
Noname manuscript No.
(will be inserted by the editor)

Understanding Transfer Learning and Gradient-Based
Meta-Learning Techniques

Mike Huisman · Aske Plaat · Jan N. van
Rijn

Received: date / Accepted: date

Abstract Deep neural networks can yield good performance on various tasks
but often require large amounts of data to train them. Meta-learning received
considerable attention as one approach to improve the generalization of these
networks from a limited amount of data. Whilst meta-learning techniques have
been observed to be successful at this in various scenarios, recent results suggest
that when evaluated on tasks from a different data distribution than the one
used for training, a baseline that simply finetunes a pre-trained network may
be more effective than more complicated meta-learning techniques such as
MAML, which is one of the most popular meta-learning techniques. This is
surprising as the learning behaviour of MAML mimics that of finetuning: both
rely on re-using learned features. We investigate the observed performance
differences between finetuning, MAML, and another meta-learning technique
called Reptile, and show that MAML and Reptile specialize for fast adaptation
in low-data regimes of similar data distribution as the one used for training.
Our findings show that both the output layer and the noisy training conditions
induced by data scarcity play important roles in facilitating this specialization
for MAML. Lastly, we show that the pre-trained features as obtained by the
finetuning baseline are more diverse and discriminative than those learned by
MAML and Reptile. Due to this lack of diversity and distribution specialization,
MAML and Reptile may fail to generalize to out-of-distribution tasks whereas
finetuning can fall back on the diversity of the learned features.

Keywords Meta-learning · Few-shot learning · Deep learning · Transfer
Learning

Mathematics Subject Classification (2020) 68T07 · 68T45

Mike Huisman · Aske Plaat · Jan N. van Rijn
LIACS, Leiden University, The Netherlands
Niels Bohrweg 1, 2333CA, Leiden
Corresponding author: Mike Huisman
E-mail: m.huisman@liacs.leidenuniv.nl

2 Mike Huisman et al.

1 Introduction

Deep learning techniques have enabled breakthroughs in various areas such
as game-playing [Silver et al., 2016, Mnih et al., 2015], image recognition
[Krizhevsky et al., 2012, He et al., 2015], and machine translation Wu et al.
[2016]. However, deep neural networks are notoriously data-hungry [LeCun
et al., 2015], limiting their successes to domains where sufficient data and
computing resources are available [Hospedales et al., 2021, Huisman et al.,
2021]. Meta-learning [Schaul and Schmidhuber, 2010, Schmidhuber, 1987,
Thrun, 1998, Brazdil et al., 2022] is one approach to reduce these limitations by
learning efficient deep learning algorithms across different tasks. By presenting
the learning algorithm with different tasks, that presumably share similarities
with the task of interest, the learning algorithm is presumed to be able to learn
more efficiently than when it has to learn the task of interest from scratch. This
approach involves two different time scales of learning: at the inner-level, a
given task is learned, and at the outer-level the learning algorithm is improved
over tasks by adjusting the hyperparameters. Seminal approaches for this are
MAML and Reptile.

While the field attracted much attention, recent results [Chen et al., 2019,
Tian et al., 2020, Mangla et al., 2020] suggest that simply pre-training a
network on a large dataset and finetuning only the final layer of the network
(the final layer) may be more effective at learning new image classification
tasks quickly than more complicated meta-learning techniques such as MAML
[Finn et al., 2017] and Reptile [Nichol et al., 2018] when the data distribution
is different from the one used for training. In contrast, MAML and Reptile
often outperform finetuning when the data distribution is similar to the one
used during training. These phenomena are not well understood and surprising
as Raghu et al. [2020] have shown that the adaptation behaviour of MAML
resembles that of finetuning when learning new tasks: most of the changes take
place in the final layer of the network while the body of the network is mostly
kept frozen.

In this work, we aim to find an explanation for the observed performance
differences between MAML and finetuning. More specifically, we aim to answer
the following two research questions:

1. Why do MAML and Reptile outperform finetuning in within-distribution
settings?

2. Why can finetuning outperform gradient-based meta-learning techniques
such as MAML and Reptile [Nichol et al., 2018] when the test data distri-
bution diverges from the training data distribution?

Both questions focus on the few-shot image classification settings. We base
our work on MAML, Reptile and finetuning, as these are influential techniques
that have sparked a large body of follow-up methods that use the underlying
ideas. Since the questions that we aim to answer are inherently harder than
just a simple performance comparison, answering them for the models that are
at the basis of this body of literature will be the right starting point. We think

Transfer Learning and Meta-Learning 3

that developing a better understanding of these influential methods is of great
value and can cascade further onto the more complex methods built on top of
these.

Based on our analysis of the learning objectives of the three techniques
(finetuning, MAML, Reptile), we hypothesize that MAML and Reptile specialize
for adaptation in low-data regimes of tasks from the training distribution, giving
them an advantage in within-distribution settings. However, since they may
settle for initial features that are inferior compared with finetuning due to their
negligence, or relative negligence, of the initial performance, they may perform
comparatively worse when the test data distribution diverges from the training
distribution.

The primary contributions of our work are the following. First, we show the
importance of the output layer weights and data scarcity during training for
Reptile and MAML to facilitate specialization for quick adaptation in low-data
regimes of similar distributions, giving them an advantage compared with
finetuning. Second, we show that the pre-trained features of the finetuning
technique are more diverse and discriminative than those learned by MAML
and Reptile, which can be advantageous in out-of-distribution settings.1

2 Related work

Meta-learning is a popular approach to enable deep neural networks to learn
from a few data by learning an efficient learning algorithm. Many architectures
and model types have been proposed, such as MAML [Finn et al., 2017], the
meta-learner LSTM [Ravi and Larochelle, 2017], TURTLE [Huisman et al.,
2022] and MetaOptNet [Lee et al., 2019]. However, our understanding of newly
proposed techniques remains limited in some cases. For example, different
techniques use different backbones which raises the question of whether perfor-
mance differences between techniques are due to new model-types or due to
the difference in used backbones [Huisman et al., 2021].

Chen et al. [2019] was one of the first that investigated this question
by performing a fair comparison between popular meta-learning techniques,
including MAML [Finn et al., 2017], on few-shot image classification benchmarks
such as miniImageNet [Vinyals et al., 2016, Ravi and Larochelle, 2017] and CUB
[Wah et al., 2011]. Their results show that MAML often outperforms finetuning
when the test tasks come from a similar data distribution as the training
distribution when using shallow backbones. When the backbone becomes deeper
and/or the domain differences between training and test tasks increase, however,
this performance gap is reduced and, in some cases, finetuning outperforms
MAML.

In addition to these findings by Chen et al. [2019], Tian et al. [2020]
demonstrate that simply finetuning a pre-trained feature embedding module
yields better performance than popular meta-learning techniques (including

1 All code for reproducing our results can be found at https://github.com/mikehuisman/
transfer-meta-feature-representations

https://github.com/mikehuisman/transfer-meta-feature-representations
https://github.com/mikehuisman/transfer-meta-feature-representations

4 Mike Huisman et al.

MAML) on few-shot benchmarks. Mangla et al. [2020] and Yang et al. [2021]
further support this finding as they have proposed new few-shot learning tech-
niques based on finetuning pre-trained networks which significantly outperform
meta-learning techniques.

These performance differences between simple finetuning and more sophis-
ticated techniques such as MAML may be surprising, as Raghu et al. [2020]
found that the learning behaviour of MAML is similar to that of finetuning on
image classification benchmarks. More specifically, they compared the feature
representations of MAML before and after task-specific adaptation, and show
that MAML relies mostly on feature re-use instead of quick adaptation be-
cause the body of the network is barely adjusted, which resembles the learning
dynamics of finetuning (see Section 3.3). Collins et al. [2020] compared the
feature representations of MAML and the finetuning method (expected risk
minimization) in linear regression settings and found that MAML finds an
initialization closer to the hard tasks, characterized by their gentle loss land-
scapes with small gradients. We demonstrate a similar property: MAML has
greater flexibility in picking an initialization as long as the post-adaptation
performance is good.

In this work, we aim to unite the findings of Raghu et al. [2020] and
Chen et al. [2019] by finding an answer to the question of why finetuning can
outperform meta-learning techniques such as MAML and Reptile [Nichol et al.,
2018] in some image classification scenarios while it is outperformed in other
scenarios (when using a shallow backbone or when train/test task distributions
are similar).

3 Background

In this section, we briefly revise supervised learning and few-shot learning (the
main problem setting used in this work) and describe finetuning, MAML, and
Reptile in that context.

3.1 Supervised learning

In the supervised learning setting, we have a joint probability distribution over
inputs x and corresponding outputs y, i.e., p(x,y). In the context of deep
learning, the goal is to build deep neural networks that can predict for any
given input x the correct output y. Throughout this paper, we assume that the
neural network architecture f is fixed and that we only wish to find a set of
parameters θ such that the network predictions fθ(x) are as good as possible.
This can be done by updating the parameters θ in order to minimize a loss
function Lxi,yi(θ) that captures how well the network parameterized by θ is
performing on input xi and corresponding output yi. Here, network parameters
θ are a weight matrix, where θ(i:j) represent the weights of the ith until the

jth layer (inclusive), where 0 < i < j ≤ L. Thus, under the joint distribution

Transfer Learning and Meta-Learning 5

p(x,y), we wish to find

arg min
θ

E
xi,yi

[Lxi,yi
(θ)] , (1)

where (xi,yi) are sampled from the joint distribution p(x,y), i.e., xi,yi ∼
p(x,y).

The most common way to approximate these parameters is by performing
gradient descent on that loss function, which means that we update the
parameters in the direction of the steepest descent

θ(t+1) = θ(t) − α∇θ(t) E
xi,yi

[
Lxi,yi

(θ(t))
]
. (2)

Here, ∇θ(t) is the gradient with respect to θ(t), t indicates the time step, and
α the learning rate or step size.

3.2 Few-shot learning

Few-shot learning is a special case of supervised learning, where the goal is to
learn new tasks from only a limited number of examples, which is the main
focus of this work and the techniques described below. In order to enhance
the learning process on a limited number of examples, the learner is presented
with an additional set of tasks, so that it can learn about the learning process.
Here, every task Tj consists of a data distribution pj(x,y) and a loss function
L. Since the loss function is often assumed to be fixed across all tasks, we
henceforth use the term ‘task’ to refer to the task data distribution. The loss
function is often assumed to be fixed, and therefore, we henceforth mean data
distribution pj(x,y) or a sample from this distribution, depending on the
context. One notable exception is made in Section 5.1, where we abstract away
from data distributions and define a task purely abstractly as a loss function.

Tasks are commonly sampled from a large meta-dataset D ∽ ps(x,y), which
itself is a sample from a source distribution ps. In the case of classification,
this is often done as follows. Suppose that the source distribution from which
dataset D is sampled, is defined over a set of classes Y = {c1, c2, . . . , cn}. Then,
we can create tasks Tj by considering only a subspace of this source distribution
corresponding to a subset of classes Sj ⊆ Y . The method can then be evaluated
on tasks sampled from a disjoint subset of classes Sm ⊆ Y, where Sm ∩ Sj =.

Below, we give a concrete example of this procedure for the popular N-way
k-shot classification setting [Finn et al., 2017, Vinyals et al., 2016, Snell
et al., 2017]. Suppose that we have a classification dataset D = {(x1,y1),
(x2,y2), . . . , (xM ,yM)} of examples. Then, we can create an N -way k-shot
task Tj by sampling a subset of N labels Sj ⊆ Y, where |Sj | = N . Moreover,
we sample precisely k examples for every class to form a training set, or support
set Dtr

Tj
, for that task, consisting of |Dtr

Tj
| = N · k examples. Lastly, the test set,

or query set Dte
Tj

, is obtained by sampling examples of the subset of classes Sj

from D that are not present in the support set. Techniques then train on the

6 Mike Huisman et al.

support set and evaluated on the query set in order to measure how well they
have learned the task. This is the problem setting that we will use throughout
this work.

The deployment of an algorithm for few-shot learning is often done in three
stages. In the meta-training stage, the algorithm is presented with training
tasks and uses them to adjust the prior, such as the initialization parameters.
After every X training tasks, the meta-validation stage takes place, where the
learner is validated on unseen meta-validation tasks. Finally, after the training
is completed, the learner with the best validation performance is evaluated in
the meta-test phase, where the learner is confronted with new tasks that have
not been seen during training and validation. Importantly, the tasks between
meta-training, meta-validation, and meta-test phases are disjoint. For example,
in image classification, the classes in the meta-training tasks are not allowed to
occur in meta-test tasks as we are interested in measuring the learning ability
instead of memorization ability. In regression settings, every task has its own
ground-truth function (as in Section 5.1). For example, every task could be a
sine wave with a certain phase and amplitude [Finn et al., 2017].

3.3 Finetuning

Achieving good generalization by minimizing the objective in Equation 1 using
gradient-based optimization often requires large amounts of data. This raises
the question of how we can perform few-shot learning of tasks. The transfer
learning technique called finetuning tackles this problem as follows. In the pre-
training phase, it minimizes Equation 1 on a given source distribution ps(x,y)
using gradient descent as shown in Equation 2. This leads to a sequence of
updates that directly update the initialization parameters. Then, it freezes the
feature extraction module of the network: all parameters of the network through
the penultimate layer, i.e., θ(1:L−1) where L is the number of layers. When
presented with a target distribution pj(x,y) from which we can sample fewer
data, we can simply re-use the learned feature embedding module fθ(1:L−1)

(all
hidden layers of the network excluding the output layer) for this new problem.
Then, in the finetuning phase, it only trains the parameters in the final layer
of the network θ(L) (the final layer).

By reducing the number of trainable parameters on the target problem, this
technique effectively reduces the model complexity and prevents overfitting
issues associated with the data scarcity in few-shot learning scenarios. This
comes at the cost of not being able to adjust the feature representations of
inputs. As a consequence, this approach fails when the pre-trained embedding
module fails to produce informative representations of the target problem
inputs.

Transfer Learning and Meta-Learning 7

3.4 Reptile

Instead of joint optimization on the source distribution, Reptile [Nichol et al.,
2018] is a meta-learning algorithm and thus aims to learn how to learn. For
this, it splits the source distribution ps(x,y) into a number of smaller task dis-
tributions p1(x,y), p2(x,y), . . . , pn(x,y), corresponding to tasks T1, T2, . . . Tn.
On a single task Tj for j ∈ {1, . . . , n}, its objective is to minimize Equa-
tion 1 under the task distribution pj(x,y) using T gradient descent update
steps as shown in Equation 2. This results in a sequence of weight updates

θ → θ
(1)
j → . . . → θ

(T)
j . After task-specific adaptation, the initial parameters θ

are moved into the direction of θ
(T)
j

θ = θ + ϵ
(
θ
(T)
j − θ

)
, (3)

where ϵ is the step size. Intuitively, this update interpolates between the current

initialization parameters θ and the task-specific parameters θ
(T)
j . The updated

initialization θ is then used as starting point when presented with new tasks,
and the same process is repeated. It is easy to show that this update procedure
corresponds to performing first-order optimization of the multi-step objective

arg min
θ

E
Tj∼p(T)

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j)
])

, (4)

where Lt+1 is shorthand for the loss on a mini-batch sampled at time step t.

3.5 MAML

Another popular gradient-based meta-learning technique is MAML [Finn et al.,
2017]. Just like Reptile, MAML also splits the source distribution ps(x,y)
into a number of smaller task distributions p1(x,y), p2(x,y), . . . , pn(x,y),
corresponding to tasks T1, T2, . . . Tn. On the training tasks, it aims to learn a
weight initialization θ from which new tasks can be learned more efficiently.
However, instead of optimizing a multi-step loss function, MAML only optimizes
the final performance after task-specific adaptation. More specifically, this
means that MAML is only interested in the performance of the final weights

θ
(T)
j on a task and not in intermediate performances of weights θ

(t)
j for t < T .

In other words, MAML aims to find

arg min
θ

E
Tj∼p(T)

(
E

xi,yi∼pj

[
LT (θ

(T)
j)

])
. (5)

To find these parameters, MAML updates its initialization parameters as
follows

θ = θ − β∇θLT+1(θ
(T)
j), (6)

8 Mike Huisman et al.

where β is the learning rate and ∇θLT+1(θ
(T)
j) = ∇

θ
(T)
j

LT+1(θ
(T)
j)∇θθ

(T)
j . The

factor ∇θθ
(T)
j contains second-order gradients and can be ignored by assuming

that ∇θθ
(T)
j = I is the identity matrix, in a similar fashion to what Reptile does.

This assumption gives rise to first-order MAML (fo-MAML) and significantly
increases the training efficiency in terms of running time and memory usage,
whilst achieving roughly the same performance as the second-order MAML
version [Finn et al., 2017]. In short, first-order MAML updates its initialization
in the gradient update direction of the final task-specific parameters. In this
work, we focus on first-order MAML, as Finn et al. [2017] have shown this to
perform similarly to second-order MAML.

4 A common framework and interpretation

The three discussed techniques can be seen as part of a general gradient-based
optimization framework, as shown in Algorithm 1. All algorithms try to find
a good set of initial parameters as specified by their objective functions. The
parameters are initialized randomly in line 1. Then, these initial parameters
are iteratively updated based on the learning objectives (the loop starting from
line 2).

This iterative updating procedure continues as follows. First, the data
distribution is selected to sample data from (line 3). That is, finetuning uses
the full joint distribution ps(x,y) of the source problem, whereas Reptile and
MAML select task distributions pj(x,y) (obtained by sub-sampling a set of
instances coming from a subset of labels from the full distribution ps). Next, we
make T task-specific updates on mini-batches sampled from the distribution p
that was selected in the previous stage (lines 4–8). Lastly, the initial parameters
θ are updated using the outcomes of the task-specific adaptation phase.

Note that in this general gradient-based optimization framework, all tech-
niques update their initialization parameters based on a single distribution p at
a time. One could also choose to use batches of distributions, or meta-batches,
in order to update the initialization θ. This can be incorporated by using
the average of the losses of the different distributions as an aggregated loss
function.

Table 1 gives an overview of the three algorithms. As we can see, finetuning
only optimizes for the initial performance and does not take into account the
performance after adaptation. This means that its goal is to correctly classify
any input x from the source problem distribution ps. Reptile, on the other
hand, optimizes both for initial performance, as well as performance after every
update step. This means that Reptile may settle for an initialization with
somewhat worse initial performance compared with finetuning, as long as the
performance during task-specific adaptation makes up for this initial deficit.
MAML is the most extreme in the sense that it can settle for an initialization
with poor initial performance, as long as the final performance is good.

Transfer Learning and Meta-Learning 9

Algorithm 1 General gradient-based optimization: finetuning reptile

MAML

1: Randomly initialize θ
2: while not converged do

3: Select data distribution p = ps pj ∼ p(T) pj ∼ p(T)

4: Set θ(0) = θ
5: for t = 0, ..., T − 1 do
6: Sample a batch of data x,y ∼ p
7: Compute θ(t+1) = θ(t) −∇θ(t)Lt+1(θ(t))
8: end for

9: Update θ by θ = θ(T) Equation 3 Equation 6

10: end while

Table 1: Overview of the loss functions and corresponding focus of finetuning,
Reptile, and MAML.

Algorithm Loss function Focus

Finetuning E
xi,yi

[Lxi,yi (θ)] Initial performance

Reptile E
Tj∼p(T)

(
T−1∑
t=0

E
xi,yi∼pj

[
Lt+1(θ

(t)
j)
])

Multi-step performance

MAML E
Tj∼p(T)

(
E

xi,yi∼pj

[
LT (θ

(T)
j)

])
Final performance

In short, Reptile and MAML can be interpreted as look-ahead algorithms as
they take the performance after task-specific adaptation into account whereas
finetuning does not. Moreover, fo-MAML relies purely on the look-ahead
mechanism and neglects the initial performance while Reptile also takes the
initial and intermediate performances into account. This means that MAML
may outperform finetuning with a low-capacity network (with the worst initial
performance) where there is not enough capacity to store features that are
directly useful for new tasks. The reason for this is likely that finetuning will
be unable to obtain good embeddings for all of the training tasks and does not
have a mechanism to anticipate what features would be good to learn future
tasks better. MAML, on the other hand, does have this capability, and can
thus settle for a set of features with worse initial performance that lends itself
better for learning new tasks. In contrast, when we have high-capacity networks
with enough expressivity to store all relevant features for a task, finetuning
may outperform MAML as it optimizes purely for initial performance without
any additional adaptation, which can be prone to overfitting to the training
data of the tasks due to the limited amount of available data. Lastly, one may
expect Reptile to take place between MAML and finetuning: it works better
than finetuning when using low-capacity backbones while it may be slightly

10 Mike Huisman et al.

worse than finetuning when using larger-capacity networks (but better than
MAML).

Although MAML focuses on the performance after learning, it has been
shown that its learning behaviour is similar to that of finetuning: it mostly
relies on feature re-use and not on fast learning [Raghu et al., 2020]. This
means that when a distribution shift occurs, which means that the test tasks
become more distant from the tasks that were used for training, MAML may
be ill-positioned due to poor initial performance compared with finetuning
which can fall back on more directly useful initial features.

5 Experiments

In this section, we perform various experiments to compare the learning be-
haviours of finetuning, MAML, and Reptile, in order to be able to study their
within-distribution and out-of-distribution qualities that can help us answer
the two research questions posed in Section 1. All experiments are conducted
using single PNY GeForce RTX 2080TI GPUs. In order to study the question
of why MAML and Reptile can outperform finetuning in within-distribution
settings with a shallow Conv-4 backbone, we perform the following three first
experiments. Moreover, to investigate why finetuning can outperform MAML
and Reptile in out-of-distribution settings, addressing our second research
question, we perform experiment four listed below.

1. Toy problem (Section 5.1) We study the behaviour of the algorithms on a
within-distribution toy problems where there are only two tasks without
noise in the loss signals caused by a shortage of training data. This allows
us to investigate the initializations that the methods settle for after training.
This allows us to see why MAML and Reptile may have an advantage over
finetuning in within-distribution settings.

2. The effect of the output layer (Section 5.2.1) Finetuning removes the
learned output layer and replaces it with a randomly initialized one when
presented with a new task. MAML and Reptile, on the other hand, do not
do this, and can directly start from the learned initialization weights for
both the body and output layer of the network. To investigate whether this
gives these two methods an advantage over finetuning in within-distrbution
few-shot image classification, we investigate the effect of replacing the
learned output layers with randomly initialized ones before learning a
new task. This allows us to determine the importance of having a learned
weight initialization for the output layer and whether this is something that
can explain the advantage of MAML and Reptile over finetuning in these
settings.

3. Specialization for robustness against overfitting (Section 5.2.2) An-
other difference between the methods is that finetuning is trained on regular
mini-batches of data, whilst MAML and Reptile are trained explicitly for
post-adaptation performance on noisy loss signals induced by the limited

Transfer Learning and Meta-Learning 11

amount of available training data. To investigate the importance of explic-
itly training under noisy conditions, we study the performances of MAML
and Reptile as a function of the number of examples present in the training
condition. Here, the risk of overfitting is inversely related to the number of
training examples k per task.

4. Information content in the learned initializations (Section 5.2.3)
Lastly, we investigate the within-distribution and out-of-distribution learn-
ing performances of finetuning, MAML, and Reptile, with three different
backbones of different expressive power (Conv-4, Resnet-10, Resnet-18).
More specifically, we propose a measure of broadness or discriminative
power of the features and investigate whether this is related to the few-shot
learning abilities of these methods to see whether the discriminative power
of the three methods differ and can account for the potential superiority of
finetuning in the out-of-distribution setting.

−150 −100 −50 0 50 100 150 200
Parameter value

0

2000

4000

6000

8000

10000

L
os

s

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Task 1

Task 2

Finetuning

Reptile

MAML

(a) Scenario a, with T = 5

−150 −100 −50 0 50 100 150 200
Parameter value

0

2000

4000

6000

8000

10000

L
os

s

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Task 1

Task 2

Finetuning

Reptile

MAML

(b) Scenario a, with T = 25

−150 −100 −50 0 50 100 150 200
Parameter value

0

2000

4000

6000

8000

10000

L
os

s

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Task 1

Task 2

Finetuning

Reptile

MAML

(c) Scenario b, with T = 5

−150 −100 −50 0 50 100 150 200
Parameter value

0

2000

4000

6000

8000

10000

L
os

s

0.00

0.01

0.02

0.03

0.04

0.05

0.06
D

en
si

ty

Task 1

Task 2

Finetuning

Reptile

MAML

(d) Scenario b, with T = 25

Fig. 1: Average initialization that finetuning, Reptile, and MAML converge
to when using T = 5 or T = 25 adaptation steps per task. In scenario a (top
figures), finetuning and Reptile both pick an initialization in the centre of
the two optima where the initial loss is minimal. MAML neglects the initial
performance and thus is freer to select an initialization point, especially when
T is larger. In scenario b (bottom figures) the loss of task 2 is no longer convex
and has a reasonably flat plateau. Finetuning and Reptile get stuck in the
optimum of the first task and fail to learn the second task successfully, while
MAML finds a location from which it can arrive at both optima.

12 Mike Huisman et al.

5.1 Toy problem

First, we study the behaviour of finetuning, Reptile, and MAML in two synthetic
scenarios a and b, consisting of two tasks each. In this subsection, we use a
slightly more abstract notion of tasks compared with the rest of the text, and
define tasks purely abstractly by loss functions. These tasks can be considered
the meta-train set, and the goal of the algorithms is to find good initialization
parameters on this task distribution. We represent tasks by their loss landscape,
which we have constructed by hand for illustrative purposes. In scenario a,
the two task loss landscapes are quadratic functions of a single parameter x.
More specifically, the losses for this scenario are given by ℓa1(x) = 1.3(x− 5)2

and ℓa2(x) = (x− 100)2. In scenario b, the first task loss landscape is the same
ℓb1 = ℓa1 while the second task represents a more complex function:

ℓb2(x) =

{
(x− 100)2 x > 50

−5x + 2750 x ≤ 50
(7)

The respective algorithms train by sampling tasks in an interleaved fashion,
and by adapting the parameter x based on the loss landscape of the sampled
task. We investigate the behaviour of Reptile and MAML when they make
T = 5 or T = 25 task-specific adaptation steps. For this, we average the found
solutions of the techniques over 100 different runs with initial x values that are
equally spaced in the interval [−200,+200]. We find that finetuning converges
to the same point regardless of the initialization and is thus represented by a
single vertical line. For Reptile and MAML, the found solution depends on the
initialization, which is why we represent the found solution as a probability
density. A Jupyter notebook for reproducing these results can be found on our
GitHub page.

Based on the learning objectives of the techniques, we expect finetuning
to settle for an initialization that has a good initial performance on both
tasks (small loss values). Furthermore, we expect that MAML will pick any
initialization point from which it can reach minimal loss on both tasks within
T steps. Reptile is expected to find a mid-way solution between finetuning and
MAML.

The results of these experiments are displayed in Figure 1. In scenario a
(top figures), we see that both finetuning and Reptile prefer an initialization at
the intersection of the two loss curves, where the initial loss is minimal. MAML,
on the other hand, neglects the initial performance when T = 25 and leans
more to the right, whilst ensuring that it can reach the two optima within T
steps. The reason that it prefers an initialization on the right of the intersection
is that the loss landscape of task 1 is steeper, which means that task adaptation
steps will be larger. Thus, a location at the right of the intersection ensures
good learning of task 2 and yields comparatively fast learning on the first task.

In scenario b (bottom figures), the loss landscape of task 2 has a relatively
flat plateau on the left-hand side. Because of this, finetuning and Reptile will
be pulled towards the optimum (also the joint optimum) of the first task due to

Transfer Learning and Meta-Learning 13

the larger gradients compared with the small gradients of the flat region of the
second task when T is small. The solution that is found by MAML when T = 5
depends on the random initialization of the parameter, as can be seen in plot
c). That is, when the random initialization is on the left of the plateau, MAML
can not look beyond the flat region, implying that it will also be pulled towards
the minimum of task 1. When T = 25, allowing the Reptile and MAML to
look beyond the flat region, we see that Reptile either finds an initialization at
x = 50 (when the starting point x0 is on the right-hand side of the plateau) or
at the joint optimum at x = 0 (when it starts with x0 on the plateau). In the
latter case, the post-adaptation performance of Reptile on both tasks is not
optimal because it cannot reach the optimum of task 2. MAML, on the other
hand, does not suffer from this suboptimality because it neglects the initial
and intermediate performance and simply finds an initialization at x ≈ 85 from
which it can reach both the optima of tasks 1 and 2.

5.2 Few-shot image classification

We continue our investigations by studying why MAML and Reptile can out-
perform finetuning in within-distribution few-shot image classification settings
(see Section 3.2) when using a Conv-4 backbone. For these experiments, we use
the N -way k-shot classification setting (see Section 3.2) on the miniImageNet
[Vinyals et al., 2016, Ravi and Larochelle, 2017] and CUB [Wah et al., 2011]
benchmarks. miniImageNet is a mini variant of the large ImageNet dataset
[Deng et al., 2009] for image classification, consisting of 60 000 colored images
of size 84 × 84. The dataset contains 100 classes and 600 examples per class.
We use the same train/validation/test class splits as in Ravi and Larochelle
[2017]. The CUB dataset contains roughly 12 000 RGB images of birds from
200 species (classes). We use the same setting and train/validation/test class
splits as in Chen et al. [2019].

Note that using real datasets entails that we move away from the abstract
task definition as in the previous toy experiment, where the loss signal of the
task was perfect. Instead, the loss signal is now approximated by sampling a
finite set of data points for every task (for MAML and Reptile) or batch (for
finetuning) and computing the performance of the methods on it.

For finetuning and MAML, we tune the hyperparameters on the meta-
validation tasks using random search with a budget of 30 function evaluations
for every backbone and dataset. We train MAML on 60 000 tasks in the 1-shot
setting and on 40 000 tasks in the 5-shot setting, and validate its performance
every 2 500 tasks. The checkpoint with the highest validation accuracy is then
evaluated on 600 holdout test tasks. Similarly, finetuning is trained on 60 000
batches of data from the training split when we evaluate it in the 1-shot
setting and on 40 000 batches when evaluating it in the 5-shot setting. Note
that finetuning is trained on simple mini-batches of data instead of tasks
consisting of a support and query set, and is later validated and tested on
unseen validation and test tasks, respectively. In a similar fashion as for MAML,

14 Mike Huisman et al.

we validate its performance every 2 500 batches. Due to the computational
expenses, for Reptile, we use the best-reported hyperparameters and training
iterations on 5-way 1-shot miniImageNet as found by Nichol et al. [2018]. We
use Torchmeta for the implementation of the data loaders [Deleu et al., 2019].
We note that a single run of MAML and finetuning finish within one day, while
Reptile finished within 4 days, perhaps due to the absence of parallelism in
the implementation we used.

5.2.1 The role of the output layer

Here, we investigate whether the fact that MAML and Reptile reuse their
learned output layer when learning new tasks alter their inner-learning be-
haviour and give them an advantage in performance compared with finetuning,
which removes the learned output layer and replaces it with a randomly initial-
ized one when learning a new task. In short, we study the role of the output
layer on the performance and inner-loop adaptation behaviour of MAML and
Reptile. For this, we perform meta-training for MAML and Reptile on 5-way
1-shot miniImageNet classification, and study the effect of replacing the learned
output layer initialization weights with random weights on their ability to learn
new tasks. Note that even though the weight initialization of the output layer
may be random, it is still trained on the support sets of unseen tasks, therefore,
finetuned to the task upon which it will be evaluated. Figure 2 displays the
effect of replacing the output layer of the meta-learned weight initialization by
MAML and Reptile meta-trained on 5-way 1-shot miniImageNet, with a ran-
domly initialized one on the gradient norms during the inner-loop adaptation
procedure. As we can see, the networks of the variants with a learned output
layer receive larger gradient norms at the first few updates compared with the
variants using a randomly initialized output layer, indicating that the learned
output layer alters the learning behaviour of the algorithms. However, at the
end of adaptation for a given task, the gradient norms are close to zero for both
variants, indicating that both have converged to a local minimum. This implies
that the learned initialization of the output layer has a distinct influence on
the learning behaviour of new tasks. More specifically, using a learned output
layer may aid in finding an initialization in the loss landscape that is sensitive
to tasks and can be quickly adapted, explaining the larger gradient norms.

Next, we investigate whether reusing the learned output layers also leads to
performance differences. For this, we investigate the influence of replacing the
learned output layers in MAML and Reptile with randomly initialized ones
when starting to learn new tasks on their learning performance for different
numbers of update steps. The results are shown in Figure 3. As we can see,
replacing the output layer with a random one leads to worse performance.
Increasing the number of updates improves the performance for MAML, while
the reverse is true for Reptile. In the end, the performance gap introduced by
replacing the output layers with random ones is not closed, indicating that the
output layers play an important role in successful inner-loop adaptation.

Transfer Learning and Meta-Learning 15

1 2 3 4 5 6 7 8 9 10 11
Update step

0

10

20

30

40

50

G
ra

di
en

t n
or

m

MAML with learned output layer
MAML with random output layer

(a) MAML on MIN

0 10 20 30 40 50
Update step

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

G
ra

di
en

t n
or

m

Reptile with learned output layer
Reptile with random output layer

(b) Reptile on MIN

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Update step

0

10

20

30

40

50

G
ra

di
en

t n
or

m

MAML with learned output layer
MAML with random output layer

(c) MAML on CUB

0 10 20 30 40 50
Update step

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

G
ra

di
en

t n
or

m

Reptile with learned output layer
Reptile with random output layer

(d) Reptile CUB

Fig. 2: The difference in the average gradient norms during inner-loop adap-
tation between MAML (left) and Reptile (right) with a learned output layer
and a randomly initialized one on 5-way 1-shot miniImageNet (MIN; top row)
and CUB (bottom row). The 95% confidence intervals are within the size of
the symbols. The learned output layers have a higher gradient norm at the
beginning of the training phase.

5.2.2 Specialization for robustness against overfitting

In this subsection, we investigate the influence of the level of data scarcity in
the support set on the performance of MAML and Reptile. We hypothesize
that both algorithms learn an initialization that is robust against overfitting
when the number of examples in the support set per class (k) is small. This
would imply that their performance would suffer when the number of examples
in the support sets in training tasks is large due to the reduced need to become
robust against overfitting, disabling the meta-learning techniques to become
robust to overfitting during task-specific adaptation. We investigate this for
5-way miniImageNet image classification by varying the number of examples
in the support set of meta-training tasks and measuring the performance on
tasks with only one example per class (1-shot setting).

Figure 4 displays the results of these experiments. As we can see, there
is an adverse effect of increasing the number of support examples per task
on the final 1-shot performance of MAML. This shows that for MAML, it
is important to match the training and test conditions so the initialization
parameters can become robust against overfitting induced by data scarcity. In
addition, we observe that Reptile is unstable due to its sensitivity to different

16 Mike Huisman et al.

0 50 100 150 200 250 300 350 400
Updates

0.38

0.40

0.42

0.44

0.46

A
cc

ur
ac

y

MAML with random output layer
MAML with learned output layer
Finetuning

(a) MAML on MIN

0 50 100 150 200 250 300 350 400
Updates

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

A
cc

ur
ac

y

Reptile with random output layer
Reptile with learned output layer
Finetuning

(b) Reptile on MIN

0 50 100 150 200 250 300 350 400
Updates

0.35

0.40

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

MAML with random output layer
MAML with learned output layer
Finetuning

(c) MAML on CUB

0 50 100 150 200 250 300 350 400
Updates

0.325

0.350

0.375

0.400

0.425

0.450

0.475

A
cc

ur
ac

y

Reptile with random output layer
Reptile with learned output layer
Finetuning

(d) Reptile on CUB

Fig. 3: The difference in performance between MAML (left) and Reptile (right)
with a learned output layer and a randomly initialized one on 5-way 1-shot
miniImageNet (MIN; top row) and CUB (bottom row) for different numbers of
update steps. The 95% confidence intervals are displayed as shaded regions.
Learning new tasks starting with a random output layer fails to achieve the
same end performance as with the learned output layer.

hyperparameters on miniImageNet, even in the setting where k = 1. This
is caused by the fact that Reptile is not allowed to sample mini-batches of
data from the support set. Instead, we force it to use the full support set to
investigate the effect of the number of support examples. When the number of
examples is close to ten, which is the mini-batch size commonly used, as by the
original authors [Nichol et al., 2018], there is a slight increase in performance
for Reptile on miniImageNet, supporting the observation that it is sensitive
to the chosen hyperparameters. On CUB, in contrast, we observe that the
performance improves with the number of examples per class at training time,
although the maximum number of examples investigated is 25 due to the fact
that not every class has more examples than that. This illustrates that the
sensitivity to hyperparameters depends on the chosen dataset.

5.2.3 Information content in the learned initializations

Next, we investigate the relationship between the few-shot image classification
performance and the discriminative power of the learned features by the three
techniques for different backbones (Conv-4, ResNet10, ResNet18 [He et al.,
2015]).

Transfer Learning and Meta-Learning 17

0 50 100 150 200 250 300
Number of examples per class at training time

0.36

0.38

0.40

0.42

0.44

0.46

A
cc

ur
ac

y

Finetuning
MAML

(a) MAML on MIN

0 20 40 60 80 100 120 140
Number of examples per class at training time

0.28

0.30

0.32

0.34

0.36

0.38

0.40

A
cc

ur
ac

y

Finetuning
Reptile

(b) Reptile on MIN

0 5 10 15 20 25
Number of examples per class at training time

0.40

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

Finetuning
MAML

(c) MAML on CUB

0 5 10 15 20 25
Number of examples per class at training time

0.30

0.35

0.40

0.45

0.50

A
cc

ur
ac

y

Finetuning
Reptile

(d) Reptile on CUB

Fig. 4: The effect of the number of training examples per class in the support
set on the performance of MAML (left) and Reptile (right) on 5-way 1-shot
miniImageNet (MIN; top row) and CUB (bottom row) classification. The larger
the number of examples, the worse the few-shot learning performance of MAML.
The error bars show the maximum and minimum performance over 5 runs with
different random seeds. Note that the test tasks contain only a single example
per class in the support set.

After deploying the three techniques on the datasets in a 5-way 1-shot
manner, we measure the discriminative power of the learned initializations.
Figure 5 visualizes this procedure for MAML and Reptile; finetuning follows
a similar procedure. First, we extract the learned initialization parameters
from the techniques. Second, we load these initializations into the base-learner
network, freeze all hidden layers, and replace the output layer with a new one.
The new output layer contains one node for every of the |Ctest| classes in the
meta-test data. Third, we fine-tune this new output layer on the meta-test data
in a non-episodic manner, which corresponds to regular supervised learning
on the meta-test dataset. We use a 60/40 train/test split and evaluate the
final performance on the latter. We refer to the resulting performance measure
as the joint classification accuracy, which aims to indicate the discriminative
power of the learned initialization, evaluated on data from unseen classes. Note
that we use the expressions “discriminative power” and “information content”
of the learned backbone synonymously.

The results of this experiment are shown in Figure 6. From this figure, we
see that finetuning yields the best joint classification accuracy in all scenarios.
From this figure, we see the following things.

18 Mike Huisman et al.

k

N

Support
set

Query
set

1. Meta-training

Input

CNN

Episodic meta-training data

N

Non-episodic meta-test data

Input

CNN3. Fine-tuning

2. Copy

Trainable

Frozen

Fig. 5: Flow chart for measuring the joint classification accuracy for meta-
learning techniques. First, we train the techniques in an episodic manner on all
data in the meta-train set. Second, we copy and freeze the learned initialization
parameters and replace the output layer with a new one. Third, we fine-tune
this new output layer on all meta-test data in a non-episodic manner. As such,
the meta-test data is split into a non-episodic train and a non-episodic test
set. Finally, we evaluate the learned evaluation on the hold-out test split of
the meta-test data. We refer to the resulting performance measure as the joint
classification accuracy. Note that finetuning follows the same procedure, with
the exception that it trains non-episodically (on batches instead of tasks) on
the meta-training data.

Table 2: Individual correlations between the joint classification accuracy and
the few-shot learning performance. The Pearson correlation coefficients are
indicated as r and corresponding p-values as p. We note that the results for
each of the three few-shot learning techniques are produced with three different
backbone networks. As such, correlations should be interpreted with utmost
care. Significant correlations (using a threshold of α = 0.005) are displayed in
bold. “MIN”: miniImageNet.

MIN MIN → CUB CUB CUB → MIN

Finetuning r=0.82, p=2e-4 r=0.71, p=3e-3 r=0.96, p=7e-9 r=0.28, p=0.31
MAML r=-0.77, p=8e-4 r=-0.85, p=6e-5 r=0.36, p=0.18 r=0.90, p=4e-6
Reptile r=0.27, p=0.3 r=0.50, p=0.06 r=0.3, p=0.28 r=0.31, p=0.27

– The within-distribution few-shot learning performance is better than the
out-of-distribution performance for all techniques

– MAML achieves the best few-shot learning performance when using a
shallow backbone (conv-4)

– When the backbone becomes deeper, the features learned by MAML become
less discriminative

Transfer Learning and Meta-Learning 19

0.1 0.2 0.3 0.4 0.5 0.6
Joint classification accuracy

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

F
ew

-s
h

ot
ac

cu
ra

cy

Finetuning (freeze)

fo-MAML

Reptile

(a) miniImageNet (r=0.34, p=0.02)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Joint classification accuracy

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

F
ew

-s
h

ot
ac

cu
ra

cy

Finetuning (freeze)

fo-MAML

Reptile

(b) miniImageNet → CUB (r=0.39, p=9e-3)

0.1 0.2 0.3 0.4 0.5
Joint classification accuracy

0.40

0.45

0.50

0.55

0.60

F
ew

-s
h

ot
ac

cu
ra

cy

Finetuning (freeze)

fo-MAML

Reptile

(c) CUB (r=0.07, p=0.63)

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Joint classification accuracy

0.26

0.28

0.30

0.32

0.34

0.36

0.38

F
ew

-s
h

ot
ac

cu
ra

cy
Finetuning (freeze)

fo-MAML

Reptile

(d) CUB → miniImageNet (r=0.53, p=2e-4)

Fig. 6: The joint classification accuracy (x-axes) plotted against the 5-way
1-shot performance (y-axis) on all test classes. For every technique, there are 15
results plotted, corresponding to 3 backbones (Conv-4=red, ResNet-10=green,
ResNet-18=blue) and 5 runs per setting. The Pearson correlation coefficients
(r) and p-values are displayed in the subcaptions. The general correlations
between the few-shot learning performance and joint classification accuracy
range from weak to mild.

– Finetuning learns the most discriminative set of features for direct joint
classification on a large set of classes

However, we note that the joint classification performance either weakly corre-
lates or does not correlate with the few-shot learning performance across the
different techniques. We note that these correlation patterns may be affected
by the fact that we used the best-reported hyperparameters for Reptile for
the Conv-4 backbone, while we also use ResNet-10 and ResNet-18 backbones
[He et al., 2015] in different settings. For finetuning, however, we do observe
an improvement in few-shot learning performance as the backbone becomes
deeper.

Next, we investigate whether there are statistically significant relationships
per technique between the joint classification accuracy and the few-shot perfor-
mance. Table 2 displays the Pearson correlation and corresponding p-values for
individual techniques for the experiment in Section 5.2.3. As we can see, there
are strong and significant (α = 0.005) correlations between the joint classifi-
cation accuracy and the few-shot learning performance of finetuning in three
settings. For MAML, there are strong negative correlations on miniImageNet
and miniImageNet → CUB, indicating that a lower joint classification accuracy

20 Mike Huisman et al.

is often associated with better few-shot learning performance. For Reptile, the
correlations are non-significant and mild to weak.

6 Conclusion

In this work, we investigated 1) why MAML and Reptile can outperform
finetuning in within-distribution settings, and 2) why finetuning can outperform
gradient-based meta-learning techniques such as MAML and Reptile when the
test data distribution diverges from the training data distribution.

We have shown how the optimization objectives of the three techniques
can be interpreted as maximizing the direct performance, post-adaptation
performance, and a combination of the two, respectively. That is, finetuning
aims to maximize the direct performance whereas MAML aims to maximize
the performance after a few adaptation steps, making it a look-ahead objective.
Reptile is a combination of the two as it focuses on both the initial performance
as well as the performance after every update step on a given task. As a result,
finetuning will favour an initialization that jointly minimizes the loss func-
tion, whereas MAML may settle for an inferior initialization that yields more
promising results after a few gradient update steps. Reptile picks something
in between these two extremes. Our synthetic example in Section 5.1 shows
that these interpretations of the learning objectives allow us to understand the
chosen initialization parameters.

Our empirical results show that these different objectives translate into
different learned initializations. We have shown that MAML and Reptile
specialize for adaptation in low-data regimes of the training tasks distribution,
which explains why these techniques can outperform finetuning as observed by
Chen et al. [2019], Finn et al. [2017], Nichol et al. [2018], answering our first
research question. Both the weights of the output layer and the data scarcity in
training tasks play an important role in facilitating this specialization, allowing
them to gain an advantage over finetuning.

Moreover, we have found that finetuning learns a broad and diverse set of
features that allows it to discriminate between many different classes. MAML
and Reptile, in contrast, optimize a look-ahead objective and settle for a less
diverse and broad feature space as long as it facilitates robust adaptation in
low-data regimes of the same data distribution (as that is used to optimize
the look-ahead objective). This can explain findings by Chen et al. [2019],
who show that finetuning can yield superior few-shot learning performance in
out-of-distribution settings. However, we do not observe a general correlation
between the feature diversity and the few-shot learning performance across
finetuning, Reptile, and MAML.

Another result is that MAML yields the best few-shot learning performance
when using the Conv-4 backbone in all settings. Interestingly, the features
learned by MAML become less discriminative as the depth of the backbone
increases. This may indicate an over-specialization, and it may be interesting
to see whether adding a penalty for narrow features may prevent this and

Transfer Learning and Meta-Learning 21

increase the few-shot learning performance with deeper backbones and in
out-of-distribution settings, which has been observed to be problematic by
Rusu et al. [2019] and Chen et al. [2019] respectively. As this is beyond the
scope of our research questions, we leave this for future work. Another fruitful
direction for future work would be to quantify the distance or similarity between
different tasks and to investigate the behaviour of meta-learning algorithms
as a function of this quantitative measure. An additional benefit of such a
measure of task similarity would be that it could allow us to detect when a
new task is within-distribution or out-of-distribution, which could inform the
choice of which algorithm to use.

In summary, our results suggest that the answer to our second research
question is that MAML and Reptile may fail to quickly learn out-of-distribution
tasks due to their over-specialization to the training data distribution caused
by their look-ahead objective, whereas finetuning learns broad features that
allow it to learn new out-of-distribution concepts. This is supported by the
fact that in almost all scenarios, there are statistically significant relationships
between the broadness of the learned features and the few-shot learning ability
for finetuning.

Acknowledgements This work was performed using the compute resources from the Aca-
demic Leiden Interdisciplinary Cluster Environment (ALICE) provided by Leiden University,
as well as the Dutch national e-infrastructure with the support of SURF Cooperative.

Declarations

6.1 Conflicts of Interest

Funding Not applicable: no funding was received for this work.

Employment All authors declare that there is no recent, present, or anticipated
employment by any organization that may gain or lose financially through
publication of this manuscript.

Interests All authors certify that they have no affiliations with or involvement
in any organization or entity with any financial interest or non-financial interest
in the subject matter or materials discussed in this manuscript.

6.2 Compliance with Ethical Standards

Not applicable: this research did not involve human participants, nor did it
involve animals.

6.3 Consent to participate

Not applicable.

22 Mike Huisman et al.

6.4 Consent for publication

Not applicable: this research does not involve personal data, and publishing of
this manuscript will not result in the disruption of any individual’s privacy.

6.5 Availability of data and material

All data that was used in this research have been published as benchmarks by
Deng et al. [2009], Vinyals et al. [2016] (miniImageNet) and Wah et al. [2011]
(CUB), and is publicly available. The data generator for sine wave regression
experiments can be found in the provided code (see below).

6.6 Code availability

All code that was used for this research is made publicly available at https:

//github.com/mikehuisman/revisiting-learned-optimizers.

6.7 Authors’ contributions

MH has conducted the research presented in this manuscript. AP and JvR have
regularly provided feedback on the work, contributed towards the interpretation
of results, and have critically revised the whole.

All authors approve the current version to be published and agree to be
accountable for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of the work are appropriately investigated
and resolved.

6.8 Ethics approval

Not applicable.

References

P. Brazdil, J. N. van Rijn, C. Soares, and J. Vanschoren. Metalearning:
Applications to Automated Machine Learning and Data Mining. Springer,
Cham, 2nd edition, 2022.

W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer
look at few-shot classification. In International Conference on Learning
Representations, ICLR’19, 2019.

L. Collins, A. Mokhtari, and S. Shakkottai. Why does maml outperform erm?
an optimization perspective. arXiv preprint arXiv:2010.14672, 2020.

https://github.com/mikehuisman/revisiting-learned-optimizers
https://github.com/mikehuisman/revisiting-learned-optimizers

Transfer Learning and Meta-Learning 23

T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Bengio. Torchmeta: A
Meta-Learning library for PyTorch, 2019. URL https://arxiv.org/abs/

1909.06576. Available at: https://github.com/tristandeleu/pytorch-meta.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255.
IEEE, 2009.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning, ICML’17, page 1126–1135. PMLR, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey. Meta-learning
in neural networks: A survey. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 2021.

M. Huisman, J. N. van Rijn, and A. Plaat. A survey of deep meta-learning.
Artificial Intelligence Review, 54(6):4483–4541, 2021.

M. Huisman, A. Plaat, and J. N. van Rijn. Stateless neural meta-learning
using second-order gradients. Machine Learning, 111(9):3227–3244, 2022.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25, NIPS’12, pages 1097–1105, 2012.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differ-
entiable convex optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10657–10665, 2019.

P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, and V. N.
Balasubramanian. Charting the right manifold: Manifold mixup for few-
shot learning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2218–2227, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algo-
rithms. arXiv preprint arXiv:1803.02999, 2018.

A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid Learning or Feature
Reuse? Towards Understanding the Effectiveness of MAML. In International
Conference on Learning Representations, ICLR’20, 2020.

S. Ravi and H. Larochelle. Optimization as a Model for Few-Shot Learning. In
International Conference on Learning Representations, ICLR’17, 2017.

A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell. Meta-learning with latent embedding optimization. In
International Conference on Learning Representations, ICLR’19, 2019.

https://arxiv.org/abs/1909.06576
https://arxiv.org/abs/1909.06576

24 Mike Huisman et al.

T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
J. Schmidhuber. Evolutionary principles in self-referential learning, or on

learning how to learn: the meta-meta-... hook. Master’s thesis, Technische
Universität München, 1987.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

J. Snell, K. Swersky, and R. Zemel. Prototypical Networks for Few-shot
Learning. In Advances in Neural Information Processing Systems 30, NIPS’17,
pages 4077–4087. Curran Associates Inc., 2017.

S. Thrun. Lifelong Learning Algorithms. In Learning to learn, pages 181–209.
Springer, Boston, MA, 1998.

Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking
few-shot image classification: a good embedding is all you need? arXiv
preprint arXiv:2003.11539, 2020.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Match-
ing Networks for One Shot Learning. In Advances in Neural Information
Processing Systems 29, NIPS’16, pages 3637–3645, 2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology, 2011.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,
 Lukasz Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rud-
nick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s Neural
Machine Translation System: Bridging the Gap between Human and Machine
Translation. arXiv preprint arXiv:1609.08144, 2016.

S. Yang, L. Liu, and M. Xu. Free lunch for few-shot learning: Distribution cali-
bration. In International Conference on Learning Representations, ICLR’21,
2021.

	Introduction
	Related work
	Background
	A common framework and interpretation
	Experiments
	Conclusion

