ParamILS’s default.

Conclusions
We presented AutoFolio, to the best of our knowledge the
first approach to automatically configure algorithm selec-
tors. Using a concrete realization of this approach based
on the highly parameterized algorithm selection framework
claspfolio 2, we showed that state-of-the-art algorithm con-
figurators can automatically find optimized configurations of
algorithm selectors that perform significantly (and sometimes
substantially) better than manually configured selectors. The
automatically configured claspfolio 2 system showed per-
formance improvements of a factor between 1.3 and 12.4
in terms of PAR10 scores in comparison to the best single
solver for the given algorithm portfolios
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Next, we will investigate why AutoFolio showed over-
tuning in some scenarios and how to prevent this. We will
assess restricting the configuration space to methods less
prone to over-tuning, using other methods for defining meta
instances (e.g., bootstrapping), and integrate AutoFolio into
the Algorithm Configuration Library (Hutter et al. 2014) to
assess using other configurators (e.g., irace (López-Ibáñez et
al. 2011) and gga (Ansótegui, Sellmann, and Tierney 2009)).
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