
Subspace Adaptation Prior for Few-Shot Learning∗

Mike Huisman Aske Plaat Jan N. van Rijn

Leiden Institute of Advanced Computer Science, Leiden University

Abstract

Gradient-based meta-learning techniques aim to distill useful prior knowledge from a set
of training tasks such that new tasks can be learned more efficiently with gradient descent.
While these methods have achieved successes in various scenarios, they commonly adapt
all parameters of trainable layers when learning new tasks. This neglects potentially more
efficient learning strategies for a given task distribution and may be susceptible to overfitting,
especially in few-shot learning where tasks must be learned from a limited number of examples.
To address these issues, we propose Subspace Adaptation Prior (SAP), a novel gradient-based
meta-learning algorithm that jointly learns good initialization parameters (prior knowledge)
and layer-wise parameter subspaces in the form of operation subsets that should be adaptable.
In this way, SAP can learn which operation subsets to adjust with gradient descent based
on the underlying task distribution, simultaneously decreasing the risk of overfitting when
learning new tasks. We demonstrate that this ability is helpful as SAP yields superior or
competitive performance in few-shot image classification settings (gains between 0.1% and
3.9% in accuracy). Analysis of the learned subspaces demonstrates that low-dimensional
operations often yield high activation strengths, indicating that they may be important for
achieving good few-shot learning performance. For reproducibility purposes, we publish all
our research code publicly.

1 Introduction
Humans are characterized by their ability to quickly learn new tasks and skills from only a limited
amount of examples or experience. While deep neural networks are able to achieve great perfor-
mance on various tasks [Krizhevsky et al., 2012, Mnih et al., 2013, Silver et al., 2016, Wurman
et al., 2022], they require large amounts of data and compute resources to learn new tasks, re-
stricting their success to domains where such resources are available. One explanation for this gap
in learning efficiency is that humans can efficiently draw on a large pool of prior knowledge and
learning experience [Jankowski et al., 2011], whereas deep neural networks are often trained from
scratch or lack the appropriate prior.

Meta-learning [Schmidhuber, 1987, Thrun, 1998, Naik and Mammone, 1992, Brazdil et al.,
2022] is one potential solution to this problem as it can distill a good prior from a set of past
learning experiences that facilitates efficiently learning new tasks. Model-agnostic meta-learning
(MAML) [Finn et al., 2017] is a popular gradient-based meta-learning algorithm that learns a prior
in the form of the initialization parameters of the network. Learning a new task is then done by

∗Accepted at Machine Learning Journal, Special Issue of the ECML PKDD 2023 Journal Track

1



performing gradient descent starting from this meta-learned initialization. This approach, which
is also widely used by techniques that are based on MAML [Lee and Choi, 2018, Flennerhag et al.,
2020, Park and Oliva, 2019, Yoon et al., 2018, Nichol et al., 2018], updates all of the parameters
of every trainable layer with gradient descent when learning new tasks, which may be suboptimal
for a given task distribution and may lead to overfitting since there are more degrees of freedom
to fit the noise in the data. Especially in few-shot learning, where tasks are noisy due to the fact
that only limited examples are available, these issues could hinder performance.

To address these issues and investigate the research question of whether the few-shot learning
performance of deep neural networks can be improved by meta-learning which subsets of parameters
to adjust, we propose a new gradient-based meta-learning technique called Subspace Adaptation
Prior (SAP) that jointly learns good initialization parameters as well as layer-wise subspaces in
which to perform gradient descent when learning new tasks. More specifically, SAP is given access
to a candidate pool of operations for every layer that transforms the hidden representations, and it
learns which of these subsets to adjust in order to learn new tasks quickly, similar to DARTS [Liu
et al., 2019]. Here, every operation corresponds to a parameter subspace. Note that this method
serves as a form of regularization and allows SAP to find more efficient adaptation strategies than
adjusting all parameters of trainable layers. In addition, it utilizes implicit gradient modulation
to warp [Lee and Choi, 2018, Flennerhag et al., 2020] these subspaces per layer such that gradient
descent can quickly adapt to new tasks, if they share a common structure.

We empirically demonstrate that SAP is able to find efficient parameter subspaces, or operation
subsets, that match the underlying task structure in simple synthetic settings and yield good few-
shot learning. Moreover, SAP outperforms gradient-based meta-learning techniques—that do not
have the ability to learn in which structured subspaces to perform gradient descent—on few-shot
sine wave regression and performs on-par or favorably in various few-shot image classification
settings. In short, our contributions are the following:

• We propose SAP, a new meta-learning algorithm for few-shot learning that jointly learns
good initialization parameters and parameter subspaces in the form of operation subsets in
which to perform gradient descent.

• We demonstrate the advantage of learning parameter subspaces as SAP outperforms exist-
ing methods by at least 18% on few-shot sine wave regression and yields competitive or
superior performance on popular few-shot image classification benchmarks (improvements in
classification accuracy scores range from 0.1% to 3.9%).

• We investigate the learned layer-wise parameter subspaces on synthetic few-shot sine wave
regression and image classification problems and find that small subsets of adjustable param-
eters (simple parameter subspaces), including feature transformations such as element-wise
scaling and shifting are assigned large weights, suggesting that they play an important role
in achieving good performance with SAP.

• For reproducibility and verifyability purposes, we make all our research code publicly avail-
able.1

1See: https://github.com/mikehuisman/subspace-adaptation-prior

2

https://github.com/mikehuisman/subspace-adaptation-prior


2 Related work
We review related work on optimization-based meta-learning, neural architecture search and gra-
dient modulation.

Optimization-based meta-learning Our proposed technique belongs to the category of
optimization-based meta-learning [Vinyals, 2017, Huisman et al., 2021a], which employs optimiza-
tion methods to learn new tasks [Yoon et al., 2018, Bertinetto et al., 2019, Lee et al., 2019]. These
methods aim to meta-learn good settings for various hyperparameters, such as the initialization
parameters, such that new tasks can be learned quickly using optimization methods. These meth-
ods vary from regular stochastic gradient descent, as used in MAML [Finn et al., 2017] and Reptile
[Nichol et al., 2018], to meta-learned procedures where a network updates the weights of a base-
learner [Ravi and Larochelle, 2017, Andrychowicz et al., 2016, Li et al., 2017, Rusu et al., 2019,
Li and Malik, 2018, Huisman et al., 2022]. SAP aims to learn good initialization parameters such
that new tasks can be learned quickly with regular gradient descent, similar to MAML.

This is a form of transfer learning [Taylor and Stone, 2009, Pan and Yang, 2009] where we
transfer knowledge—in this case the initialization parameters—obtained on a set of source tasks
to a new target task that we are confronted with. The idea is also related to the idea of domain
adaptation (DA) [Daumé III, 2009, Farahani et al., 2021], although in DA it is often assumed
that we have a single task but two different data distributions (a source distribution and a target
distribution). Note that in deep meta-learning [Huisman et al., 2021a, Hospedales et al., 2021],
we have set of various different training tasks and aim to transfer knowledge to a new target task,
different from the ones seen at training time.

Neural architecture search (NAS) for meta-learning The techniques mentioned above
assume a pre-specified network architecture. Recently, there has been some work on combining
meta-learning with neural architecture search, where the architecture can also be learned. Kim
et al. [2018] performs meta-learning as a subroutine to NAS, meaning that meta-training is per-
formed for every candidate architecture, which can be computationally expensive. This problem
can be overcome by combining gradient-based meta-learning with gradient-based neural architec-
ture search such that the architecture and initialization parameters can be optimized jointly instead
of separately. A popular gradient-based meta-learning algorithm is DARTS [Liu et al., 2019] which
starts with a candidate pool of operations (as in SAP) and learns which of them to use, thereby
learning an appropriate architecture. Learning which subspaces or subsets of operations to use
per layer, as done in SAP, can be seen as applying DARTS over the candidate operation sets. A
difference between DARTS and SAP is that we fix the base-learner parameters when adapting to
new tasks, which can then serve to warp, or transform, the gradients such that gradient descent
can quickly move to a good solution for new tasks (see below). Moreover, SAP updates the ini-
tialization parameters of all meta-trainable parameters with a MAML-like update (to maximize
post-adaptation performance), while DARTS uses a Reptile-like update (to maximize multi-step
performance). We describe DARTS in full detail in Section 3.3.

Lian et al. [2019] were the first to combine DARTS [Liu et al., 2019] with gradient-based meta-
learning in order to learn a base-learner architecture that can be quickly adapted to new tasks.
They perform hard-pruning, which requires re-running the meta-training phase for every new task,
which is computationally expensive. In parallel to this work, Elsken et al. [2020] proposed a similar
approach (MetaNAS) that does not perform hard-pruning and thus side-steps these expensive re-
running procedures. In contrast to these works, which learn and adapt the base-learner network

3



architecture as well as all of the parameters to every new task, SAP assumes a fixed base-learner
architecture as a starting point and aims to learn a set of operations that are inserted per layer
(see Section 4) that are responsible for quickly adapting to new tasks. In SAP, the architecture
of the network is frozen at test time, in contrast to, for example, the architecture of the networks
learned by MetaNAS [Elsken et al., 2020].

Gradient modulation in gradient-based meta-learning Recent works that build upon
MAML have shown that gradient modulation can improve the generalization of optimization-
based techniques [Sun et al., 2019]. Explicit gradient modulation techniques directly transform
the gradient updates when learning new tasks [Simon et al., 2020] through, for example, diagonal
matrix multiplication [Li et al., 2017], or block-diagonal preconditioning [Park and Oliva, 2019].
Implicit gradient modulation techniques do not directly operate on the gradients but rely on in-
direct transformations. CAVIA [Zintgraf et al., 2019] separates shared parameters from context
parameters. The latter serve as additional inputs to one or more layers of the neural network and
are adjusted when learning a new task, whilst the shared parameters are kept fixed. Other exam-
ples of implicit gradient modulation methods are T-Net [Lee and Choi, 2018] and Warp-MAML
[Flennerhag et al., 2020]. SAP also performs implicit gradient modulation in a similar fashion to
these two techniques.

T-Net inserts linear projection transformations directly after every matrix multiplication in the
base-learner. The weights of these transformations are frozen when learning new tasks, and only
the base-learner weights are adjusted. The goal is to meta-learn good initialization parameters
of the base-learner weights as well as the transformation weights, such that new tasks can be
learned more quickly. These transformation layers serve to implicitly modulate the gradients of
the base-learner parameters so that gradient descent can quickly move to good solutions for new
tasks. MT-Net is an extension to T-Net, which also learns to mask certain features, preventing
them from being adapted when learning new tasks. We also investigated whether feature masking
was useful for SAP, but found that it decreased performance. Warp-MAML is a generalization
of T-Net as it does not require that the inserted transformation layers are linear, that is, the
theoretical framework allows these transformation layers to be non-linear and consist of multiple
layers (arbitrary neural networks).

Both T-Net and Warp-MAML adjust all parameters of trainable layers, as is common in
gradient-based meta-learning. However, this may be suboptimal for a given task distribution
and lead to overfitting due to the large degree of freedom to fit the noise in the data. MT-Net,
on the other hand, freezes certain features, which, in turn, also requires certain weights to be
frozen but this is rather inflexible as that does not allow us to perform simple operations such
as element-wise scaling of all features, which may be helpful for a given task distribution. To
overcome these issues, we propose SAP, which learns per trainable layer which operations from
a pre-defined candidate pool to use and adapt when learning new tasks, instead of resorting to
regular matrix multiplications in which all weights are adjusted when learning new tasks (as done
by other methods). While the expressivity of SAP is equivalent to T-Net and Warp-MAML (when
using linear warp layers), the candidate pool of operations allows SAP to learn which operations
are important for the given task distribution, thereby structuring the weight updates.

SAP is similar to T-Net and Warp-MAML in the sense that the linear base layers Wℓ (see
Section 4) of the network in SAP can be seen as the warp layers or transformation layers that are
used in T-Net and Warp-MAML, which act as implicit preconditioning layers that warp the loss
surface to aid gradient descent in finding a good solution. Due to the similarities between T-Net,
Warp-MAML, and SAP, they serve as excellent baselines to investigate whether the ability of SAP

4



to learn which operation subsets to adapt when learning new tasks is helpful for few-shot learning.
Concurrently to our work, Jiang et al. [2022] have proposed a subspace meta-learning algorithm.
Whilst the title is similar, they explicitly meta-learn the bases for K subspaces. Then, when learn-
ing a new task, they aim to find linear combinations of the basis vectors of each of the subspaces
that give rise to the best parameters for the given task in the subspaces. The subset containing
the parameters with the lowest training loss is then used to obtain predictions for the query/test
set. Note that their work is different in that we do not learn basis vectors for different subspaces,
but instead insert candidate operations that act to transform intermediate representations in the
base-learner network to allow for faster learning and modulating the gradients.

3 Preliminaries
In this section, we introduce the problem setup and notation that we will use throughout the
paper.

3.1 Few-shot meta-learning

In few-shot learning [Lu et al., 2020, Wang et al., 2020, Bendre et al., 2020], the goal is to learn
a new task Tj from a limited number of examples. Every task Tj = {Dtr

Tj , D
te
Tj} consists of a

support set Dtr
Tj that is used for learning the new task and a query set Dte

Tj for evaluating how
well the task was learned. Learning new tasks with deep neural networks from limited amounts of
data is challenging. Meta-learning aims to overcome this challenge by learning how to learn on a
distribution of training tasks ptrain(T ) in the hope that new tasks (not seen during training) from
a similar distribution can be learned more efficiently.

Meta-learning is often done in three stages. In the meta-training stage, the meta-learner
is presented with training tasks and uses them to adjust the prior, such as the initialization
parameters. After every pre-determined number of training tasks, the meta-validation stage takes
place, where the learner is validated on unseen meta-validation tasks. Finally, after the training is
completed, the learner with the best validation performance is evaluated in the meta-test phase,
where the learner is confronted with new tasks that have not been seen during training and
validation. Importantly, the tasks between the meta-training, meta-validation, and meta-test
phases are disjoint. For example, in image classification, the classes in the meta-training tasks
are not allowed to occur in meta-test tasks as we are interested in measuring the learning ability
instead of memorization ability.

In N-way k-shot classification [Finn et al., 2017, Vinyals et al., 2016, Snell et al., 2017], the
support set Dtr

Tj of every task Tj contains N classes and exactly k shots, or equivalently, examples,
per class, thus |Dtr

Tj | = k ·N . Moreover, the query set Dte
Tj contains unseen examples from the same

N classes, so that it can be evaluated how well the concepts in the support set have been learned.
For regression problems, there is no notion of classes, but the same setup can be used, i.e., support
sets consist of k shots of one regression function and the query sets of unseen examples of that
same regression function.

3.2 Model-agnostic meta-learning (MAML)

A popular gradient-based meta-learning technique is model-agnostic meta-learning, or MAML
[Finn et al., 2017], which we briefly review here. MAML aims to learn good initialization param-

5



eters θ of a neural network fθ such that new tasks can be learned in a few gradient update steps
from that initialization.

This initialization is obtained by interleaving inner- and outer-update steps during the meta-
training phase. At the inner-level, the model fθ is presented with a task Tj, which it aims to learn
by making T gradient update steps on the support set of that task Dtr

Tj , that is,

θ
(t+1)
j = θ(t) − α∇θ(t)LDtr

Tj
(θ(t)), (1)

where α is the inner learning rate and LDtr
Tj
(θ(t)) the loss of the network with parameters θ(t) on

the support set of task Tj at time step t. Before learning a task, θ(0) is initialized as θ. These task-
specific parameters θ

(t)
j are then used to evaluate how well the task was learned. This loss signal

is then propagated backward to the initialization parameters θ to compute the update direction.
The latter corresponds to outer-level learning: adjusting the initialization parameters over a single
task, or more generally, a batch of tasks B on which the inner-level update steps were made

θ = θ − β∇θ

∑
Tj∈B

LDte
Tj
(θ

(T )
j ), (2)

where β is outer learning rate. This update requires the computation of second-order gradients as
we have to compute a gradient of a gradient, which is expensive as it has a complexity quadratic
in the number of parameters. This can be sidestepped by using a first-order approximation. Im-
portantly, note that the inner-level updates are based on the loss on the support set while the
outer-level updates are based on the loss on the query set after adaptation, stimulating generaliza-
tion. For simplicity, the gradient update rules are shown in the case that a single update is made
per task, even though the idea generalizes to the case of multiple updates per task.

MAML has been proven to be effective at learning new tasks from limited amounts of data
[Finn et al., 2017] as well as capable of approximating any learning algorithm [Finn and Levine,
2018] by means of selecting a proper initialization θ, under the assumption that the used network
is “sufficiently” deep.

3.3 Differentiable neural architecture search (DARTS)

DARTS [Liu et al., 2019] is a gradient-based neural architecture search method, where the goal
is to find a suitable neural architecture for a given problem. To do this, DARTS assumes a set
of candidate operations that can be used to transform an input into an output. These candidate
operations form a weighted graph as shown in Figure 1. In the figure, every node oi(x) corresponds
to a candidate operation and the weights of the edges correspond to the activation strengths of the
different operations. These weights are initially unknown and DARTS aims to learn them jointly
with the initial parameters of every operation. The output of the layer in the figure is given by

O(x) =
n∑

i=1

wioi(x), (3)

where wi is the weight of operation i and
∑n

i=1wi = 1 (e.g., by using a softmax). For our purposes,
we only consider DARTS for searching over operations for a single layer, but it can be used for
multi-layer architectures as well.

In addition to learning the weights wi, DARTS simultaneously learns good parameters for
every operation oi. We denote the group of all activation weights as λ = {w1, w2, . . . , wn} and all

6



...

?
? ?

Figure 1: Intuitive visualization of DARTS. It is given a set of candidate operations O and aims
to learn the weights of the edges (indicated as ?), corresponding to the strengths of the different
operations oi(x). The output of the weighted graph is a convex combination of the different
operations O(x) =

∑n
i=1 wioi(x).

operation parameters as θ. DARTS adopts a method similar to MAML for learning λ and θ. That
is, given a training task Tj = (Dtr

Tj , D
te
Tj), DARTS performs a gradient update step on the operation

weights θ as follows

θ′j = θ − α∇θ,λLDtr
Tj
(θ, λ). (4)

Note that this is similar to Equation 1 with the exception that we now have activation strength
parameters λ, which are kept constant during this inner-loop adaptation step. After updating
the operation parameters θ, DARTS computes the loss of the new model on the query set, i.e.,
LDte

Tj
(θ′j, λ) and updates the activation strengths using gradient descent on this loss

λ = λ− β∇λLDte
Tj
(θ′j, λ). (5)

Similarly to MAML, this update also contains second-order gradients, but first-order approxima-
tions can be made. In DARTS, the weights of the operations θ are simply updated to their new
values, that is, θ = θ′j, i.e., after every task in the meta-train set, we update the initialization
parameters θ to the parameters that were obtained after training on task Tj.

4 Subspace Adaptation Prior
In this section, we motivate and present our proposed technique called Subspace Adaptation Prior
(SAP).

4.1 Intuition and operations

Our method (SAP) builds on MAML as we also aim to learn good initialization parameters such
that good performance can be achieved after a small number of gradient updates. However, MAML

7



x

y

(a) Sine wave tasks

sin
Shift

Scale

Shift

Scale

(b) Learned subspaces

Figure 2: SAP can learn the activation strengths of candidate operations Oℓ (corresponding to
parameter subspaces) that match the problem structure. Suppose we are given a sine wave task
distribution, where every task Tj is a sine wave gj(x) = Aj · sin(x− pj), where pj is the phase and
Aj the amplitude. Instead of adapting all parameters of the network on a new task, SAP can learn
to keep the sine network parameters (sin) frozen and that the input shift (shift in O1) and output
scale (scale in OL+1) are the most important operations to adjust (bold and dark-colored arrows),
matching the role of the phase and amplitude, respectively.

adapts all of its network parameters when presented with a new task, which may be suboptimal for
the given task distribution and lead to overfitting. Our method, SAP, is given a pool of candidate
operations per layer (described below) and it learns per layer which subset of operations should be
adjusted to adapt to a new task. Since all of the operations that SAP can choose from per layer
are subsumed in terms of expressivity by a full-rank matrix multiplication (or convolution in the
case of image data), this can be understood as learning in which parameter subspaces to perform
gradient descent so that new tasks can be learned more efficiently.

This is a form of regularization and can help the network to exploit structures in problems.
For example, take the distribution of tasks Tj corresponding to different sine waves gj(x) = Aj ·
sin(x−pj), where Aj is the amplitude and pj the phase. There exists a common structure amongst
these tasks: a given sine wave can be transformed into any other sine wave by simply shifting the
input and scaling the output. This has been visualized in Figure 2. Techniques that adapt all
parameters may overwrite the sine function and overfit to the noise, whereas theoretically, SAP
could learn to keep these parameters fixed and that shifting the input and scaling the output are
the most important operations and consequently, that gradient descent should be performed in
the parameter subspaces corresponding to these operations. Sine waves form a simplistic example
to demonstrate the idea of SAP, however, we note that also for image classification tasks, simple
operations such as scaling and shifting feature maps can be useful too [Sun et al., 2019, Perez
et al., 2018, Requeima et al., 2019]. SAP can discover such underlying structures and use them to
enhance its few-shot learning abilities.

Candidate operations The candidate operations that SAP uses are specified by hand before
meta-training. In order to preserve the original expressivity of the base-learner network, the
operations are elementary linear algebra operations that are subsumed by full-rank matrix multi-
plication.

Table 1 displays all the operations that we use for both fully-connected and convolutional
layers. The MTL scale operation was proposed by Sun et al. [2019]. By construction, we require

8



that the output of an operation set must have the same dimensionality as the input. Recall that
in the case of fully-connected layers, all candidate operations can be expressed by a single matrix
multiplication where only a subset of the entries is used. For example, an element-wise scale can be
performed by multiplying the input with a diagonal matrix where the diagonal entries correspond
to the element-wise scalars, and the non-diagonal entries are zero. In this way, every candidate
operation occupies a part of the full operation set matrix. This also holds for convolutions, which
can be seen as a stack of matrices.

Fully-connected Convolutional
Operation Dimensionality Operation Dimensionality

Identity N.A. Identity N.A.
Matrix multiplication d× d Convolution C × C × k × k
SVD-matrix multiplication d× v SVD convolution C × C × k × v
Element-wise scale d 1x1 convolution C × C
Scalar scale 1 MTL scale C × C
Vector shift d Channel-wise scale C
Scalar shift 1 Channel-wise shift C

Scalar shift 1

Table 1: The candidate operations for fully-connected and convolutional network layers and the
corresponding dimensionality of the subspace in which gradient will be performed. Here, d is the
dimensionality of the input in the case of a fully-connected layer and C is the number of input and
output dimensions of candidate operations in the case of convolutional layers. k is the kernel size
of convolutions and v < k is a variable dimension for SVD matrices.

We also include singular value (SVD) decomposition operations, where three v-rank matrices
A = UΣV T are multiplied to obtain a transformation matrix A ∈ m×n with the same dimension-
ality as a full-rank transform T ∈ Rm×n (although with a lower rank). Here, U ∈ Rm×v, Σ ∈ Rv×v,
and V T ∈ Rv×n. The obtained transformation A is then applied to the input.

Below, we describe how these operations are interleaved with the base-learner network and how
SAP learns which subsets to adjust.

4.2 The algorithm

Architecture Let fθ be a neural network with parameters θ, where the output, or prediction, is
given by

fθ(x) = WLσ(. . . σ(W2σ(W1x))). (6)

Here, L is the number of layers of the network, σ is a non-linear activation function, and Wℓ is the
weight matrix for layer ℓ ∈ {1, 2, . . . , L} (which can also include the bias by concatenating a 1 at
the top of the input vector). Note that θ = {W1,W2, . . . ,WL} is the set of all base-learner weight
matrix parameters. In SAP, we insert sets of candidate operations Oℓ = {oℓ1, . . . , oℓnℓ

} before the
application of weight matrices Wℓ and after computing the final output, as shown in Figure 3.
Here, nℓ is the number of operations in the candidate set Oℓ in layer ℓ. Each of these operations
oℓi ∈ Oℓ act on the input, giving rise to partial outputs oℓi(z

ℓ) of the same dimensionality of the

9



inputs, where zℓ is the input to the ℓ-th operation layer. The final output of applying the candidate
operations is a convex combination of the partial outputs, that is,

Oℓzℓ =

nℓ∑
i=1

wℓ
io

ℓ
i(z

ℓ), (7)

where z1 = x and wℓ
i is the activation strength of operation oℓi . We require that

∑nℓ

i=1 w
ℓ
i = 1 and

0 ≤ wi ≤ 1. Learning these activation strengths can be seen as neural architecture search. Thus,
the output of the neural network in SAP is given by

fΘ(x) = OL+1WLOLσ(. . . σ(W2O2σ(W1O1x))), (8)

where Θ = {θ, ϕ, λ} is the set of the initial hyperparameter values for the base-learner weights
(θ), the operation weights (ϕ), and the activation weights (λ). Note that ϕ = {O1,O2, . . . ,OL+1}
are the parameters corresponding to the operations in all layers (see Section 4.1), and λ is the set
containing all wℓ

i for all layers ℓ ∈ {1, 2, . . . , L+ 1}.
Importantly, each of these candidate operations oℓi are subsumed or equivalent in terms of

expressivity with full-rank matrix multiplication. For example, candidate operations can include
element-wise shifting or multiplication of the input by a fixed scalar or by a vector, which can
also be done by weight matrix multiplication. Since the application of a set of operations Oℓ of
such expressivity can be seen as a single matrix multiplication (hence the suggestive notation),
the expressivity of an SAP network is equivalent to that of the original network. To see this, note
that the application of two weight matrices to an input can be written as the application of a
single weight matrix to the input x, that is, W(Ox) = (WO)x = W′x, where W and O are
weight matrices, and W′ = WO. For the sake of another example, suppose that we have a set
of two operations in O: scalar multiplication s · z and matrix multiplication Mz (preserving the
dimensionality of z). Furthermore, suppose that the two operations are applied with activation
strengths w1 and w2, granting us the output z′ = w1s · z + w2Mz. We can rewrite this as
z′ = w1sIz + w2Mz = (w1sI + w2M)z = Oz, where O = (w1sI + w2M) and I is the identity
matrix. For a more intuitive example, suppose that a base-layer is a fully-connected layer, and
we add a fully-connected operation to alter the resulting representation, maintaining the original
dimensionality. The composition of the two fully-connected layers is effectively linear and equally
expressive as a single fully-connected layer. Thus, introducing the operations used by SAP
does not alter the expressivity of the original base-learner network.

Figure 3: A diagram of a feed-forward pass in SAP. Sets of operations Oℓ are interleaved with base-
learner weights Wℓ. The operation sets perform a convex combination of a number of operations
{oℓ1, . . . , oℓnℓ

}. SAP learns the strengths of each of the candidate operations and thereby learns in
which parameter subspaces gradient descent can effectively adapt the network to learn new tasks.
The operation strengths and the weight matrices Wℓ are frozen when adapting to new tasks. Only
the operation parameters are adjusted at test time.

10



Crucially, this insight that we can write the weighted combination of different operations as a
single weight matrix multiplication Ox, where O is a weighted combination of different structured
matrices, reveals that SAP effectively learns what subset of parameters of this weight matrix
O and thus of WO to adjust by learning the activation strengths λ. In this work, we use the
expressions “learning which subsets of parameters to adjust” and “learning in what subspaces to
perform gradient descent” synonymously.

Meta-learning The activation strengths wℓ
i are meta-learned by SAP in addition to the ini-

tialization parameters of the operations Oℓ and the base-learner weights Wℓ. Note that learning
the wℓ

i corresponds to learning in which parameter subspaces gradient descent is performed when
learning new tasks, which can be done through the layer-wise application of the gradient-based
neural architecture search technique DARTS [Liu et al., 2019]. Let θ denote the initial parameters
of the weight matrices Wℓ, ϕ the parameters of all candidate operations Oℓ, and λ the activation
strengths wℓ

i of all individual candidate operation. Recall that Θ = {θ, ϕ, λ}.
When presented with a new task Tj, the candidate operation activation strengths λ and the

base-learner parameters θ are frozen, and only the candidate operation parameters ϕ are updated
using gradient descent for T steps

ϕ
(t+1)
j ← ϕ(t) − α∇ϕ(t)LTj(θ, ϕ

(t), λ), (9)

where ϕ(0) is initialized with ϕ. At the meta-level, the goal is to find good initial parameter settings
for all involved parameters such that the task-specific performance is maximized. Thus, we wish
to find

argmin
Θ={θ,ϕ,λ}

E
Tj∽p(T )

LTj(θ, ϕ
(T )
j , λ), (10)

where ϕ
(T )
j denotes the task-specific parameters obtained through one or more gradient update

steps on task Tj. In other words, we wish to find good initial values for the parameters θ, ϕ,
and λ such that new tasks can be learned quickly by updating the operation parameters ϕ. This
meta-objective can also be optimized through gradient descent by updating

Θ← Θ− β∇Θ

∑
Tj∈B

LTj(θ, ϕ
(T )
j , λ). (11)

The full algorithm for application to few-shot learning is shown in Algorithm 1. At the start
(line 1), we initialize the parameters of the base-learner θ randomly. The candidate operation
parameters ϕ are initialized to leave the input unaffected (for example, scalars are initialized to 1
and biases to 0). The layer-wise activation strengths wℓ

i of the candidate operations are initialized
to the uniform distribution. After this initialization, we repeat the following steps until a stopping
criterion is met, such as having sampled a certain number of task batches, or observing decreasing
performance on held-out validation tasks. We randomly sample batches of tasks (line 3), initialize
the task-specific parameters ϕ(0) = ϕ, and make T gradient update steps on the support set of
every task (lines 6–8), and perform meta-updates to the initialization parameters Θ (line 11) using
the query sets of the tasks. Note that the meta-update requires the computation of second-order
gradients as we have to compute the gradient of the inner-level gradients. The complexity of this
is quadratic in the number of parameters, but can be avoided by using the first-order assumption
∇ϕϕ

(T )
j = I.

11



Algorithm 1 Subspace Adaptation Prior (SAP)
Require: p(T )
Require: α, β
1: initialize θ, ϕ, λ
2: while not converged do
3: sample batch of tasks B = {Tj = (Dtr

Tj , D
te
Tj) ∽ p(T )}Mj=1

4: for task Tj = (Dtr
Tj , D

te
Tj) ∈ B do

5: initialize task-specific parameters ϕ
(0)
j = ϕ

6: for t = 0, . . . , T − 1 do
7: compute gradient update ϕ

(t+1)
j using Equation 9 on Dtr

Tj
8: end for
9: end for

10: update initial parameters Θ = {θ, ϕ, λ} using Equation 11
11: end while

Pruning The scores wℓ
i represent the activation strengths of the different candidate opera-

tions/subspaces, and can also be used for pruning the operations, for example, in a layer-wise
or regular top-K fashion. By default, we do not hard-prune operations and maintain a convex
combination of different candidate operations unless explicitly mentioned otherwise. Note that we
cannot simply drop low activation strength operations from the network as that changes the com-
posite features and layerwise activation statistics. Hard-pruning requires re-training the network
with only the selected (non-pruned) subspaces/operations.

4.3 Analysis

One may wonder what the role is of inserting operation sets Oℓ in the base-learner network since
they have the same expressivity as weight matrices. In other words, why do we have two consecutive
matrix multiplications WℓOℓx if that is equivalent to having one matrix multiplication Ux, where
U = WℓOℓ. There are two reasons for maintaining two separate matrices, which we describe
below.

Regularization First, having a set of operations Oℓ allows SAP to learn which sets, correspond-
ing to weight subspaces of a full-rank matrix, are relevant for a given task distribution. Choosing
lower-dimensional subspaces is a form of regularization, as fewer parameters can be adjusted to fit
the noise in the data.

Gradient modulation Second, when computing gradient updates for the operation parameters
ϕℓ of a given layer ℓ, the frozen base-layers Wℓ implicitly modulate the gradients since the error
signal traverses backward through Wℓ to Oℓ. This method of gradient modulation was proposed
by Lee and Choi [2018]. Below, we borrow the analysis performed in that paper to illustrate the
modulation.

Suppose we are presented with a task Tj and that the output for a given layer in the network is
given v = WOx, where x is the input to the layer. Moreover, assume that the loss of the network
on task Tj is given by LTj Then, the parameters of the operations O are updated using a gradient

12



update step, and we obtain the new output

vnew = W(O − α∇OLTj)x (12)
= v − α(W∇OLTj)x. (13)

Note that we slightly abuse notation here since the parameters of the operations are denoted as
ϕ. As we can see, the change in the layer’s output ∆(vnew ,v) is negatively proportional to the
(W∇OLTj). Here, W warps the gradients with respect to the operation parameters. The warping
of these gradients is meta-learned across tasks such that within a few gradient updates in warped
space, a good performance can be achieved [Flennerhag et al., 2020, Lee and Choi, 2018, Park and
Oliva, 2019].

As a consequence, SAP can learn both in which parameter subspaces to perform gradient descent
by learning appropriate subsets of operations, as well as learn how to warp these subspaces so that
few gradient updates yield good performance.

5 Experiments
In this section, we aim to answer the following research questions:

• Does learning suitable layer-wise operations/subspaces improve meta-learning performance
on sine wave regression? (Section 5.1)

• Do the learned strengths of subspaces/operations match the task structure in a simple syn-
thetic setting? (Section 5.2, Section 5.3)

• How well does SAP perform at few-shot image classification? (Section 5.4)

• How well does SAP perform at cross-domain few-shot image classification? (Section 5.5)

• Is hard subspace pruning beneficial for the performance of SAP? (Section 5.6)

• What is the influence of second-order gradients on the performance of SAP? (Section 5.7)

• What operations are important for few-shot image classification? (Section 5.8)

• How does SAP compare in terms of the running time and and number of trainable parameters
compared to the baselines? (Section 5.9)

5.1 Sine wave regression

First, we study the few-shot learning performance of SAP on few-shot sine wave regression, which
is commonly used in the meta-learning community [Finn et al., 2017, Li et al., 2017, Park and
Oliva, 2019]. Here, the goal is to learn sine wave regression tasks Tj corresponding to sine curves
gj(x) = Aj · sin(x−pj) from a limited set of k examples. The amplitudes Aj and phases pj of these
sine curves are randomly sampled from the intervals [0.1, 5.0] and [0, π], respectively. While the
results on sine-wave regression are not our main contribution, the structure of these problems were
a motivation for the development of this method, and therefore this is a good test-case on which
we expect SAP to perform well. Of course, SAP can only be considered a valuable contribution
when it also works on more relevant problem types, which we explore in the following sections.

13



We use the same base-learner architecture, a fully-connected neural network with 2 hidden
ReLU layers of 40 nodes each, as in [Finn et al., 2017]. For the SVD operations (see candidate
operations in Section 4.2), we use ranks 5, 10, and 15 in the candidate pools. All candidate
operations were initialized to have no effect on the network predictions at the start (transformation
matrices were initialized to identity matrices, biases to 0, and scale operations to 1). All techniques
are meta-trained on 70 000 tasks using one update step per task and a meta-batch size of 4. We
perform validation every 2 500 tasks to select the best performing model, which will be tested after
1 and 10 gradient update steps on 2 000 meta-test tasks consisting of k support examples and 50
query data points.

5-shot 10-shot

params T=1 T=10 T=1 T=10

MAML 1 761 0.73 ± 0.016 0.42 ± 0.011 0.49 ± 0.011 0.15 ± 0.005
T-Net 4 962 0.53 ± 0.014 0.24 ± 0.009 0.33 ± 0.009 0.09 ± 0.004
MT-Net 5 043 0.55 ± 0.013 0.19 ± 0.005 0.34 ± 0.008 0.06 ± 0.002

SAP (ours) 10 013 0.47 ± 0.012 0.10 ± 0.003 0.28 ± 0.008 0.04 ± 0.001

Table 2: The mean MSE meta-test loss on 5- and 10-shot sine wave regression after T = 1 and
T = 10 update steps. The results are averaged over 5 runs with different random seeds and the
95% confidence intervals are displayed as ± x. The number of parameters is shown in the column
“params”, even though the used backbones are equally expressive.

As baselines, we compare against MAML, T-Net, and MT-Net [Lee and Choi, 2018] as well as
Warp-MAML [Flennerhag et al., 2020] as are highly similar to SAP, which allows us to investigate
the advantage of SAP’s ability to learn which subsets of operations to adjust. We refrain from
comparing against MetaNAS [Elsken et al., 2020], as this technique also adjusts the architecture at
meta-test time and is orthogonal to SAP and the methods we compare against. For all methods,
we use the same hyperparameters as reported in [Finn et al., 2017, Lee and Choi, 2018]. In this
case, however, Warp-MAML is equivalent to T-Net as both use insert linear “transformation” or
“warp” layers in the base-learner network. The results of the experiments are displayed in Table 2.
In this table, we can see that SAP consistently outperforms all tested baselines, supporting the
hypothesis that it is indeed beneficial to learn in which subspaces to perform gradient descent.
We have also performed experiments with SAP and the feature masking method used in MT-Net,
where some features are frozen based on learned feature masking probabilities, but found that it
decreases the performance, which may be due to the low-dimensional operations present in the
architecture, which are more susceptible to being completely frozen as soon as a single feature is
masked.

5.2 The learned subspaces for sine regression

Next, we investigate (in the same setting as above) the importance of the different candidate op-
erations for quick adaptation to new tasks to see whether the operations match the task structure.
We hypothesize that shifting the input and scaling the output are important operations as they are
inherent in the definition of a sine wave gj(x) = Aj · sin(x−pj). To investigate this, we inspect the
activation strengths wℓ

i of the operations of the best models across 5 different runs with different
random seeds. The operations that were used are were introduced in Table 1 (left side). The results

14



for SAP with T = 1 are displayed in Figure 4 (similar results are obtained when making T = 10
updates and therefore omitted for brevity). As we can see, the most important transformations on
the input and output are a scalar shift and multiplication, respectively. In other words, SAP has
learned that shifting the input and scaling the output are effective operations to learn new tasks.
Note that these operations match the structure of sine waves. While this confirms our hypothesis,
SAP also assigns relatively large importance to operations that are not directly observable in the
mathematical definition of sine curves such as an output shift and intermediate shifts.

original

scalar m
ult

vector m
ult

matrix
 mult

SVD mult r=
5

SVD mult r=
10

SVD mult r=
15

scalar sh
ift

vector sh
ift

input

layer 1

layer 2

output

0.16
±0.01

0.20
±0.01 NA NA NA NA NA 0.64

±0.02 NA

0.03
±0.01

0.03
±0.01

0.03
±0.01

0.03
±0.00

0.03
±0.01

0.03
±0.01

0.04
±0.01

0.57
±0.04

0.20
±0.02

0.04
±0.00

0.04
±0.00

0.04
±0.00

0.08
±0.01

0.03
±0.00

0.04
±0.00

0.04
±0.00

0.31
±0.02

0.37
±0.03

0.21
±0.05

0.46
±0.05 NA NA NA NA NA 0.34

±0.03 NA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: The importance of the different operations in SAP for 5-shot sine wave regression. The
results are averaged across 5 runs with different random seeds and the standard deviations are
shown as ±x. NA entries indicate that these operations were not in the candidate pool for that
layer, and “mul” means multiplication. The y-axis indicates the layer on which the operations
act, and the x-axis displays the different candidate operations. Simple scalar multiplication and
shifting, and vector shifts obtain high activation strengths in all layers. The input shift and output
scale (inherently present in the definition of a sine wave) obtain high activation strengths.

5.3 Matching the problem structure

To further investigate the ability of SAP to match the learned candidate operation strengths to
the structure of the problem, we investigate whether changes in the problem structure amount
to changes in the learned activation strengths by SAP for the different operations. For this, we
consider a synthetic sine wave regression problem that generalizes the settings studied by Finn et al.
[2017] and Li et al. [2017]. In this setting, we create different task families (task distributions) that
are characterized by the mathematical operations inherent in the ground-truth function. All task
families share the following template for the ground-truth function g(x) = A·sin(f ·x−p)+β, where
A is the amplitude, f the frequency, p the phase, and β the output offset. What distinguishes task
families is which of these parameters they include in the functional description. For example, task
family A may fix the amplitude and vary the frequency, phase, and output offset, whereas task
family A may vary the amplitude and fix the rest. Each task family is thus defined by which of
these parameters are varied among tasks from that family and which are kept constant. If a given
parameter is not varied, we fix it to a value that leaves the function unaltered (i.e., A, f, p = 1 and
β = 0). In total, there are 24 = 16 task families that can be constructed by varying or fixing these
parameters.

15



We perform meta-training on each of these task families separately and investigate whether
SAP discovers the operations that are inherently present in the task structure. The experimental
details follow those used in Section 5.1 with the exception that only operations were included
that could be present in the task families to be able to measure whether SAP correctly detects
and uses them. We use 20-shots per task and set the number of inner updates to T = 1. The
results of this experiment are displayed in Figure 5. As we can see, SAP assigns higher activation
strengths to operations that are inherently present in the task families in three out of four cases,
i.e., input scale (frequency), input shift (phase), and output shift. A statistical T-test shows that
these differences in mean activation strengths are statistically significant, using a threshold of 0.05.
For the input scale, however, we observe that SAP assigns similar activation strength to the input
scale activation, regardless of whether such an operation was present in the task family. This may
indicate that SAP uses other operations to compensate for this, such as vector multiplications or
matrix multiplications in later layers. Overall, these results suggest in this simple synthetic setting,
SAP is capable of learning to use operations that appear in the problem structure in 75% of the
scenarios.

Input scale Input shift Output scale Output shift
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ct

iv
at

io
n 

st
re

ng
th

Not present in task family
Present in task family

Figure 5: The mean activation strengths of the different operations corresponding to the intrinsic
parameters that were varied within task families. The vertical bars display 95% confidence intervals
over 5 runs with different random seeds. Each task family has the following template g(x) =
A · sin(f · x− p) + β and differs in which of these operations are varied among tasks. If operations
are inherently present in a task family, SAP assigns higher activation strengths to them than if
they are not present in 3 out of 4 cases, indicating that the operations often match the problem
structure.

5.4 Few-shot image classification

Next, we investigate the performance of SAP in few-shot image classification settings, where the
goal is to learn new image classification tasks from a few examples. For this, we use the popular
N -way k-shot classification setup (see Section 3.1) on miniImageNet [Vinyals et al., 2016, Ravi
and Larochelle, 2017] and tieredImageNet [Ren et al., 2018]. We use the frequently used Conv-
4 backbone [Finn et al., 2017, Lee and Choi, 2018, Flennerhag et al., 2020], consisting of four
blocks, where each block contains 3 × 3 convolutions, a max pooling layer, 2D BatchNorm, and
a ReLU nonlinearity. In the literature, this backbone has been used with 64 channels for every
convolutional block [Snell et al., 2017, Vinyals et al., 2016] as well as 32 channels [Finn et al.,

16



Hyperparameter Range

Inner learning rate LogUniform(1e-3, 6e-1)
Inner update steps (training) Uniform(1,10)
Inner update steps (testing) Uniform(inner steps training, 15)
Meta-batch size Uniform(1,10)
Gradient masking Uniform({False,True})

Table 3: The ranges and sampling types for the hyperparameters, which were tuned with random
search. The bounds are inclusive.

2017, Nichol et al., 2018]. For this reason, we present the results for SAP on both variants. The
final feature representations are flattened and fed into a softmax output layer. All techniques were
trained for 60 000 episodes and were validated after every 2 500 tasks and we use the best-reported
hyperparameters by the original authors.

We tuned a subset of the hyperparameters for SAP on the meta-validation tasks using random
search with a function evaluation budget of 30 runs. Each run was restricted to finish within
7 days on a single PNY GeForce RTX 2080TI GPU. Runs that took longer (e.g., because of a
large meta-batch size) were discarded from the hyperparameter search. The used hyperparameter
ranges and sampling types that were used for the random search are displayed in Table 3. Due to
computational constraints, we adopted the best reported hyperparameters of the baseline methods
as reported in their respective papers. As such, the comparison against these baselines is in this
experiment only for illustrative purposes, as the hyperparameter optimization procedure on these
methods has not been executed under the same conditions.

1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 48.0 ± 0.8 46.7 ± 0.8 64.4 ± 0.4 63.6 ± 0.4
T-Net 48.9 ± 0.8 48.7 ± 0.8 65.3 ± 0.4 -
MT-Net 48.5 ± 0.8 49.3 ± 0.8 63.0 ± 0.4 -
Warp-MAML 49.5 ± 0.8 49.8 ± 0.8 63.9 ± 0.4 64.6 ± 0.4

SAP (ours) 51.6 ± 0.8 52.8 ± 0.8 65.9 ± 0.4 67.4 ± 0.4

Table 4: Meta-test accuracy scores on 5-way miniImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

The results for the experiments on 5-way miniImageNet and tieredImageNet classification are
displayed in Table 4 and Table 5. Note that the results for 5-shot T-Net and MT-Net are missing as
they were unable to run on our GPU with 12GB of VRAM. As we can see, the performance of the
techniques improves when using 64 channels compared with 32, with the exception of MAML on
miniImageNet and T-Net in the 1-shot setting on miniImageNet. As we can see, SAP consistently
outperforms all tested baselines in all tested settings (with gains between 1.1% to 3.3% accuracy),
indicating that it is beneficial to learn subsets of operations on which gradient descent is performed
in the case of few-shot image classification.

17



1-shot 5-shot

32 channels 64 channels 32 channels 64 channels

MAML 50.7 ± 0.8 51.5 ± 0.8 65.2 ± 0.4 66.6 ± 0.4
T-Net 49.4 ± 0.8 51.7 ± 0.8 64.6 ± 0.4 -
MT-Net 49.8 ± 0.9 51.5 ± 0.8 64.6 ± 0.4 -
Warp-MAML 51.8 ± 0.8 53.3 ± 0.8 66.0 ± 0.4 68.2 ± 0.4

SAP (ours) 52.9 ± 0.8 54.5 ± 0.8 69.3 ± 0.3 71.3 ± 0.4

Table 5: Meta-test accuracy scores on 5-way tieredImageNet classification over 5 runs with two
variants of the Conv-4 backbone, that is, with 32 or 64 channels per block. The 95% confidence
intervals are displayed as ± x. “-” indicates that the experiments required more GPU VRAM than
available.

5.5 Cross-domain few-shot image classification

Next, we study the performance of SAP in a more challenging cross-domain few-shot image clas-
sification setting. In this setting, techniques are trained on tasks from dataset A and evaluated
on tasks from another dataset B, in contrast to the setting used above, where the techniques
were evaluated on unseen tasks from the same dataset used for training. We use the same set-
ting as Chen et al. [2019], in which we train on miniImageNet and evaluate on CUB [Wah et al.,
2011]. In addition, we also train on tieredImageNet [Ren et al., 2018] and test on CUB. All other
experimental details are the same as above.

The results of this experiment are shown in Table 6. As we can see, SAP performs on par with
Warp-MAML in the 1-shot setting for MIN → CUB. Both outperform the other tested baselines
in that scenario. In other cases, however, SAP yields performance improvements ranging from
0.5% to 3.9% accuracy. This supports the hypothesis that it is beneficial to learn which subsets of
operations to adjust when learning new tasks.

MIN → CUB Tiered → CUB
1-shot 5-shot 1-shot 5-shot

MAML 37.3 ± 0.3 54.7 ± 0.3 38.1 ± 0.3 55.1 ± 0.3
T-Net 38.0 ± 0.3 55.6 ± 0.3 37.5 ± 0.3 54.8 ± 0.3
MT-Net 37.1 ± 0.3 53.1 ± 0.3 38.0 ± 0.3 55.5 ± 0.3
Warp-MAML 41.0 ± 0.3 55.3 ± 0.3 40.9 ± 0.3 56.8 ± 0.3

SAP (ours) 40.9 ± 0.3 55.8 ± 0.3 41.1 ± 0.3 60.7 ± 0.3

Table 6: Average cross-domain meta-test accuracy scores over 5 runs a 32-channel Conv-4 back-
bone. Techniques trained on tasks from one data set were evaluated on tasks from another data
set. The 95% confidence intervals are displayed as ± x.

5.6 Effect of hard pruning

Next, we investigate the effect of hard pruning the number of operations per layer, which is a
common feature of DARTS [Liu et al., 2019], and therefore also inherited by SAP. For this, we

18



compare the performance of SAP without hard pruning and SAP where we only retain the top-K
operations as indicated by their strength scores. The hard-pruned SAP is re-trained using only
the candidate operations which were not pruned. The results of this experiment with a 32-channel
Conv-4 backbone are displayed in Table 7 (for the 64-channel variant, please see Table 11 in the
appendix). As we can see, hard pruning can have a mild positive effect on the meta-learning
performance, whilst reducing computational costs due to the fact that fewer parameters have to
be trained. This also implies that some operations may indeed be suboptimal for a given task
distribution, which soft-pruning is not able to completely filter out, and that a model which
fully excludes these, can achieve better performance. We note, however, that the 95% confidence
intervals are overlapping, suggesting that these performance increases are not significant.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Top-1 51.4 ± 0.8 65.8 ± 0.4 52.8 ± 0.8 69.4 ± 0.4
Top-2 51.8 ± 0.8 66.3 ± 0.4 53.4 ± 0.8 69.4 ± 0.4
Top-3 51.8 ± 0.8 66.3 ± 0.4 53.0 ± 0.9 69.9 ± 0.4

Table 7: Mean meta-test accuracy scores on miniImageNet and tieredImageNet with 95% con-
fidence intervals over 5 different runs. We used a Conv-4 backbone with 32 channels for these
results.

5.7 The effect of the gradient order

All tested techniques require the computation of second-order gradients by default. Here, we
investigate how the performance of SAP is affected by making a first-order approximation. We
compare this first-order variant with the regular second-order variant, using the same experimental
settings as used in Section 5.4. The results of this experiment are shown in Table 8. As we can see,
the first-order approximation is consistently outperformed by the regular variant, with differences
between 0.2% and 7.3 % accuracy, indicating that second-order gradients play an important role
in achieving good performance.

miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

SAP (first-order) 51.4 ± 0.8 63.7 ± 0.4 47.2 ± 0.8 62.0 ± 0.4
SAP (second-order) 51.6 ± 0.8 65.9 ± 0.4 52.9 ± 0.8 69.3 ± 0.3

Table 8: Meta-test accuracy scores on miniImageNet and tieredImageNet classification over 5 runs
using the Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x.

5.8 The learned subspaces for image classification

In order to gain insight into what operations are important for achieving good few-shot learning
performance in SAP, we investigate the learned activation strengths for the different candidate op-

19



erations. The operations that were used are were introduced in Table 1 (right side). In Figure 6, we
can see these learned strengths in SAP on 1-shot 5-way miniImageNet using the Conv-4 backbone
with 32 channels (similar patterns are seen for the backbone with 64 channels as can be seen in
Figure 7 in the appendix). As we can see, high-dimensional convolutional operations (conv1x1,
conv3x3, convSVD) obtain low activation strengths, while lower-dimensional subspaces/operations
such as shifts (scalar and vector) and MTL scale yield larger strengths. The greatest strength is
assigned to the former throughout all layers. This may indicate that the higher-dimensional oper-
ations lead to overfitting, while the lower-dimensional operations are more suited for adapting to
tasks when only limited data is available. Consequently, this implies that it is indeed beneficial to
adapt subsets of operations when learning new tasks.

original
conv1x1

conv3x3

convSVD

MTL scale

Simple scale

scalar sh
ift

vector sh
ift

linear tra
nsform

input

block 1

block 2

block 3

block 4

output

0.05
±0.01

0.04
±0.01

0.06
±0.01

0.06
±0.01 NA NA 0.37

±0.04
0.42

±0.02 NA

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.01
±0.00

0.08
±0.01

0.02
±0.00

0.58
±0.11

0.29
±0.11 NA

0.01
±0.00

0.01
±0.00

0.00
±0.00

0.01
±0.00

0.10
±0.01

0.02
±0.01

0.29
±0.15

0.57
±0.16 NA

0.02
±0.00

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.21
±0.03

0.05
±0.01

0.32
±0.04

0.37
±0.05 NA

0.01
±0.00

0.01
±0.00

0.02
±0.00

0.01
±0.00

0.10
±0.01

0.04
±0.01

0.20
±0.02

0.62
±0.04 NA

0.65
±0.01 NA NA NA NA NA NA NA 0.35

±0.01
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 32 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.

5.9 Number of parameters and running time

Lastly, we compare the running times and the number of parameters used by the different methods
on few-shot image classification. These statistics were measured whilst performing the experiments
in Section 5.4 and the results are displayed in Table 9. As we can see, SAP has the largest number of
parameters, even though the backbone is equally expressive as that used by others. The running
time of SAP, however, is often less than that of the baselines. This is caused by the fact that
all methods use different hyperparameter settings in order to optimize the performance, which
relates to the running time. For example, a larger meta-batch size or number of updates per
task leads to an increase in running time. SAP uses the smallest meta-batch size and number of
updates and hence yields the quickest running time. Note that these runtimes do not include the
hyperparameter optimization that was performed, which adds a factor to the runtimes.

20



miniImageNet tieredImageNet

params 1-shot 5-shot 1-shot 5-shot

MAML 32 901 11h36min ± 7min 8h20min ± 1min 11h34min ± 5min 8h25min ± 4min
T-Net 37 022 33h05min ± 19min 30h20min ± 7min 33h25min ± 23min 30h30min ± 17min
MT-Net 37 150 33h33min ± 8min 30h22min ± 14min 33h49min ± 40min 30h47min ± 18min
Warp-MAML 60 645 7h19min ± 6min 7h17min ± 8min 7h35min ± 13min 7h19min ± 5min
SAP (first-order) 106 196 1h26min ± 2min 1h4min ± 0min 1h51min ± 6min 2h12min ± 4min
SAP 106 196 3h59min ± 0min 6h09min ± 0min 1h51min ± 6min 9h24min ± 19min

Table 9: The number of trainable parameters (“params”) and mean running times on miniIma-
geNet and tieredImageNet classification over 5 runs using the Conv-4 backbone with 32 channels.
The standard deviations are displayed as ± x min. In spite of the differences in the number of
parameters, the backbones are equally expressive. SAP was found to work best with a small meta-
batch size and number of updates per task compared with the other approaches and hence yields
the quickest running time.

6 Conclusions
In this work, we introduced, Subspace Adaptation Prior (SAP), a novel meta-learning algorithm
that jointly learns a good neural network initialization and good parameter subspaces (or subsets
of operations) in which new tasks can be learned within a few gradient descent updates from a
few data. SAP overcomes the limitations of current state-of-the-art gradient-based meta-learning
techniques which perform gradient descent in full parameter space as they adjust all parameters
[Finn et al., 2017, Lee and Choi, 2018, Flennerhag et al., 2020], which may be suboptimal, and
may lead to overfitting during few-shot learning. Note, however, that our goal is not to yield
state-of-the-art performance. Instead, we investigate the question of whether the few-shot learning
performance of deep neural networks can be improved by meta-learning which subsets of parameters
to adjust.

Our experiments show that SAP outperforms similar existing gradient-based meta-learners in
few-shot sine wave regression, yields better performance in single-domain few-shot image classi-
fication settings, and yields competitive or superior performance in cross-domain few-shot image
classification. This highlights the advantage of learning suitable subspaces in which to perform
gradient descent when learning new tasks. This could be due to the regularization effect of not
having to adjust all parameters as well as due to the ability to match structures inherently present
in task families. Our experiments in Section 5.3 on synthetic task families demonstrate that the
SAP is able to learn operations that match the task structure in simple settings in 75% of the
cases. In other cases, it may compensate by using other operations that are not inherently present
in the task structure.

Inspection of the subspace activation strengths in few-shot image classification reveals that
simple and low-dimensional operations, such as shifting features by a single scalar or element-wise
by a vector, are important. This is in line with recent work and findings [Triantafillou et al.,
2021, Requeima et al., 2019, Bateni et al., 2020] which show that adapting pre-trained embeddings
by means of such low-dimensional transformations, such as FiLM layers [Perez et al., 2018], can
yield excellent performance. Furthermore, we found that hard-pruning the subspaces in SAP, or
operations, such that only a discrete subset is used instead of a convex combination, was slightly
beneficial, although no statistically significant differences were found.

21



Future work One limitation of SAP is that it requires the computation of second-order gradients
by default during meta-training in order to update the initialization parameters, in a similar fashion
as other gradient-based meta-learners such as MAML [Finn et al., 2017], (M)T-Net [Lee and Choi,
2018], and Warp-MAML [Flennerhag et al., 2020]. These second-order gradients require O(N2)
storage, where N is the number of total network parameters, which is prohibitive for deep networks.
This limitation can be bypassed by using a first-order approximation, which comes at the cost of
a performance penalty (between 0.2% and 7.3% accuracy in our experiments).

Gradient-based meta-learning methods struggle to scale well to deep networks as recent work
suggests that simple pre-training and fine-tuning of the output layer [Tian et al., 2020, Chen
et al., 2021, Huisman et al., 2021b] can yield superior performance on common few-shot image
classification benchmarks. This is also the reason, besides searching for energy-efficient few-shot
learners, that in our experiments we focus on relatively shallow backbones that adapt all layers
when learning new tasks, instead of only the output layer.

Other limitations are that SAP introduces more parameters and that the candidate pools of
operations are selected by hand, despite the fact that these operations are general. One direction
for future work could be to design a method to discover such subspaces from scratch, instead of
relying on a candidate set of operations, perhaps using an auto-encoder that generates the weights
of a layer based on latent codes as used by Rusu et al. [2019]. Masking the adaptation of these
latent codes using Gumbel-softmax [Jang et al., 2017, Maddison et al., 2017] as done by MT-Net
[Lee and Choi, 2018] would amount to adjusting only a subset of the parameters when performing
gradient descent. This can reduce the number of parameters and may also help to scale gradient-
based meta-learners, including SAP, to deep networks and make them competitive with approaches
relying on pre-trained features, which is an open challenge.

Finally, orthogonal work has proposed a method that can also adjust the architecture during
the meta-test phase [Elsken et al., 2020]. Since this showed great potential, it would be worthwhile
to combine this with SAP. Moreover, it would be interesting to investigate the sensitivity of SAP
related methods such as MetaNAS to the chosen operations or blocks that these methods can
select to use. We leave these ideas for future work, which has the potential to further advance the
state-of-the-art.

Acknowledgments
This work was performed using the compute resources from the Academic Leiden Interdisciplinary
Cluster Environment (ALICE) provided by Leiden University.

Declarations

Funding

Not applicable: no funding was received for this work.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity
with any financial interest or non-financial interest in the subject matter or materials discussed in
this manuscript.

22



Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable: this research does not involve personal data, and publishing of this manuscript
will not result in the disruption of any individual’s privacy.

Availability of data and material

All data that was used in this research have been published as benchmarks by Deng et al. [2009],
Vinyals et al. [2016] (miniImageNet), Ren et al. [2018] (tieredImageNet) and Wah et al. [2011]
(CUB), and is publicly available. The data generator for sine wave regression experiments can be
found in the provided code (see below).

Code availability

All code that was used for this research is made publicly available at https://github.com/
mikehuisman/subspace-adaptation-prior.

Authors’ contributions

MH has conducted the research presented in this manuscript. AP and JvR have regularly provided
feedback on the work, contributed towards the interpretation of results, and have critically revised
the whole.

All authors approve the current version to be published and agree to be accountable for all
aspects of the work in ensuring that questions related to the accuracy or integrity of any part of
the work are appropriately investigated and resolved.

Employment

All authors declare that there is no recent, present, or anticipated employment by any organization
that may gain or lose financially through the publication of this manuscript.

References
M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, B. Shilling-

ford, and N. de Freitas. Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems 29, pages 3988–3996. Curran Associates Inc., 2016.

A. Antoniou, H. Edwards, and A. Storkey. How to train your MAML. In International Conference
on Learning Representations (ICLR’19), 2019.

23

https://github.com/mikehuisman/subspace-adaptation-prior
https://github.com/mikehuisman/subspace-adaptation-prior


P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal. Improved few-shot visual classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14493–14502, 2020.

N. Bendre, H. T. Marín, and P. Najafirad. Learning from few samples: A survey. arXiv preprint
arXiv:2007.15484, 2020.

L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-learning with differentiable closed-
form solvers. In International Conference on Learning Representations (ICLR’19), 2019.

P. Brazdil, J. N. van Rijn, C. Soares, and J. Vanschoren. Metalearning: Applications to Automated
Machine Learning and Data Mining. Springer, 2nd edition, 2022.

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer look at few-shot
classification. In International Conference on Learning Representations (ICLR’19), 2019.

Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang. Meta-baseline: Exploring simple meta-learning
for few-shot learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9062–9071, 2021.

H. Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815, 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255. IEEE, 2009.

T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. Meta-learning of neural architectures for few-
shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR’20), pages 12365–12375, 2020.

A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia. A brief review of domain adaptation.
Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and
IKE 2020, pages 877–894, 2021.

C. Finn and S. Levine. Meta-learning and universality: Deep representations and gradient descent
can approximate any learning algorithm. In International Conference on Learning Representa-
tions (ICLR’18), 2018.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML’17),
page 1126–1135. PMLR, 2017.

S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. Meta-learning with
warped gradient descent. In International Conference on Learning Representations (ICLR’20),
2020.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey. Meta-learning in neural networks:
A survey. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2021.

M. Huisman, J. N. van Rijn, and A. Plaat. A survey of deep meta-learning. Artificial Intelligence
Review, 54(6):4483–4541, 2021a.

24



M. Huisman, J. N. van Rijn, and A. Plaat. A preliminary study on the feature representations
of transfer learning and gradient-based meta-learning techniques. In Fifth Workshop on Meta-
Learning at the Conference on Neural Information Processing Systems, 2021b.

M. Huisman, A. Plaat, and J. N. van Rijn. Stateless neural meta-learning using second-order
gradients. Machine Learning, 111(9):3227–3244, 2022.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, (ICLR’17), 2017.

N. Jankowski, W. Duch, and K. Grąbczewski. Meta-Learning in Computational Intelligence, vol-
ume 358. Springer-Verlag Berlin Heidelberg, 2011.

W. Jiang, J. Kwok, and Y. Zhang. Subspace learning for effective meta-learning. In Proceedings
of the 39th International Conference on Machine Learning, pages 10177–10194. PMLR, 2022.

J. Kim, S. Lee, S. Kim, M. Cha, J. K. Lee, Y. Choi, Y. Choi, D.-Y. Cho, and J. Kim. Auto-meta:
Automated gradient based meta learner search. arXiv preprint arXiv:1806.06927, 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information Processing Systems 25, pages 1097–1105,
2012.

K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex opti-
mization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 10657–10665, 2019.

Y. Lee and S. Choi. Gradient-based meta-learning with learned layerwise metric and subspace.
In Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages
2927–2936. PMLR, 2018.

K. Li and J. Malik. Learning to Optimize Neural Nets. arXiv preprint arXiv:1703.00441, 2018.

Z. Li, F. Zhou, F. Chen, and H. Li. Meta-SGD: Learning to Learn Quickly for Few-Shot Learning.
arXiv preprint arXiv:1707.09835, 2017.

D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao. Towards fast adaptation
of neural architectures with meta learning. In International Conference on Learning Represen-
tations (ICLR’19), 2019.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations (ICLR’19), 2019.

J. Lu, P. Gong, J. Ye, and C. Zhang. Learning from very few samples: A survey. arXiv preprint
arXiv:2009.02653, 2020.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In 5th International Conference on Learning Representations,
(ICLR’17), 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

25



D. K. Naik and R. J. Mammone. Meta-neural networks that learn by learning. In International
Joint Conference on Neural Networks (IJCNN’92), volume 1, pages 437–442. IEEE, 1992.

A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. arXiv preprint
arXiv:1803.02999, 2018.

S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on knowledge and
data engineering, 22(10):1345–1359, 2009.

E. Park and J. B. Oliva. Meta-curvature. In Advances in Neural Information Processing Systems
32, pages 3309–3319, 2019.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), pages 3942–3951. AAAI Press, 2018.

S. Ravi and H. Larochelle. Optimization as a Model for Few-Shot Learning. In International
Conference on Learning Representations (ICLR’17), 2017.

M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S.
Zemel. Meta-learning for semi-supervised few-shot classification. In International Conference
on Learning Representations (ICLR’18), 2018.

J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner. Fast and flexible multi-task
classification using conditional neural adaptive processes. In Advances in Neural Information
Processing Systems 32, pages 7957–7968, 2019.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-
learning with latent embedding optimization. In International Conference on Learning Repre-
sentations (ICLR’19), 2019.

J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. Master’s thesis, Technische Universität München, 1987.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

C. Simon, P. Koniusz, R. Nock, and M. Harandi. On modulating the gradient for meta-learning.
In European Conference on Computer Vision, pages 556–572. Springer, 2020.

J. Snell, K. Swersky, and R. Zemel. Prototypical Networks for Few-shot Learning. In Advances in
Neural Information Processing Systems 30, pages 4077–4087. Curran Associates Inc., 2017.

Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer learning for few-shot learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 403–412,
2019.

M. E. Taylor and P. Stone. Transfer Learning for Reinforcement Learning Domains: A Survey.
Journal of Machine Learning Research, 10(7), 2009.

S. Thrun. Lifelong Learning Algorithms. In Learning to learn, pages 181–209. Springer, 1998.

26



Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image
classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539, 2020.

E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin. Learning a universal template for few-
shot dataset generalization. In Proceedings of the 38th International Conference on Machine
Learning (ICML’21), pages 10424–10433. PMLR, 2021.

O. Vinyals. Talk: Model vs optimization meta learning. http://metalearning-symposium.ml/
files/vinyals.pdf, 2017. Presented at a “Neural Information Processing Systems” workshop;
accessed 06-06-2020.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching Networks for
One Shot Learning. In Advances in Neural Information Processing Systems 29, pages 3637–3645,
2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM computing surveys, 53(3):1–34, 2020.

P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capo-
bianco, A. Devlic, F. Eckert, F. Fuchs, et al. Outracing champion gran turismo drivers with
deep reinforcement learning. Nature, 602(7896):223–228, 2022.

J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. Bayesian Model-Agnostic Meta-Learning.
In Advances in Neural Information Processing Systems 31, pages 7332–7342. Curran Associates
Inc., 2018.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via meta-
learning. In Proceedings of the 36th International Conference on Machine Learning (ICML’19),
pages 7693–7702. PMLR, 2019.

A Additional experimental results
In this appendix, we show additional experimental results on few-shot image classification.

A.1 Validation of re-implementation

We re-implemented the baselines to ensure a fair comparison in the used setting, and because
the code of Warp-MAML has not been made available for other researchers. To verify our re-
implementations of the baselines (T-Net, MT-Net, and Warp-MAML), we compare the reported
performances to the ones that we obtain. The results of the image classification experiments are
displayed in Table 10. As we can see, there are minor differences between the reported performances
and our local reproduction of their results. Also with the original code of T-Net and MT-Net, we
were unable to reproduce their results. Other people have encountered similar issues reproducing
the reported numbers of meta-learning techniques, including MAML, T-Net, and MT-Net.2

2There is an open issue on the GitHub repository of MT-Net about the inability to reproduce their reported
results on miniImageNet. See https://github.com/yoonholee/MT-net/issues/5. Other researchers such as
Antoniou et al. [2019] have also reported issues reproducing MAML.

27

http://metalearning-symposium.ml/files/vinyals.pdf
http://metalearning-symposium.ml/files/vinyals.pdf
https://github.com/yoonholee/MT-net/issues/5


1-shot 5-shot

Reported Local Repr Reported Local repr

MAML 48.7 ± 1.8 48.0 ± 0.8 63.2 ± 0.9 64.4 ± 0.4
T-Net 50.9 ± 1.8 48.9 ± 0.8 - 65.3 ± 0.4
MT-Net 51.7 ± 1.8 48.5 ± 0.8 - 63.0 ± 0.4
Warp-MAML∗ - 49.5 ± 0.8 - 63.9 ± 0.4

SAP (ours) - 51.6 ± 0.8 - 65.9 ± 0.4

Table 10: Mean meta-test accuracy scores on 5-way miniImageNet classification over 5 runs using
a Conv-4 backbone with 32 channels. The 95% confidence intervals are displayed as ± x. ∗

Flennerhag et al. [2020] only reported the performance of Warp-MAML with 128 feature maps per
convolutional block instead of 32, as displayed in the table.

A.2 Cross-domain few-shot image classification

In Table 11, we show the cross-domain few-shot learning classification results when using 64 chan-
nels with the Conv-4 backbone. Also in this case, SAP outperforms other tested baselines. We
also note that the performance of SAP is improved when using 64 channels compared with 32 (see
Section 5.5).

MIN → CUB Tiered → CUB

1-shot 5-shot 1-shot 5-shot

MAML 37.1 ± 0.3 53.7 ± 0.3 38.8 ± 0.3 56.8 ± 0.3
T-Net 38.3 ± 0.3 OOM 39.9 ± 0.3 OOM
MT-Net 37.3 ± 0.3 OOM 39.1 ± 0.3 OOM
Warp-MAML 40.7 ± 0.3 56.2 ± 0.3 42.5 ± 0.3 58.9 ± 0.3

SAP (ours) 41.6 ± 0.3 57.8 ± 0.3 43.3 ± 0.3 64.3 ± 0.3

Table 11: Average cross-domain meta-test accuracy scores over 5 runs using a 64-channel Conv-4
backbone. Techniques trained on tasks from one data set were evaluated on tasks from another
data set. The 95% confidence intervals are displayed as ± x.

A.3 The effect of hard pruning

Table 12 displays the effect of hard pruning when using 64 channels instead of 32. As we can see,
hard pruning is slightly beneficial, but again, not significantly.

A.4 The learned subspaces for image classification

Figure 7 displays the learned activation strengths of SAP on 5-way 1-shot miniImageNet using
Conv-4 with 64 channels. Similar patterns are observed for the 32-channel case.

28



miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

No pruning 52.8 ± 0.8 67.4 ± 0.4 54.5 ± 0.8 71.3 ± 0.4

Top-1 52.8 ± 0.8 67.6 ± 0.4 55.1 ± 0.8 72.7 ± 0.4
Top-2 52.9 ± 0.8 67.6 ± 0.4 54.1 ± 0.8 72.7 ± 0.4
Top-3 52.6 ± 0.8 67.4 ± 0.4 55.0 ± 0.8 72.4 ± 0.4

Table 12: Mean meta-test accuracy scores on 5-way miniImageNet and tieredImageNet classifica-
tion with 95% confidence intervals computed over 5 different runs. We used a Conv-4 backbone
with 64 channels for these results.

original
conv1x1

conv3x3

convSVD

MTL scale

Simple scale

scalar sh
ift

vector sh
ift

linear tra
nsform

input

block 1

block 2

block 3

block 4

output

0.04
±0.00

0.04
±0.00

0.06
±0.01

0.06
±0.01 NA NA 0.37

±0.02
0.42

±0.02 NA

0.01
±0.00

0.00
±0.00

0.00
±0.00

0.01
±0.00

0.08
±0.00

0.02
±0.01

0.64
±0.02

0.24
±0.03 NA

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.11
±0.02

0.01
±0.00

0.25
±0.06

0.62
±0.08 NA

0.02
±0.00

0.01
±0.00

0.01
±0.00

0.02
±0.00

0.28
±0.02

0.05
±0.00

0.32
±0.01

0.30
±0.02 NA

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.01
±0.00

0.17
±0.01

0.03
±0.00

0.27
±0.01

0.49
±0.02 NA

0.70
±0.04 NA NA NA NA NA NA NA 0.30

±0.04
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7: The importance of the different subspaces/operations in SAP on 5-way 1-shot miniIma-
geNet using Conv-4 with 64 channels. The results are averaged across 5 runs with different random
seeds and the standard deviations are shown as ±x. NA entries indicate that these operations were
not in the candidate pool for that layer. Simple scalar shift and vector shift operations obtain the
highest activation strengths throughout the convolutional network.

29


	Introduction
	Related work
	Preliminaries
	Few-shot meta-learning
	Model-agnostic meta-learning (MAML)
	Differentiable neural architecture search (DARTS)

	Subspace Adaptation Prior
	Intuition and operations
	The algorithm
	Analysis

	Experiments
	Sine wave regression
	The learned subspaces for sine regression
	Matching the problem structure
	Few-shot image classification
	Cross-domain few-shot image classification
	Effect of hard pruning
	The effect of the gradient order
	The learned subspaces for image classification
	Number of parameters and running time

	Conclusions
	Additional experimental results
	Validation of re-implementation
	Cross-domain few-shot image classification
	The effect of hard pruning
	The learned subspaces for image classification


