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Abstract
Despite their great success in recent years, neural networks have been found to be vulner-
able to adversarial attacks. These attacks are often based on slight perturbations of given 
inputs that cause them to be misclassified. Several methods have been proposed to for-
mally prove robustness of a given network against such attacks. However, these methods 
typically give rise to high computational demands, which severely limit their scalability. 
Recent state-of-the-art approaches state the verification task as a minimisation problem, 
which is formulated and solved as a mixed-integer linear programming (MIP) problem. 
We extend this approach by leveraging automated algorithm configuration techniques and, 
more specifically, construct a portfolio of MIP solver configurations optimised for the neu-
ral network verification task. We test this approach on two recent, state-of-the-art MIP-
based verification engines, MIPVerify and Venus , and achieve substantial improvements in 
CPU time by average factors of up to 4.7 and 10.3, respectively.
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1 Introduction

In recent years, deep learning algorithms have become increasingly important tools 
within various application domains and use contexts, ranging from object recognition 
systems in autonomous cars to face recognition systems in mobile phones. At the same 
time, it is now well known that neural networks are vulnerable to adversarial attacks 
(Szegedy et al., 2014), in which a given input is transformed in such a way that it is mis-
classified by the network. In the case of image recognition tasks, the required perturba-
tion can be so small that it remains virtually undetectable to the human eye.

Various methods have been proposed to establish robustness of neural networks 
against adversarial attacks. Some of these methods perform heuristic attacks (Goodfel-
low et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017); however, these do not 
paint a full picture of a given network’s robustness to adversarial attacks, as one defense 
mechanism might still be circumvented by another, possibly new class of attacks. In 
light of this, approaches have been developed to more thoroughly verify neural networks 
(Scheibler et al., 2015; Bastani et al., 2016; Ehlers, 2017; Katz et al., 2017; Dvijotham 
et al., 2018; Gehr et al., 2018; Xiang et al., 2018; Bunel et al., 2018; Tjeng et al., 2019; 
Botoeva et  al., 2020). These formal verification methods can assess the robustness of 
a given network in a principled fashion, which means that they yield provable guaran-
tees on certain properties of input-output combinations. However, this class of network 
verification methods tends to be computationally expensive, making it difficult to verify 
networks with a large number of units and/or on a large number of inputs.

Recent work by Tjeng et al. (2019) addressed this challenge and presented a verifica-
tion tool, called MIPVerify , that, for the first time, was able to evaluate the robustness 
of larger neural networks on the full MNIST dataset. In their study, Tjeng et al. (2019) 
formulate the verification task as a minimisation problem, which is then solved through 
mixed-integer linear programming (MIP). More specifically, the optimisation task is to 
apply a perturbation to the original sample that maximises model error, while staying 
close to the initial example, i.e., keeping the distance at a minimum. In other words, 
the verifier takes an image and a trained neural network as inputs and produces either 
an adversarial example or, if the optimisation problem cannot be solved, a certificate of 
local robustness. While MIPVerify can verify a larger number of instances than previ-
ous methods, such as those from the works of Wong and Kolter (2018), Dvijotham et al. 
(2018) or Raghunathan et al. (2018), it is computationally costly (in terms of CPU time 
required per verification query). Specifically, depending on the classifier to be verified, 
we found that some instances required several thousand CPU seconds of running time 
of the MIP solver, while a sizeable fraction of instances could not be solved at all, even 
within a rather generous time limit of 38 400 CPU seconds per sample.

The same holds for other MIP-based verification systems, such as Venus by Botoeva 
et al. (2020), which has been demonstrated to be faster than many other state-of-the-art 
verification tools, including the MIP-based verifier NSVerify Akintunde et  al. (2018). 
Here, our experiments showed that, depending on the classifier to be verified, the com-
putational cost per query remains subject to great variance as outlined above, with many 
instances resulting in timeouts.

We note that, to date, the performance of MIPVerify and Venus has not been com-
pared directly, which motivates our decision to consider both as contributors to the state 
of the art in MIP-based neural network verification.
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Previous work has demonstrated that automated configuration of MIP solvers can 
yield substantial improvements (Hutter et al., 2009, 2010, 2011; Lopez-Ibanez & Stüt-
zle, 2014). Building on these findings, we seek to improve the performance of MIP-
based neural network verification tools by leveraging automated algorithm configu-
ration techniques to optimise the hyperparameters of the solver at the heart of these 
verifiers. As such, the proposed method can be used regardless of the underlying MIP 
problem formulation, and its improvements are orthogonal to any advances made in this 
regard. Put differently, we argue that automated algorithm configuration can benefit any 
verification approach relying on MIP solving or similar techniques.

Automated algorithm configuration of neural network verification engines is a non-
trivial task and comes with its own challenges. Most prominently, the high running 
times and heterogeneity/diversity of instances pose problems that are not easily solved 
by standard configuration approaches, such as SMAC (Hutter et  al., 2011). More pre-
cisely, we consistently found in our experiments that a single configuration could not 
significantly improve mean CPU time over the default. In fact, we observed that a single 
configuration could achieve a 500-fold speedup on a given instance over the default, but 
then time out on another, which the default, in turn, could solve.

Therefore, we decided to adapt Hydra (Xu et al., 2010), an advanced approach that 
combines algorithm configuration and per-instance algorithm selection, to automatically 
construct a parallel portfolio of MIP solver configurations optimised for solving neural 
network verification problems.

We demonstrate the effectiveness of our approach for both aforementioned verifica-
tion tools. These systems both rely on MIP solving, yet they are conceptually different 
enough to show the generalisability of our method. This study can be seen as an exten-
sion of our recent workshop publication on the same topic (König et al., 2021), in which 
we reported preliminary results for MIPVerify on a single benchmark. To the best of our 
knowledge, ours is the first study to pursue this direction. In brief, the main contribu-
tions are as follows:

• A framework for automatically constructing a parallel portfolio of MIP solver con-
figurations optimised for neural network verification, which can be applied to any 
MIP-based verification method.

• An extensive evaluation of this framework on two the state-of-the-art verification 
engines, namely Venus (Botoeva et al., 2020) and MIPVerify , improving their per-
formance on (i) SDPdMLPA - an MNIST classifier designed for robustness (Raghu-
nathan et al., 2018), (ii) mnistnet - an MNIST classifier from the neural network veri-
fication literature (Botoeva et  al., 2020) and (iii) the ACAS Xu benchmark (Julian 
et al., 2016; Katz et al., 2017).

On the SDPdMLPA benchmark, we achieve substantial improvements in CPU time 
by average factors of 4.7 and 10.3 for MIPVerify and Venus , respectively, over the 
state of the art on a solvable subset of instances from the MNIST dataset. This sub-
set excludes all instances that cannot be solved by any of the baseline approaches we 
consider. Beyond that, the number of timeouts was reduced by a factor of 1.42 and 1.6, 
respectively.

On the mnistnet benchmark, we again achieved substantial improvements in CPU time, 
this time by average factors of 1.61 and 7.26 for MIPVerify and Venus , respectively, over 
the state of the art on solvable instances. We furthermore reduced timeouts on this bench-
mark by average factors of 1.14 and 2.81, respectively.
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Finally, we strongly improved the performance of the Venus verifier on the ACAS Xu 
benchmark, attaining a 2.97-fold reduction in average CPU time. We note that on this 
benchmark, we found MIPVerify to be unable to solve most of the instances within the 
kinds of computational budgets considered in our experiments.

2  Background

The following section provides an overview of adversarial examples and methods to verify 
neural networks against them. It further puts focus on the limitations of current state-of-
the-art approaches and introduces the concepts behind automated algorithm configuration 
and portfolio construction.

2.1  Adversarial examples

Adversarial examples or negatives are network inputs that are indistinguishable from reg-
ular inputs, but cause the network to produce misclassifications (Szegedy et  al., 2014). 
These adversarial examples can be produced by applying a hardly perceptible perturba-
tion to the original instance that maximises model error while staying close to the initial 
example. The most prevalent distance metrics used to evaluate adversarial distortion are l1 
(Carlini et al,. 2017; Chen et al. 2018), l2 (Szegedy et al., .,2014) and l∞ (Goodfellow et al., 
2014; Papernot et al., 2016) norm.

2.2  Network verification

Several methods have been produced to evaluate neural networks through heuristic attacks 
(Goodfellow et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017). However, these 
algorithms cannot accurately assess network robustness. That is, a classifier trained to be 
robust against one class of attacks can still be vulnerable to another (Carlini et al., 2017).

To tackle this problem, more advanced techniques have been introduced for the formal 
verification of neural networks (Scheibler et al., 2015; Bastani et al., 2016; Ehlers, 2017; 
Katz et al., 2017; Dvijotham et al., 2018; Gehr et al., 2018; Xiang et al., 2018; Bunel et al., 
2018; Tjeng et al., 2019; Botoeva et al., 2020). These methods verify whether a particu-
lar network satisfies certain input-output properties or provide an example for which the 
property is violated. For a classifier, a property can be that instances, which are in close 
distance to a certain input x, belong to the same class as x.

In general, formal verification algorithms can be characterised by three criteria: sound-
ness, completeness and computational cost. A sound algorithm will only report that a prop-
erty holds if the property actually holds. An algorithm that is complete will correctly state 
that a property holds whenever it holds. While it is favourable to produce verifiers that 
can certify every given instance in a dataset, there is a trade-off between completeness of 
a verification algorithm and its scalability in terms of computational complexity. Neural 
network verification is highly complex, and even simple properties about them have been 
proven to be NP-complete problems (Katz et al., 2017). This makes it intractable to apply 
complete verification techniques to large networks and/or instance sets.

Consequently, some verification algorithms forego completeness to improve computa-
tional efficiency by making approximations (Bastani et al., 2016; Dvijotham et al., 2018; 
Gehr et al., 2018; Xiang et al., 2018; Bunel et al., 2018). These approximations, however, 
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do not always return the actual solution to a given verification problem but can result in 
mismatches or cases, where the solution remains unknown. Other incomplete methods seek 
to add random noise to smooth a neural network classifier and then derive the certified 
robustness for this smoothed classifier (Lecuyer et  al., 2019; Cohen et  al., 2019). While 
these approaches scale to larger network architectures, their robustness guarantees remain 
probabilistic. Furthermore, randomised smoothing has been found to come at the cost of 
classifier accuracy (Mohapatra et al., 2021). As can be seen from this example, increased 
scalability of a verification method usually comes at the cost of performance loss in other 
areas.

Recent work by Tjeng et  al. (2019) seeks to overcome this trade-off by presenting a 
verifier that is complete and scalable to larger neural networks. Their verifier, MIPVerify , 
combines and extends existing approaches to MIP-based robustness verification (Cheng 
et al., 2017; Lomuscio & Maganti, 2017; Dutta et al., 2018; Fischetti & Jo, 2018) and pre-
sents a verifier that encodes the network as a set of mixed-integer linear constraints. Fol-
lowing Tjeng et al. (2019), a valid adversarial example x′ for input x with true class label 
�(x) (encoded as integer) corresponds to the solution to the problem where we minimize:

subject to

where d(⋅, ⋅) denotes a distance metric (e.g., the l∞-norm), fi(⋅) is the i-th network 
output (i.e., indicating whether it predicts the input to belong to the i-th class) and 
G(x) = {x� ∣ ∀i ∶ −� ≤ (x − x�)i ≤ �} . Intuitively, G(x) denotes the region around an input x 
corresponding to all allowable perturbations within a pre-defined radius � . Xvalid represents 
the domain of valid inputs (e.g., the pixel value range of a normalised image, in case of 
image classification). Note that this formulation assumes that the network predicts a single 
class label for each observation (i.e., the arg max operator in Eq. 2 returns a single ele-
ment); other behaviour is undefined.

MIPVerify achieves speed-ups through optimised MIP formulations or, more specifi-
cally, tight formulations for non-linearities and a pre-solving algorithm that reduces the 
number of binary variables, i.e., the number of unstable ReLU nodes. More specifically, 
the information provided by G(x) is used to reduce the interval of the input domain propa-
gated through the network during the calculation of the pre-activation bounds. This is com-
bined with progressive bounds tightening, which represents a method for choosing proce-
dures to determine pre-activation bounds, i.e., interval arithmetic or linear programming, 
based on the potential improvement to the problem formulation.

The MIP-based verifier Venus (Botoeva et al., 2020) achieves performance gains over 
previous methods, such as NSVerify (Akintunde et al., 2018), through dependency-based 
pruning to reduce the search space during branch-and-bound and combines this depend-
ency analysis approach with symbolic interval arithmetic and domain splitting techniques.

Moreover, both Tjeng et  al. (2019) and Botoeva et  al. (2020) report state-of-the-art 
performance on various network architectures and datasets but their tools consume very 
substantial amounts of CPU time. Depending on the classifier to be verified, we observed 
that finding a solution can easily take up to several hours of computation time for a sin-
gle instance. Network verification can therefore turn into an extremely time-consuming 

(1)d(x�, x)

(2)argmaxi(fi(x
�)) ≠ �(x)

(3)x� ∈ (G(x) ∩ Xvalid)
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endeavour, even for a relatively small dataset, such as MNIST. At the same time, a veri-
fier fails to maintain the premise of completeness, meaning that it can certify every input 
example it is presented with if many instances are subject to timeouts, which we also found 
to be the case for the verification methods considered in this study.

2.3  Automated algorithm configuration

Commercial tools for combinatorial problem solving usually come with many (hyper-)
parameters, whose settings may have strong effects on the running time required for solv-
ing given problem instances. Deviating from the default and manually setting these perfor-
mance parameters is a complex task that requires extensive domain knowledge and experi-
mentation, and can be automated using algorithm configuration techniques.

In general, the algorithm configuration problem can be described as follows: Given an 
algorithm A (also referred to as the target algorithm) with parameter configuration space 
Θ , a set of problem instances Π and a cost metric c ∶ Θ × Π → ℝ , find a configuration 
�
∗ ∈ Θ that minimises cost c across the instances in Π:

The general workflow of the algorithm configuration procedure starts with picking a con-
figuration � ∈ Θ and an instance � ∈ Π . Next, the configurator initialises a run of algo-
rithm A with configuration � on instance � with a maximal CPU time cutoff k and measures 
the resulting cost c(�,�) . The configurator uses this information about the target algo-
rithm’s performance to find a configuration that performs well on the training instances. 
Once its configuration budget (e.g., time budget) is exhausted, it returns its current incum-
bent �∗ , i.e., the best configuration found so far. Finally, when running the target algorithm 
with configuration �∗ , it should result in lower cost (such as average running time) across 
the benchmark set.

Automated algorithm configuration has been shown to work effectively in the context of 
SAT solving (Hutter et al., 2007, 2017), scheduling (Chiarandini et al., 2008), mixed-inte-
ger programming (Hutter et al., 2010; Lopez-Ibanez & Stützle, 2014), evolutionary algo-
rithms (Bezerra et al., 2015), answer set solving (Gebser et al., 2011), AI planning (Vallati 
et al., 2013) and machine learning (Thornton et al., 2013; Feurer et al., 2015).

In this study, we use SMAC (Hutter et  al., 2011), a widely known, freely available, 
state-of-the-art configurator based on sequential model-based optimisation (also known as 
Bayesian optimisation). The main idea of SMAC is to construct and iteratively update a 
statistical model of target algorithm performance (specifically: a random forest regressor; 
Breiman, 2001) to guide the search for good configurations. The random forest regressor 
allows SMAC to handle categorical parameters and therefore makes it suitable for MIP 
solvers, which have many configurable categorical parameters; SMAC has been shown to 
improve the performance of the commercial CPLEX solver over previous configuration 
approaches on several widely studied benchmarks (Hutter et al., 2011).

2.4  Portfolio construction

For the configuration procedure to work effectively, the problem instances of interest have 
to be sufficiently similar, such that a configuration that performs well on a subset of them 
also performs well on others. In other words, the instance set should be homogeneous. If a 

(4)�
∗ ∈ argmin

�∈Θ

∑

�∈Π

c(�,�)
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given instance set does not satisfy this homogeneity assumption, automated configuration 
likely results in performance improvements on some instances, while performance on oth-
ers might suffer, making it difficult to achieve overall performance improvements.

This problem can be addressed through automatic portfolio construction (Xu et  al., 
2010; Kadioglu et al., 2011; Malitsky et al., 2012; Lindauer et al., 2015). The general con-
cept behind automatic portfolio construction techniques is to create a set of algorithm con-
figurations that are chosen such that they complement each other’s strengths and weak-
nesses. This portfolio should then be able to exploit per-instance variation much more 
effectively than a single algorithm configuration, which is designed to achieve high overall 
performance but may perform badly on certain types or subsets of instances.

More specifically, Hydra (Xu et al., 2010) automatically constructs portfolios contain-
ing multiple instances of the target algorithm with different configurations. The key idea 
behind Hydra is that a new candidate configuration is scored with its actual performance 
only in cases where it works better than any of the configurations in the existing portfolio, 
but with the portfolio’s performance in cases where it performs worse. Thereby, a configu-
ration is only rewarded to the extent that it improves overall portfolio performance and is 
not penalised for performing poorly on instances for which it should not be run anyway.

The portfolio construction procedure works as follows. Hydra starts with an initially 
empty portfolio P ∶= {} and executes several runs of target algorithm A. The configurator 
executes target algorithm A with different parameter configurations, searching for the algo-
rithm configuration �i that yields the largest improvement in performance over P across 
the benchmark instances. Hydra evaluates the incumbent configurations returned from the 
configurator { �1 , �2 , ..., �n } and adds the k best to the portfolio: P ∶= P ∪ { �1 , �2 , ..., �k }. 
Hydra then follows the same process in an iterative fashion, where the configurator finds 
new configurations to add to the portfolio at each iteration. The procedure terminates after 
a predefined set of iterations or after performance stagnates.

Once a portfolio has been constructed, there are essentially two ways to leverage the 
performance complementarity of the configurations contained in the portfolio. The first 
option is to extract instance-specific features and use those to train a statistical model that 
predicts the performance of each configuration in the portfolio individually. These predic-
tions can then be used to select the configuration with the best-predicted performance (see, 
e.g., Xu et  al, 2011). Alternatively, all configurations can be run in parallel on a given 
problem instance, which implicitly ensures that we always benefit from the best-perform-
ing configuration in the portfolio, at the cost of increased use of parallel resources. An 
empirical comparison between both approaches has been presented by Kashgarani and 
Kotthoff (2021).

3  Network verification with parallel MIP solver portfolios

In order to reduce complexity, Tjeng et al. (2019) mainly focused on reducing the number 
of variables in the verification problem. On the other hand, Botoeva et al. (2020) rely on 
pruning the search space during the branch-and-bound procedure. However, the embedded 
MIP solver and its numerous parameters were left untouched in both cases. More specifi-
cally, both methods employed a commercial MIP solver with default settings. This deci-
sion, along with their problem formulation, forms the starting point for our work.

More concretely, we seek to improve the performance of MIP-based neural network ver-
ification through configuring the MIP solver embedded in these systems, and constructing 
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a portfolio of solver configurations optimised for the benchmark set at hand; Fig. 1 pro-
vides an overview of the framework we propose. In brief, for a given network-example 
pair, we employ the verifier with several, differently configured instances of the embedded 
MIP solver. This portfolio of solvers is run in parallel and finishes once one solver has 
returned a solution or a global time limit has been reached.

In the following sections, we describe details of the configuration procedure as well as 
the MIP solver we configured.

3.1  Configuration procedure

In this work, we configure the commercial MIP solver Gurobi ; see Sect.  3.2 for further 
details. Though it should be noted that, in principle, our approach works for any MIP 
solver.

The configuration procedure employs running Hydra over a predefined set of iterations 
to construct a portfolio of solver configurations with complementary strengths. The num-
ber of iterations is a hyper-parameter of the Hydra algorithm and has to be specified by the 
user. Since we cannot know the optimal portfolio size for a given benchmark in advance, 
we run Hydra over a reasonably larger number of iterations and, once the procedure has 
finished, discard configurations that did not improve portfolio performance on the valida-
tion set, i.e. that led to stagnation or reduction in total CPU time compared to the previous 
iteration. Note that the portfolio can contain the default configuration of the MIP solver.

Interestingly enough, we consistently observed strong heterogeneity among the 
instances in our benchmarks sets, making the use of a single configuration, i.e., a portfolio 
of size 1, ineffective. This is illustrated in Figure 2: Employing two different configurations 
individually on the same benchmark set shows that none of them outperforms the other, 
i.e., consistently achieves better performance across the entire set of instances. Combining 
both configurations into a portfolio, however, makes use of the complementary strengths of 
the configurations, and thereby achieves the highest overall performance, which motivates 
our choice of the portfolio approach.

Leveraging standard multi-core CPU architectures, we run the configurations in the 
portfolio in parallel until one of them returned a solution or until an overall limit on CPU 
time was exceeded. We note that, in principle, automated algorithm selection (see, e.g., 

Fig. 1  Schematic diagram of the proposed framework
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Kotthoff, 2016) could be used to determine from this portfolio the configuration likely to 
solve any given instance most efficiently, though this requires substantial amounts of train-
ing data and creates uncertainty from sub-optimal choices made by the machine learning 
technique at the heart of such selection approaches.

3.2  MIP solver

Following Tjeng et al. (2019) and Botoeva et al. (2020), we used the Gurobi MIP solver 
with a free academic license. Using the online documentation on Gurobi ’s parameters, we 
selected 62 performance-relevant parameters for configuration. These parameters can be 
categorical, e.g., the simplex variable pricing strategy parameter can take the values {Auto-
matic (-1), Partial Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge 
(3)}, or continuous, e.g., the parameter controlling the magnitude of the simplex perturba-
tion can take any value in the range {0, ∞}.

To control and limit the computational resources given to the solver, we fixed the num-
ber of CPU cores, i.e., the parameter Threads, to the value of 1. Thereby, we also ensure 
that the solver is optimised in such a way that it uses minimal computational resources, 
which, in turn, allows for more efficient parallelisation. In contrast, the default value of this 
parameter is an automatic setting, which means that the solver will generally use all avail-
able cores in a machine. There are further parameters that have an automatic setting as one 
of their values. In those cases, we allowed for the “automatic” value to be selected, but also 
other values.

While configuring the MIP solver embedded in MIPVerify is a rather straightforward 
task, additional considerations arise when configuring the solver embedded in Venus . 

(a) (b)

Fig. 2  Performance comparison of the configurations in the portfolios constructed for (a) MIPVerify and 
(b) Venus on the mnistnet benchmark. The plots show, that each configuration outperforms the other on 
some instances, while none of the configurations is dominating in performance across the entire bench-
mark set. This illustrates the complementary strengths of the configurations, which are exploited through 
portfolio construction. Note that there are also several instances on which one of the configurations reaches 
the time limit, but which are solved by the other. These are not shown in the figure due to the scaling of the 
axes. The diagonal line indicates equal performance of the two configurations
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Essentially, Venus can run two modes, which lead to changes in the configuration space 
of the MIP solver: (i) Venus with ideal cuts and dependency cuts activated (default mode), 
in which case several cutting parameters are deactivated in Gurobi and therefore should be 
left untouched during the configuration procedure; (ii) Venus with its cutting mechanism 
deactivated, which allows for Gurobi ’s full parameter space to be optimised upon. Along 
with other, previously mentioned challenges, these considerations illustrate the complexity 
of adapting automated algorithm configuration techniques to the domain of neural network 
verification.

In order to maximally exploit the potential of automated hyperparameter optimisation, 
we decided to provide the configurator with full access to the configuration space and, 
thus, employ Venus with ideal cuts and dependency cuts deactivated and Gurobi’s cutting 
parameters activated during portfolio construction.

4  Experimental setup

We test our method on several benchmarks, which will be introduced in the following, 
along with the objective of our configuration approach and the computational environment 
in which experiments were carried out.

4.1  Configuration objective

The objective of our configuration experiments is to minimise mean CPU time over all 
instances from the benchmark set. This choice deviates from the commonly used perfor-
mance metric in the neural network verification literature, where evaluation is typically 
performed by operating on a fixed number of CPU cores while measuring wall-clock time. 
However, we do not consider wall-clock time a sensible performance measure when the 
evaluated methods use different numbers of cores. Instead, we decide to capture perfor-
mance by means of CPU time, as it compensates for the possible difference in utilised 
cores. In other words, by choosing CPU time over wall-clock time, we ensure a more rigor-
ous performance evaluation of our method as well as the baseline approaches, as one could 
easily gain performance in terms of wall-clock time through parallelisation, while heavily 
compromising in CPU time. Furthermore, we consider CPU time to be the more sensible 
performance measure, due to the cost associated with computational efforts. In fact, the 
rates for cloud services increase with the number of cores in a machine.

Generally, if the cost metric is running time, configurators typically optimise penal-
ised average running time (PAR), notably PARk, as the metric of interest, which penalises 
unsuccessful runs by counting runs exceeding the cutoff time tc as tc × k . In line with com-
mon practice in the algorithm configuration literature, we use k = 10 and refer to the cost 
metric as PAR10.

4.2  Details of the configuration procedure

The parameters for the configuration procedure were set as follows. Hydra ran over a 
predefined set of four iterations, during which it performed two independent runs of 
SMAC with a time budget of 24 hours each. Thus, running Hydra took 4 × 2 × 24 = 192 
hours for training, in addition to a variable amount of time spent on validation. In the-
ory, the number of iterations could be set to a larger value; however, we refrained from 
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this to keep our experiments within reasonable time frames. Lastly, we set k = 1 , which 
means that after every run, Hydra added one configuration to the portfolio, i.e., the con-
figuration that yielded the largest gain in overall training performance. The final output, 
therefore, is a portfolio containing a minimum number of 1 and a maximum number of 
4 solver configurations.

4.3  Data

Our benchmark sets were comprised of randomly chosen verification problem instances 
created by MIPVerify and Venus , respectively, using the network weights of two MNIST 
classifiers as well as the property-network pairs from the ACAS Xu repository (Julian 
et al., 2016; Katz et al., 2017). ACAS Xu contains an array of neural networks trained 
for horizontal manoeuvre advisory in unmanned aircraft. The MNIST classifiers were 
taken from the works of Tjeng et al. (2019) and Botoeva et al. (2020), respectively, and 
used to cross-test each verifier on both networks. The ACAS Xu benchmark was chosen 
to find out whether a high diversity in networks (the ACAS Xu repository contains 45 
different neural networks) poses any challenges to the configuration procedure.

MNIST Firstly, we created problem instances using the network weights of the robust 
classifier SDPdMLPA from Raghunathan et al. (2018). Among the networks considered 
in the work of Tjeng et  al. (2019), we regard this one as the most difficult to verify, 
since it shows the largest average solving times and optimality gaps for many examples, 
even compared to classifiers trained on the typically more challenging CIFAR-10 bench-
mark. Secondly, we used the weights of the network mnistnet from the Venus repository 
(Botoeva et al., 2020), which is the only MNIST classifier considered in their study. In 
both cases, we created 184 instances, which were split 50-50 into disjoint training and 
validation sets. The training and validation sets were used during the configuration pro-
cedure, whereas the remaining 9 816 instances form the test set and were used to evalu-
ate the final portfolio.

ACAS Xu For this benchmark, we only considered verification problem instances 
created by Venus , as MIPVerify at default reached the time limit of 38 400 CPU seconds 
for more than 80% of the instances. This makes automated configuration infeasible, 
as these instances do not only cause the default solver to time out but also any solver 
configuration tried by SMAC . Thereby, the configurator can hardly identify promising 
regions of the hyperparameter space and, consequently, not exploit them. Using Venus , 
we created 20 instances for different property-network pairs and, again, split them into 
disjoint training and validation sets. The remaining 152 instances are used for testing 
the final portfolio. Note that ACAS-Xu shows the highest average solving time among 
all benchmarks considered in the work of Botoeva et al. (2020).

4.4  Execution environment and software used

Our experiments were carried out on Intel Xeon E5-2683 CPUs with 32 cores, 40 MB 
cache size and 94 GB RAM, running CentOS Linux 7. We used MIPVerify version 
0.2.3, Venus version 1.01, SMAC version 2.10.03, Hydra version 1.1 and the Gurobi 
solver version 9.0.1.
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5  Results

We report empirical results for our new approach and each baseline in the form of (i) the 
fraction of timeouts; and (ii) bounds on adversarial error (the fraction of the dataset for 
which a valid adversarial example can be found), complement to adversarial accuracy 
(the fraction of the dataset known to be robust); (iii) CPU time (i.e., PAR10 scores) on 
solvable instances, i.e., instances that were solved by our portfolio or any of the baselines 
within the given cutoff time. Aggregated performance numbers are presented in Table 1 for 
MIPVerify and Table 2 for Venus , whereas Figs. 3 and 4 visualise penalised running time 
of our portfolio approach against the baselines on an instance level. Generally, we deter-
mined statistical significance using a binomial test with � = 0.05 for timeouts and error 
bounds, and a permutation test with the number of permutations set at 10 000 and signifi-
cance threshold of 0.05 for PAR10 scores.

5.1  MIPVerify

The results from our configuration experiments on the SDPdMLPA classifier are compared 
against multiple baselines. Firstly, we evaluated our portfolio approach against Gurobi , as 
used by Tjeng et al. (2019), using all 32 cores per CPU available on our compute cluster, 
with the cutoff time set to 1 200 × 32 = 38 400 CPU seconds (i.e., 1 200 seconds wall-clock 
time on a CPU without any additional load). In addition, since our parallel portfolio used 
1 core for each of its 4 component configurations, we gathered additional baseline results 
from running the default configuration of Gurobi on the same number of cores and with 
the same cutoff as our portfolio, i.e., 9 600 × 4 = 38 400 CPU seconds. Lastly, to maximise 
the number of instances processed in parallel, we considered Gurobi in its default con-
figuration limited to a single CPU core, with cutoff time of 38 400 seconds. In short, we 

Table 1  Timeouts, adversarial error and PAR10 scores for different solver configurations of the MIP solver 
embedded in the MIPVerify engine on the MNIST dataset. Note that all approaches were given the same 
budget in terms of CPU time (the number of cores times the cutoff time)

Using our portfolio, we achieved better performance than the state-of-the-art (SOTA) method of Tjeng et al. 
(2019) as well as the default configuration of Gurobi using different numbers of cores. Boldfaced values 
indicate statistically significant improvements according to a binomial test with � = 0.05 for timeouts and 
error bounds, and a permutation test with the number of permutations set at 10 000 and significance thresh-
old of 0.05 for PAR10 scores

Configuration Cores Cutoff Timeouts Adversarial error PAR10

[Seconds] Lower Upper [CPU s]

Bound Bound

SDPdMLPA classifier (Raghunathan et al., 2018)
 Default [SOTA] 32 1 200 21.29% 14.37% 30.67% 39 772
 Default 4 9 600 17.74% 14.40% 27.49% 22 065
 Default 1 38 400 17.66% 14.36% 27.58% 20 117
 Portfolio [Ours] 4 9 600 14.96% 14.43% 23.86% 8 478
mnistnet classifier (Botoeva et al., 2020)
 Default 1 38 400 1.57% 69.96% 70.16% 2 969
 Portfolio [Ours] 2 19 200 1.38% 70.13% 70.14% 1 844
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compared our approach against baselines with a variable number of cores and a constant 
budget in terms of CPU time. From these approaches, we considered only the best-per-
forming one as the baseline for our configuration experiments on the mnistnet classifier.

As seen in Table  1, our portfolio was able to certify a statistically significantly 
larger fraction of instances, while reducing CPU time by an average factor of 4.7 on the 

(a) (b)

(c) (d)

Fig. 3  Evaluation of our parallel portfolio approach for MIPVerify on the MNIST dataset (n=10 000) using 
weights from the SDPdMLPa and mnistnet classifiers, respectively. Each dot represents a problem instance 
and the penalised running time for that instance achieved by the baseline approach (x-axis) vs our portfolio 
(y-axis). For SDPdMLPa , the baselines we considered are (a) the default solver running on all available, i.e., 
32 cores, as in the work of Tjeng et al. (2019), (b) the default solver running on 4 cores and (c) the default 
solver running on 1 core. Our parallel portfolio, using 4 cores, achieved substantially fewer timeouts than 
any of the baselines and lower CPU times (in terms of PAR10 scores). Points grouped at the top and right 
border represent instances for which the solver reached the time limit, and are measured according to their 
penalised running time values
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solvable instances (8 478 vs 39 772 CPU seconds). Furthermore, the portfolio strongly 
outperformed this baseline in terms of timeouts (14.96% vs 21.29%). More concretely, 
694 instances solved by the portfolio timed out in the default setup with 32 cores; see 
Fig 3a for more details. 1 435 instances were neither solved by the default nor the port-
folio within the given time limit. 61 instances on which the portfolio timed out were 
solved by the default solver.

Table 2  Timeouts, adversarial error and PAR10 scores for different configurations of the MIP solver 
embedded in the Venus engine on the MNIST and ACAS Xu datasets

Note that all approaches were given the same budget in terms of CPU time (the number of cores times the 
cutoff time). Using our portfolio, we achieved better performance than the state-of-the-art (SOTA) method 
of Botoeva et  al. (2020). Boldfaced values indicate statistically significant improvements according to a 
binomial test with � = 0.05 for timeouts and error bounds, and a permutation test with the number of per-
mutations set at 10 000 and significance threshold of 0.05 for PAR10 scores. The asterisk marks Venus runs 
using the hyperparameter settings suggested by Botoeva et al. (2020), yet with Gurobi at default

Configuration Cores Cutoff Timeouts Adversarial error PAR10

[Seconds] Lower Upper [CPU s]

Bound Bound

mnistnet classifier (Botoeva et al., 2020)
 Default∗ [SOTA] 2 7 200 1.63% 70.33% 71.96% 1 975
 Portfolio [Ours] 2 7 200 0.58% 70.61% 71.19% 272
SDPdMLPA classifier (Raghunathan et al., 2018)
 Default 1 14 400 9.76% 14.36% 24.12% 6 534
 Portfolio [Ours] 2 7 200 6.10% 14.31% 20.41% 636

ACAS Xu (Julian et al., 2016; Katz et al., 2017)
 Default∗ [SOTA] 2 7 200 1.75% 20.34% 22.09% 1 314
 Portfolio [Ours] 2 7 200 1.17% 20.34% 21.21% 443

(a) (b) (c)

Fig. 4  Evaluation of our parallel portfolio approach for Venus on the MNIST dataset (n=10  000) using 
weights from the SDPdMLPa and mnistnet classifiers, respectively, and on the 172 property-network pairs 
from the ACAS Xu benchmark. Each dot represents a problem instance and the penalised running time 
for that instance achieved by the verifier with the embedded MIP solver at default (x-axis) vs our portfolio 
(y-axis). Overall, our parallel portfolio achieved fewer timeouts than the baseline and lower CPU times (in 
terms of PAR10 scores)
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The default configuration of Gurobi running on 4 cores was also clearly outperformed 
by our portfolio in terms of CPU time (8 478 vs 22 065 CPU seconds). Furthermore, the 
portfolio was able to reduce the number of timeouts (14.96% vs 17.74%), while improv-
ing on the upper bound (23.86% vs 27.49%). In other words, the portfolio certified more 
instances using fewer computational resources, although it was provided with the same 
number of cores and overall time budget. Figure 3b shows per-instance results for this set 
of experiments. Here, the default solver timed out on 378 instances, which were solved by 
the portfolio. On 109 instances, only the portfolio timed out. On 1 374 instances, both set-
ups resulted in timeouts.

Lastly, we compared the portfolio against the default configuration of Gurobi running 
on a single-core. Here, our portfolio showed improved performance in terms of PAR10 
(8 478 vs 20 117 CPU seconds) as well as the fraction of timeouts (14.96% vs 17.66%) and 
the upper bound (23.86% vs 27.58%). More specifically, the single-core default timed out 
on 378 instances that could be solved by the portfolio. On 108 instances, only the portfolio 
timed out. On 1 388 instances, both setups resulted in timeouts; see Fig 3c for more details.

On the mnistnet classifier, our portfolio also outperformed the single-core baseline in 
terms of PAR10 (1 844 vs 2 969 CPU seconds) as well as the fraction of timeouts (1.38% 
vs 1.57%), although to a smaller extent. To be precise, the default baseline timed out on 44 
instances that the portfolio was able to solve (Fig 3d). On 25 instances, only the portfolio 
reached the time limit. 113 instances were neither solved by the default nor the portfolio. 
The default baseline timed out on 44 instances that the portfolio was able to solve. On 25 
instances, only the portfolio reached the time limit. 113 instances were neither solved by 
the default nor the portfolio. These results could be explained by the mnistnet network 
being comparatively smaller and, thus, easier to verify than the SDPdMLPA classifier, as 
the latter results in a much larger number of timeouts when verified with equal settings.

5.2  Venus

The results from our configuration experiments are compared against two baseline 
approaches. Firstly, we evaluated our portfolio against Venus as employed by Botoeva 
et al. (2020), i.e., using the same hyperparameter settings for the verifier. We refer to this 
setup as default∗ , as the MIP solver is left in its default configuration, while the verifica-
tion engine is deployed with optimised hyperparameter settings. We note that the number 
of cores is equivalent to the number of parallel workers, which is set as a hyperparameter 
of the verifier. More precisely, we were running Venus using 2 workers, i.e., 2 cores per 
CPU available on our compute cluster, with the cutoff time set to 7 200 × 2 = 14 400 CPU 
seconds. In this setup, Venus employs 2 instances of the MIP solver in parallel, while we 
ensured that each solver is using exactly 1 CPU core. This way, we are giving the same 
amount of resources to the verifier and the portfolio. It should be noted that for the ACAS 
Xu benchmark, we also ran Venus with the hyperparameter settings reported by Botoeva 
et al. (2020), however with different numbers of workers. That is, we ran the verifier using 
4 workers, 2 workers, and 1 worker, i.e., CPU core(s), to assess the effects of parallelism, 
and found CPU time to be constant with regards to the number of workers running in par-
allel. We, therefore, consider each of these baselines to be equally competitive and only 
report results for Venus running with 2 active workers, i.e., on 2 CPU cores and, thus, simi-
lar to the number of cores utilised by the portfolio.

As there is no optimal setting of Venus hyperparameters provided for the SDPdMLPA 
classifier, we used Venus with default settings as the baseline for our configuration 
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experiments on this benchmark. In this setup, Venus is running with 1 active worker, which 
uses the same overall time budget of 14 400 CPU seconds.

As Table 2 shows, the portfolio strongly outperformed Venus with default  settings. On 
the mnistnet benchmark, it was able to certify a statistically significantly larger fraction of 
instances, while reducing CPU time by an average factor of 7.26 on the solvable instances 
(272 vs 1 975 CPU seconds). Furthermore, the portfolio strongly reduced the number of 
timeouts (1.63% vs 0.58%) on this benchmark. More specifically, the verifier timed out for 
115 instances that were solved by the portfolio. On the other hand, the portfolio reached 
the time limit on 10 instances, which could be solved by the default. On 48 instances, both 
approaches resulted in timeouts; see Fig. 4a for more details.

This baseline was also used to evaluate our portfolio approach on the ACAS Xu bench-
mark and, as previously mentioned, employed the verifier using the same hyperparameter 
settings as reported by Botoeva et al. (2020), although with the number of workers or CPU 
cores fixed at 2. Essentially, the portfolio was able to slightly improve the number of time-
outs and statistically significantly reduce CPU time by an average factor of 2.97 on the 
solvable instances (443 vs 1 314 CPU seconds). In concrete terms, the portfolio could solve 
1 instance on which the default solver reached the time limit; see Fig. 4c. For clarification, 
we achieved comparable performance gains over Venus running with 4 workers in parallel 
(443 vs 1 337 CPU seconds) as well as Venus running with 1 worker (443 vs 1 306 CPU 
seconds).

On the SDPdMLPA benchmark, the default baseline, i.e., Venus with default settings, 
was outperformed by the portfolio in terms of PAR10 (636 vs 6 534 CPU seconds) as well 
as the fraction of timeouts (6.10% vs 9.76%). In this setup, the default timed out on 379 
instances solved by the portfolio (Fig. 4b). On 15 instances, only the portfolio reached the 
time limit. 597 instances were neither solved by the default nor the portfolio. Lastly, the 
portfolio strongly improved on the upper bound (20.41% vs 24.12%), which overall clearly 
demonstrates the strength of the portfolio approach.

6  Conclusions and future work

In this study, we have, for the first time, demonstrated the effectiveness of automated algo-
rithm configuration and portfolio construction in the context of neural network verification. 
Applying these techniques to neural network verification is by no means a trivial extension, 
due to the high running times and heterogeneity of the problem instances to be solved. In 
order to address this heterogeneity, we constructed a parallel portfolio of optimised MIP 
solver configurations with complementary strengths. Our method advises on the ideal num-
ber of configurations in the portfolio and can be used in combination with any MIP-based 
neural network verification system. We empirically evaluated our method on two recent, 
state-of-the-art MIP-based verification systems, MIPVerify and Venus.

Our results show that the portfolio approach can significantly reduce the CPU time 
required by these systems on various verification benchmarks, while reducing the number 
of timeouts and, thus, certifying a larger fraction of instances.

In more concrete terms, we strongly improved the performance of MIPVerify via 
speed-ups in CPU time by an average factor of 4.7 on the MNIST classifier SDPdMLPA 
from Raghunathan et al. (2018) and 1.61 on the MNIST classifier mnistnet from Boto-
eva et al. (2020). At the same time, we were able to lower the number of timeouts for 
both benchmarks and tighten previously reported bounds on adversarial error. For the 
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Venus verifier, we achieved even larger improvements, i.e., 10.3- and 7.26-fold reduc-
tions in average CPU time on the SDPdMLPA and mnistnet networks, respectively. 
Beyond that, we strengthened the performance of Venus on the ACAS Xu benchmark, 
attaining a 2.97-fold speedup in average CPU time. Overall, our results highlight the 
potential of employing MIP-based neural network verification systems with optimised 
solver configurations and demonstrate how our method can consistently improve neu-
ral network verifiers that make use of MIP solvers. At the same time, we note that our 
method is inherently dependent on the default performance of the verifier at hand. In 
other words, we acknowledge that this work alone cannot scale existing methods to net-
work sizes that are completely beyond the capabilities of these methods. However, our 
approach can significantly improve the running time of the verifier on the benchmarks 
it is able to certify, and thus moves the boundary of network/input combinations acces-
sible to the verifier.

We see several fruitful directions for future work. Firstly, we plan to explore the use 
of per-instance algorithm configuration techniques to further reduce the computational 
cost of our approach. While our parallel portfolio approach is robust and makes good 
use of parallel computing resources, judicious use of per-instance algorithm selection 
techniques could potentially save some computational costs. We note that this will 
require the development of grounded descriptive attributes (so-called meta-features) for 
neural network verification, which we consider an interesting research project in its own 
right.

The neural network verification systems we considered in this work have additional 
hyperparameters. While our current approach focuses on the hyperparameters of the 
internal MIP solver, in future work, we will also configure the hyperparameters at the 
verification level. Due to the potential impact that this has on the MIP formulation and 
therefore on the running time of a given instance, this poses specific challenges for the 
algorithm configuration methods we use.

Finally, the portfolios we construct consist of multiple configurations of the same 
verification engine. In principle, we could also consider heterogeneous portfolios that 
contain configurations of different verification engines, which could lead to further 
improvements in the state of the art in neural network verification, and ultimately make 
it possible to verify networks far beyond the sizes that can be handled by the methods 
we have introduced here.
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