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ABSTRACT

Hyperparameter optimization (HPO) in machine learning (ML) deals
with the problem of empirically learning an optimal algorithm con-
figuration from data, usually formulated as a black-box optimization
problem. In this work we propose a zero-shot method to meta-learn
symbolic default hyperparameter configurations that are expressed
in terms of properties of the dataset. This enables a much faster, but
still data-dependent configuration of the ML algorithm, compared to
standard HPO approaches. In the past, symbolic and static default
values have usually been obtained as hand-crafted heuristics. We
propose an approach of learning such symbolic configurations as
formulas of dataset properties, from a large set of prior evaluations
of hyperparameters on multiple datasets and optimizing over a gram-
mar of expressions by an evolutionary algorithm, similar to symbolic
regression. We evaluate our method on surrogate empirical perfor-
mance models as well as on real data across 6 ML algorithms on
more than 100 datasets and demonstrate that our method can indeed
find viable symbolic defaults.

1 INTRODUCTION

The performance of most machine learning (ML) algorithms is
greatly influenced by their hyperparameter settings. Various methods
exist to automatically optimize hyperparameters, including random
search [2], Bayesian optimization ([22, 43]), meta-learning [4] and
bandit-based methods [29]. Depending on the algorithm, proper tun-

ing of hyperparameters can yield considerable performance gains [28].

Despite the acknowledged importance of tuning hyperparameters,
the additional run time, code complexity and experimental design
questions cause many practitioners to often leave many hyperparam-
eters at their default values, especially in real-world ML pipelines
containing many hyperparameters. This is exacerbated by the fact
that it is often unclear which hyperparameters should be tuned and
which have negligible impact on performance ([40], [41]). While
not tuning hyperparameters can be detrimental, defaults provide a
fallback for cases when results have to be obtained quickly, code
complexity should be reduced by cutting out external tuning pro-
cesses, or strong baseline results to compare to more complex tuning
setups are needed. Moreover, it seems less than ideal to optimize all
hyperparameters from scratch with every new dataset. If the optimal
values of a hyperparameter are functionally dependent on properties
of the data, we could learn this functional relationship and express
them as symbolic default configurations that work well across many
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datasets. That way, we can transfer information from previous opti-
mization runs to obtain better defaults and better baselines for further
tuning.

This paper addresses a new meta-learning challenge: “Can we
learn a vector of symbolic configurations for multiple hyperparame-
ters of state-of-the-art machine learning algorithms?”” Contrary to
static defaults, symbolic defaults should be a function of the meta-
features (dataset characteristics) of the dataset at hand, such as the
number of features. Ideally, these meta-features are easily computed,
so that the symbolic defaults can be easily implemented into software
frameworks with little to no computational overhead. Well-known
examples for such symbolic defaults are already widely used: The
random forest algorithm’s default mtry = +/p for the number of
features sampled in each split [6], the median distance between data
points for the width! of the Gaussian kernel of an SVM [8], and
many more. Unfortunately, it has not been studied, how such for-
mulas can be obtained in a principled, empirical manner, especially
when multiple hyperparameters interact, and have to be considered
simultaneously.

Contributions. We propose an approach to learn such symbolic
default configurations by optimizing over a grammar of potential
expressions, in a manner similar to symbolic regression [25] using
Evolutionary Algorithms. We investigate how the performance of
symbolic defaults compares to the performance of static defaults
and simple optimization techniques such as random search on the
possibly largest collection of metadata available. We validate our
approach across a variety of state-of-the-art ML algorithms and pro-
pose default candidates for use by practitioners. In several scenarios,
our procedure finds a symbolic configuration that outperforms static
defaults, while on others, our procedure finds a static configuration
containing only constants. It should be noted that our approach is
not limited to the algorithms studied in this paper. In fact, it is quite
general, and could even be used for non-ML algorithms, as long as
their performance is empirically measurable on instances in a similar
manner.

The paper is structured as follows. After introducing relevant
related work in Section 2, we provide a motivating example in
Section 3.1 to guide further intuition into the problem setting. We
then introduce and define the resulting optimization problem in
Section 3 before we continue with describing the proposed method
in section 4. We study the efficacy of our approach in a broad set of
experiments across multiple machine learning algorithms in Sections
5&6.

1Or the inverse median for the inverse kernel width 4
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Figure 1: Performance of an RBF-SVM averaged across 106
datasets for different values of cost and gamma, unscaled (a)
and with gamma as multiples of meta-features (b)

2 RELATED WORK

Symbolic defaults express a functional relationship between an algo-
rithm hyperparameter value and dataset properties. Some example
for such relationships are reported in literature, such as the previ-
ously mentioned formulas for the random forest [5] or the SVM [8].
Some of these are also implemented in ML workbenches such as
sklearn [38], weka [20] or m1r [27]. It is often not clear and
rarely reported how such relationships were discovered, nor does
there seem to be a clear consensus between workbenches on which
symbolic defaults to implement. Also, they are typically limited to a
single hyperparameter, and do not take into account how multiple
hyperparameters may interact.

Meta-learning approaches have been proposed to learn static (sets
of) defaults for machine learning algorithms [33, 39, 40, 52, 53, 55]
or neural network optimizers [34], to analyze which hyperparameters
are most important to optimize [40, 49, 52], or to build meta-models
to select the kernel or kernel width in SVMs [44, 45, 47].
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An underlying assumption is that hyperparameter response sur-
faces across datasets behave similarly, and therefore settings that
work well on some datasets also generalize to new datasets. Research
conducted by warm-starting optimization procedures with runs from
other datasets (c.f. [30], [16]) suggest that this the case for many
datasets.

Previous work [50] on symbolic defaults proposed a simplistic
approach towards obtaining those, concretely by doing an exhaustive
search over a space of simple formulas composed of an operator, a
numeric value and a single meta-feature. This significantly constricts
the variety of formulas that can be obtained and might therefore not
lead to widely applicable solutions.

3 PROBLEM DEFINITION
3.1 Motivating Example

The idea that reasonable hyperparameters settings can be described
through a functional relationship based on dataset properties seems
intuitive. We motivate this by considering the previously mentioned
SVM example. Figure 1 shows averaged response surfaces across
106 tasks for hyperparameters y and cost (zoomed in to a relevant
area of good performance). While the scale for the cost parameter is
kept fixed in Figures 1(a) and 1(b), the x-axis displays the unchanged,
direct scale for y in (a), and multiples of ;’L’;‘i in (b) (symbols are
described in Table 2). This formula was found using the procedure
that will be detailed in this paper. The maximum performance across
the grid in (a) is 0.859, while in (b) it is 0.904. Values for Z)’;‘f range
between 4.8 - 107> and 0.55. Empirically, we can observe several
things. First, on average, a grid search over the scaled domain in (b)
yields better models. Secondly, the average solution quality and the
area where good solutions can be obtained is larger, and the response
surface is therefore likely also more amenable towards other types
of optimization. And thirdly, we can conjecture that introducing
formulas e.g. y = szl‘i for each hyperparameter can lead to better
defaults. Indeed, finding good defaults in our proposed methodology
essentially corresponds to optimization on an algorithm’s response
surface (averaged across several datasets). It should be noted that
the manually defined heuristic used in sk1learn, ie.y = —=—, is

p-xvar’
strikingly similar.

3.2 Supervised Learning and Risk of a
Configuration

Consider a target variable y, a feature vector x, and an unknown
joint distribution # on (x, y), from which we have sampled a dataset
D containing N observations. An ML model f (x) should approx-
imate the functional relationship between x and y. An ML algo-
rithm A (D) now turns the dataset (of size N) into a prediction
model f (x). A, is controlled by a multi-dimensional hyperparam-
eter configuration A € A of length M: A = {A4,..., Ay}, where
A =Aq X...X Ay is a cross-product of (usually bounded) domains
for all individual hyperparameters, so A; is usually a bounded real
or integer interval, or a finite set of categorical values. In order to
measure prediction performance pointwise between a true label and
a prediction, we define a loss function L(y, §j). We are interested in
estimating the expected risk of the inducing algorithm w.r.t. A on
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new data, also sampled from P:

Rp () = Ep (L(y, Ap(D)(x))),
where the expectation above is taken over all datasets D of size N
from P and the test observation (x, y). Thus, Rp (A) quantifies the
expected predictive performance associated with a hyperparameter
configuration A for a given data distribution, learning algorithm and
performance measure.

3.3 Learning an Optimal Configuration

From a good default configuration A we now expect that it performs
well according to many of such risk mappings for many different
data scenarios. Given K different datasets (or data distributions)
P1, ... Pk, we define K hyperparameter risk mappings:

Ri(A) = Ep (L(y, AL(D)(x))),  k=1,...K.

We now define the average risk of A over K data distributions:

1 K
R(A) = ZRk(A).
k=1

Minimizing the above w.r.t A over A defines an optimization prob-
lem for obtaining an optimal static configuration from K scenarios,
where we assume that, given a large enough K, a configuration will
also work well on new data situations .

3.4 Learning a Symbolic Configuration

We now allow our configurations to be symbolic, i.e., contain formu-
las instead of static values. Hence, we assume that A(.) is no longer
a static vector from A, but a function that maps a dataset, or it’s data
characteristics, to an M-dimensional configuration.

A=) : D = A

For this reason, we define a context-free grammar of transformations,
which define the space of potential expressions for all component
functions A;(.). This grammar consists of constant values, symbolic
dataset meta-features and simple mathematical operators, detailed
in Table 1.

Given a meta-training set of K data scenarios Dy, ..., Dk, we
include the computation of the configuration by A(D) as a first step
into the algorithm A (D) and change our risk definition to:

Ri(A) = Ep (L(y, Ay () (D) (%)),  k=1,...K.
and again average to obtain a global objective for A(.):

1 K
R(A) = 2 > Re(A),
k=1

where the optimization now runs over the space of all potential
M-dimensional formulas induced by our grammar.

3.5 Metadata and Surrogates

In principle, it is possible to estimate Ry (A) empirically using cross-
validation during the optimization. However, this is obviously costly,
as we want to obtain results for a large number of configurations
across many multiple datasets. Therefore, we propose to employ sur-
rogate models that approximate Ry (1). We generate one surrogate
for each dataset, ML algorithm and performance metric combination
on a sufficiently large number of cross-validations experiments, with

randomly planned design points for A. Such meta-data evaluations
are often used in literature ([49, 54, 55]), and can for example be
obtained from [26, 49] or [54]. This induces empirical surrogates,
that map from static configurations to predicted performance values:

RA):A >R

As our algorithm A (D) is now removed, we simply change our
objective to a simplified version, too:

K
RAO) = 2 " Re(MDy)
k=1

This defines a global, average risk objective for arbitrary formulaic
A(.) expressions that can be efficiently evaluated.

Considering the fact that performances on different datasets are
usually not commensurable [13], an appropriate scaling is required
before training surrogate models to enable a comparison between
datasets. This is done in literature by resorting to ranking [1], or
scaling [57] to standard deviations from the mean. We mitigate the
problem of lacking commensurability between datasets by scaling
performance results to [0; 1] on a per-dataset basis as done in [34,
39]. After scaling, 1 corresponds to the best performance observed
in the meta-data and 0 to the worst. A drawback to this is that some
information regarding the absolute performance of the algorithm
and the spread across different configurations is lost.

Dataset Characteristics. In addition to the performance of ran-
dom hyperparameter-configurations, OpenML contains a range of
dataset characteristics, i.e, meta-features. A full list of available char-
acteristics is described by [48]. In order to obtain simple, concise
and efficient formulas, we opted to include only simple dataset char-
acteristics instead of working an extensive set as described by [48].
Table 2 contains an overview over used meta-features and their cor-
responding ranges over our meta training set described in Section 5.
Meta-features are computed for each dataset after imputation, one-
hot encoding of categoricals and scaling of numeric features. We
include (among many others) the number of observations, the num-
ber of features and information regarding class balance. We denote
the set of characteristics {c1, c2, ..., ¢ } with C. For this, we can also
reuse evaluations shared on OpenML [51].

Evaluation meta-data. To learn symbolic defaults, we first gather
meta-data that evaluates Ry (A) on all K datasets. For a given fixed
algorithm with hyperparameter space A and performance measure,
e.g., logistic loss, a large number of experiments of randomly sam-
pled A is run on datasets Py, ..., Pk, estimating the generalization
error of A via 10-fold Cross-Validation.

4 FINDING SYMBOLIC DEFAULTS

The problem we aim to solve requires optimization over a space of
mathematical expressions. Several options to achieve this exist, e.g.,
by optimizing over a predefined fixed-length set of functions [50].
One possible approach is to represent the space of functions as a
grammar in Backus-Naur form and represent generated formulas
as integer vectors where each entry represents which element of
the right side of the grammar rule to follow [37]. We opt for a tree
representation of individuals, where nodes correspond to operations
and leaves to terminal symbols or numeric constants, and optimize



Symbol definition

Description

<configuration> ::=
[<F>I<I>] * N

N: Number of hyperparameters
Type depends on hyperparameter

<I>:=

<unary> <F>

| <binary> 2*<F>

| <quaternary> 4*<F>
| <i>

unary function

binary function
quaternary function
integer constant or symbol

<F>:=

<I>

| <f> float constant or symbol

<i> =

<mfi> Integer meta-feature, see Table 2
lc; Lx]; x ~ loguniform(2°, 21%)
<f>:=

<mff> Continuous meta-feature, see Table 2
ler x ~ loguniform(2710, 20)
<unary> ::=

exp exp(x)

| neg -X

<binary> ::=

add xX+y

| sub x—y

| mul Xy

| truediv x/y

| pow xY

| max max(x, y)

| min min(x, y)

<quaternary> ::=

if_greater ifa>b:celsed

Table 1: BNF Grammar for symbolic defaults search. <configu-
ration> is the start symbol.

symbol explanation min median max
<mfi>:=

n N. observations 100 4147 130064
po N. features original 4 36 10000
p N. features one-hot 4 54 71673
m N. classes 2 2 100
<mff>::=

c N. categorical / p 0.00 0.00 1.00
mcp Majority Class % 0.01 0.52 1.00
mkd Inv. Median Kernel Distance 0.00 0.01 0.55
xvar Avg. feature variance 0.00 1.00 1.00

Table 2: Available meta-features with corresponding symbols

this via genetic programming [25]. Our approach is inspired by
symbolic regression [24], where the goal is to seek formulas that
describe relationships in a dataset. In contrast, we aim to find a
configuration (expressed via formulas), which minimizes R(A(,)).
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We differentiate between real-valued (<F>) and integer-valued
(<I>) terminal symbols to account for the difference in algorithm
hyperparameters. This is helpful, as real-valued and integer hyperpa-
rameters typically vary over different orders of magnitude. Simulta-
neously, some meta-features might be optimal when set to a constant,
which is enabled through ephemeral constants.

A relevant trade-off in this context is the bias induced via a lim-
ited set of operations, operation depth and available meta-features.
Searching, e.g., only over expressions of the form <binary>(<mff>,
cy) introduces significant bias towards the form and expressiveness
of resulting formulas. Our approach using a grammar is agnostic
towards the exact depth of resulting solutions, and bias is there-
fore only introduced via the choice of operators, meta-features and
allowed depth.

Note that formulas can map outside of valid hyperparameter
ranges. This complicates search on such spaces, as a large fraction of
evaluated configurations might contain at least one infeasible setting.
In order to reduce the likelihood of this happening, we define a set
of mutation operators for the genetic algorithms that search locally
around valid solutions. However if an infeasible setting is generated,
the random forest surrogate effectively truncates it to the nearest
observed value of that hyperparameter in the experiment meta-data,
which is always valid.

Symbolic hyperparameters are interpretable and can lead to new
knowledge i.e. about the interaction between dataset characteristics
and performance.

4.1 Grammar

Table 1 shows the primitives and non-symbolic terminals of the
grammar, and Table 2 shows the symbolic terminals whose values
depend on the dataset. We define a set of unary, binary and quater-
nary operators which can be used to construct flexible functions for
the different algorithm hyperparameters.

The definition start symbol <configuration> indicates the type
and number of hyperparameters available in a configuration and de-
pends on the algorithm for which we want to find a symbolic default
configuration. In Table 3 we indicate for each considered hyperpa-
rameter of a learner whether it is real-valued or integer-valued (the
latter denoted with an asterisk (*)). For example, when searching
for a symbolic default configuration for the decision tree algorithm,
<configuration> is defined as <F><I><I><I>, because only the first
hyperparameter is a float. Expressions for integer hyperparameters
are also rounded after their expression has been evaluated. Starting
from <configuration>, placeholders <I> and <F> can now be iter-
atively replaced by either operators that have a return value of the
same type or terminal symbols <i> and <f>. Terminal symbols can
either be meta-features (c.f. Table 2) or ephemeral constants.

4.2 Algorithm

We consider a genetic programming approach for optimizing the
symbolic expressions. We use a plus-strategy algorithm to evolve
candidate solutions, where we set population size to 20 and generate
100 offspring in each generation via crossover and mutation. Evo-
Iution is run for 1000 generations in our experiments. We perform
multi-objective optimization, jointly optimizing for performance
of solutions (normalized logloss) while preferring formulas with
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smaller structural depth . Concretely, we employ NSGA-II selec-
tion [12] with binary tournament selection for parents and select
offspring in an elitist fashion by usual non-dominated sorting and
crowding distance as described in [12]. For offspring created by
crossover, the M vector components of A; are chosen at random
from both parents (uniform crossover on components), though we
enforce at least one component from each parent is chosen. This
results in large, non-local changes to candidates. Mutations, on the
other hand, are designed to cause more local perturbations. We limit
their effect to one hyperparameter only, and include varying constant
values, pruning or expanding the expression or replacing a node.
Each offspring is created through either crossover or mutation, never
a combination. More details w.r.t. employed mutations can be found
in Appendix A. Initial expressions are generated with a maximum
depth of three. We do not limit the depth of expressions during evo-
lution explicitly, though multi-objective optimization makes finding
deep formulas less likely.

5 EXPERIMENTAL SETUP

We aim to answer the following research questions:

RQ1: How good is the performance of symbolic defaults in a prac-
tical sense? In order to asses this, we compare symbolic defaults
with the following baselines: a) existing defaults in current software
packages b) static defaults found by the search procedure described
in Section 4, disallowing meta-features as terminal symbols and c)
a standard hyperparameter random search (on the surrogates) with
different budgets. Note that existing defaults already include sym-
bolic hyperparameters in several implementations. In contrast to
defaults obtained from our method, existing implementation defaults
are often not empirically evaluated, and it is unclear how they were
obtained. This question is the core of our work, as discrepancy to
evaluations on real data only arise from inaccurate surrogate models,
which can be improved by tuning or obtaining more data.

RQ2: How good are the symbolic defaults we find, when evaluated
on real data? We evaluate symbolic defaults found by our method
with experiments on real data and compare them to existing imple-
mentation defaults and a simple meta-model baseline.

5.1 General setup

We investigate symbolic defaults for 6 ML algorithms using the
possibly largest available set of meta-data, containing evaluations
of between 106 and 119 datasets included either in the OpenML-
CC18 [3] benchmark suite or the AutoML benchmark [19]. Datasets
have between 100 and 130000 observations, between 3 and 10000
features and 2 — 100 classes. The number of datasets varies across
algorithms as we restrict ourselves to datasets where the experimen-
tal data contains evaluations of at least 100 unique hyperparameter
configurations available as well as surrogate models that achieve
sufficient quality (Spearman’s p > 0.8). We investigate implemen-
tations of a diverse assortment of state-of-the-art ML algorithms,
namely support vector machines [11], elastic net [58], approximate
knn [31], decision trees [7], random forests [S] and extreme gradient
boosting (xgboost, [10]). The full set of used meta-features can be
obtained from Table 2. The choice of datasets and ML algorithms
evaluated in our paper was based on the availability of high-quality
metadata. A large number of random evaluations across the full

algorithm fixed optimized

elastic net - a, A

decision tree - cp,  max.depth®
minbucket”, minsplit*

random forest  splitrule:gini, mtry”*,

num.trees:500, sample.fraction,
replace:True min.node.size*

svm kernel:radial C,y

approx. knn distance:12 k*, M*, ef*, efc*

xgboost booster:gbtree n, A, y, a, subsample,
max_depth*,
min_child_weight,
colsample_bytree,
colsample_bylevel

Table 3: Fixed and optimizable hyperparameters for different
algorithms. Hyperparameters with an asterisk (*) are integers.

configuration space of each algorithm for each dataset was obtained
and used in order to fit a random forest surrogate model for each
dataset / algorithm combination?. We optimize the average logistic
loss across 10 cross-validation folds (normalized to [0,1]), as it is
robust to class-imbalancies, but our methodology trivially extends
to other performance measures. The hyperparameters optimized for
each algorithm are shown in Table 3. For the random forest, we
set the number of trees to 500 as recommended in literature [42].
We perform 10 replications of each experiment for all stochastic
algorithms and present aggregated results.

5.2 Experiments for RQ1 & RQ2

The evaluation strategy for both experiments is based on a leave-one-
data-set-out strategy, where the (symbolic) defaults are learned on
all but one dataset, and evaluated using the held-out dataset.

In Experiment I for RQ1, we evaluate symbolic defaults found using
our approach against baselines mentioned in RQ1. Our hold-out-
evaluation is performed on a held-out surrogate.

In Experiment 2 for RQ2, now learn our symbolic defaults in the
same manner as for Experiment 2 on K — 1 surrogates, but now
evaluate their performance via a true cross-validation on the held
out dataset instead of simply querying the held out surrogate.

Our main experiment — Experiment 1 evaluates symbolic defaults
on surrogates for a held-out task, which let’s us measure whether our
symbolic defaults can extrapolate to future datasets. If results from
surrogate evaluation correspond to real data, we can also conclude
that our surrogates approximate the relationship between hyperpa-
rameters and performance well enough to transfer to real-world
evaluations. We conjecture, that, given the investigated search space,
for some algorithms/hyperparameters symbolic defaults do not add
additional benefits and constant defaults suffice. In those cases, we
expect that our approach performs roughly as well as an approach
that only takes into account constant values, because our approach
can similarly yield purely constant solutions.

2https://www.openml.org/d/4245[4- 9]


https://www.openml.org/d/4245[4-9]

We employ a modified procedure, optimistic random search that
simulates random search on each dataset which is described below.
We consider random search with budgets of up to 32 iterations to
be strong baselines. Other baselines like Bayesian optimization are
left out of scope, as we only evaluate a single symbolic default,
which is not optimized for the particular dataset. In contrast to
requiring complicated evaluation procedures such as nested cross-
validation, our symbolic defaults can simply be implemented as
software defaults. We further consider full AutoML systems such
as auto-sklearn [15] to be out-of-scope for comparison, as those
evaluate across pre-processing steps and various ML algorithms,
while our work focuses on finding defaults for a single algorithm
without any pre-processing.

Optimistic random search. As we deal with random search in the
order of tens of evaluations, obtaining reliable results would require
multiple replications of random search across multiple datasets and
algorithms. We therefore adapt a cheaper, optimistic random search
procedure, which samples budget rows from the available meta-
data for a given dataset, computes the best performance obtained
and returns it as the random search result. Note that this assumes
that nested cross-validation performance generalizes perfectly to the
outer cross-validation performance, which is why it is considered
an optimistic procedure. It is therefore expected to obtain higher
scores than a realistic random search would obtain. Nonetheless, as
we will show, will the single symbolic default often outperform the
optimistic random search procedure with 8-16 iterations. The opti-
mistic random search procedure is repeated several times in order to
obtain reliable estimates.

I-Nearest Neighbour. In Experiment 2, where we conduct eval-
uations with 10-fold cross-validation on the data, we also compare
to a simple meta-model for generating a candidate solution given
the meta-dataset. We use the k-Nearest Neighbour approach used by
auto-sklearn [15], which looks up the best known hyperparameter
configuration for the nearest dataset. To find the nearest datasets
each meta-feature is first normalized using min-max scaling, then
distances to each dataset are computed using Li-norm. While auto-
sklearn finds hyperparameter configuration candidates for each of
the 25 nearest neighbours, we only use the best hyperparameter
configuration from the first nearest neighbour.

The Python code for our experiments is available online > and makes
use of the DEAP module [17] for genetic programming.

6 RESULTS

In this section, we will first analyse the quality of our surrogates
models in order to ensure their reliability. Next, we evaluate the
performance of the found symbolic defaults on both surrogates and
real data.

6.1 Surrogates and Surrogate Quality

As described earlier, we use surrogate models to predict the perfor-
mance of hyperparameter configurations to avoid expensive evalua-
tions. It is important that the surrogate models perform well enough

3https://github.com/PGijsbers/symbolicdefaults
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Figure 2: Comparison of performance predicted by the SVM
surrogate against the real performance across tasks. On the left
by their rank correlation coefficients, on the right in normalized
performance.

to substitute for real experiments. For this optimization task, the
most important quality of the surrogate models is the preservation of
relative order of hyperparameter configuration performance. Error
on predicted performance is only relevant if it causes the optimiza-
tion method to incorrectly treat a worse configuration as a better one
(or vice versa). The performance difference itself is irrelevant.

For that reason, we evaluate our surrogate models first on rank
correlation coefficients Spearman’s p and Kendall’s 7. For each task,
we perform 10-fold cross validation on our meta data, and calculate
the rank correlation between the predicted ranking and the true one.
On the left in Figure 2 we show the distribution of Spearman’s p
and Kendall’s 7 across 106 tasks for the SVM surrogate. Due to the
high number of observations all rank correlations have a p-value of
near zero. We observe high rank correlation for both measurements
on most tasks. That 7 values are lower than p values indicates that
the surrogate model is more prone to making small mistakes than
big ones. This is a positive when searching for good performing
configurations, but may prove detrimental when optimizing amongst
good configurations.

While it does not directly impact search, we also look at the
difference between the predicted and true performances. For each
task 10 configurations were sampled as a test set, and a surrogate
model was trained on the remainder of the meta data for that task.
On the right in Figure 2 the predicted normalized performance is
shown against the real normalized performance. Predictions closer
to the diagonal line are more accurate, points under and over the
diagonal indicate the surrogate model was optimistic and pessimistic
respectively. Plots for the other models can be found in Appendix C.

6.2 Experiment 1 - Benchmark on surrogates

In order to answer RQ1, we compare the performance of symbolic
defaults, constant defaults and existing implementation defaults on
surrogates. Implementation defaults are default values currently
used for the corresponding algorithm implementations and can be
obtained from Table 5 in the appendix. Note that random search
in this context does refer to per-task optimistic random-search as
described in 5. In the following, we analyze results for the SVM and
report normalized out-of-bag logistic loss on a surrogate if not stated
otherwise. We conduct an analysis of all other algorithms mentioned
in 3 in Appendix C a-e).


https://github.com/PGijsbers/symbolicdefaults

Meta-Learning for Symbolic Hyperparameter Defaults

b
o 1.0
()]
S T T
—os8 ¢
© .
8 ' . '
=061 . ' g $ '
I3 .
L :
S 0.4 ' : N
=2 M 1}
kel
90.2 '
S ! .
S L}
‘;8_0.0 M ' ¢
X X X X
S S S S e e e
& & & & ¢ ¢ e & &
$ $ $
S s o S & & & L &
NS ¢y & & & & N
G s £ & & §&F & £
X
P 5\8 c,§ 9 9 9 & &

Figure 3: Symbolic, static and implementation defaults for
SVM, comparing normalized logloss predicted by surrogates.
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Figure 4: Critical Differences Diagram for symbolic, static and
implementation defaults on surrogates

A comparison to baselines a — ¢) for the SVM can be obtained
from Figure 3. We compare symbolic defaults (blue), existing im-
plementation defaults (green), constant defaults (purple) and several
iterations of random search (orange). Symbolic defaults slightly out-
perform existing implementation defaults (mlr default and sklearn
default) and compare favorably to random search with up to 8 evalu-
ations.

For significance tests we use a non-parametric Friedman test for
differences in samples at « = 0.05 using and a post-hoc Nemenyi
test. The corresponding critical differences diagram [13] is displayed
in Figure 4. Methods are sorted on the x-axis by their average rank
across tasks (lower is better). For methods connected by a bold bar,
significant differences could not be obtained. Symbolic defaults do
not perform significantly worse than random search with a budget
of 16 evaluations, however they also do not significantly outperform
the hand-crafted implementation defaults or an optimized constant
default.

Figure 5 shows comparisons to baselines, again using normalized
logistic loss. The y-axis in both cases corresponds to symbolic de-
faults, while the x-axis corresponds to constant defaults (left) and
random search with a budget of 8 (right). We conduct a similar
analysis on all other algorithms in the appendix.

We summarize the results across all experiments in Table 4, which
shows the mean normalized logistic loss and standard deviation
across all tasks for each algorithm. The symbolic and constant col-
umn denote the performance of defaults found with our approach
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Figure 5: Performance comparison of symbolic defaults to con-
stant defaults (left) and budget 8 random search (right). Points
above the red line indicate symbolic defaults are better.

including and excluding symbolic terminals respectively. The pack-
age column shows the best result obtained from either the scikit-learn
or mlr default, and the last column denotes the best found perfor-
mance sampling 8 random real world scores on the task for the
algorithm.

We find that the symbolic default mean rank is never significantly
lower than that of other approaches, but in some cases it is signifi-
cantly higher (in bold). While the mean performance for symbolic
solutions is lower for glmnet, random forest and rpart, we observe
that the average rank is only higher for glmnet (see Section ??).

The only implementation default which does not score a signif-
icantly lower mean rank than the defaults found by search with
symbolic terminals is the default for SVM, which has carefully hand-
crafted defaults. This further motivates the use of experiment data
for tuning default hyperparameter configurations. In three out of
six cases the tuned defaults even outperform eight iterations of the
optimistic random search baseline, in the other cases they have a
significantly higher mean rank than 4 iterations of random search.

algorithm symbolic constant package opt. RS 8
glmnet 0.917(0.168)  0.928(0.158) 0.857(0.154)  0.906(0.080)
knn 0.954(0.148) 0.947(0.156)  0.879(0.137)  0.995(0.009)
rf 0.946(0.087) 0.951(0.074) 0.933(0.085) 0.945(0.078)
rpart 0.922(0.112)  0.925(0.093) 0.792(0.141)  0.932(0.082)
svm 0.889(0.178)  0.860(0.207) 0.882(0.190) 0.925(0.084)
xgboost  0.995(0.011) 0.995(0.011) 0.925(0.125) 0.978(0.043)

Table 4: Mean normalized logloss and standard deviation (in
parentheses) across all tasks and comparison to baselines a — ¢)
across all learners. Package denotes the best of scikit-learn and
mlr defaults. Bold indicates the average rank was not signifi-
cantly worse than the best of the four defaults.

6.3 Experiment 2 - Benchmark on real data

‘We run the defaults learned on K — 1 surrogates for each hold-out
dataset with a true cross-validation and compare its performance
to existing implementation defaults. We again analyze results for
SVM and provide results on other algorithms in the appendix. Note,
that instead of normalized log-loss (where 1 is the optimum), we
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Figure 6: Comparison of symbolic and implementation default
using log-loss across all datasets performed on real data. Box
plots (right) and scatter plot (left)

report standard log-loss in this following section, which means lower
is better. Figure 14 shows box plot and scatter plot comparisons
between the better implementation default (sklearn) and symbolic
defaults obtained from our method. The symbolic defaults found by
our method performs slightly better to the two existing baselines in
most cases, but outperforms the sklearn default on some datasets
while never performing drastically worse. This small difference
might not be all-too-surprising, as the existing sklearn defaults are
already highly optimized symbolic defaults in their second iteration
[14].

7 CONCLUSION AND FUTURE WORK

In this paper we consider the problem of finding data-dependent
hyperparameter configurations that work well across datasets. We
define a grammar that allows for complex expressions that can use
data-dependent meta-features as well as constant values. Surrogate
models are trained on a large meta dataset to efficiently optimize
over symbolic expressions.

We find that the data-driven approach to finding default config-
urations leads to defaults as good as hand-crafted ones. The found
defaults are generally better than the defaults set by algorithm imple-
mentations. Depending on the algorithm, the found defaults can be
as good as performing 4 to 16 iterations of random search. In some
cases, defaults benefit from being defined as a symbolic expression,
i.e. in terms of data-dependent meta-features.

In future work we first of all plan to extend the search space and
extend single symbolic configurations to sets of symbolic config-
urations. We aim to extend the search space in two ways: dataset
characteristics have to reflect properties that are relevant to the al-
gorithm hyperparameters, yet it is not immediately clear what those
relevant properties are. It is straightforward to extend the number
of meta-features, as many more have already been described in lit-
erature (c.f. [48]). This might not only serve to find even better
symbolic defaults, but also further reduces bias introduced by the
small number of dataset characteristics considered in our work. By
extending the grammar described in Table 1 to include categorical
terminals and operators more suitable for categorical hyperparame-
ters (e.g. if-else), the described procedure can extend to categorical
and hierarchical hyperparameters. This could also be extended to
defaults across algorithms, i.e., given a set of dataset characteristics,

Gijsbers et al.

which algorithm and which hyperparameter should be used as a
default.

Furthermore, we aim to extend the notion of defaults to sets of
defaults as done in [39] and [34]. Both propose sets of defaults,
which can serve as good starting points for evaluation and fur-
ther hyperparameter tuning. Using evolutionary algorithms, the
greedy forward search used to find optimal sets of solutions can
be forgone in favour of multi-objective strategies based on coop-
erative co-evolution, where archives of solutions for each task are
co-evolved( [23], [36] [21]). This can lead to smaller, jointly optimal
sets of default algorithms.

Another relevant aspect, which we do not study in this work is
the runtime associated with a given default, as we typically want
default values to be fast as well as good, and therefore this trade-
off might be considered in optimizing symbolic defaults. In this
work, we address this by restricting specific hyperparameters to
specific values, in particular the xgboost nrounds parameter to
500. In future research, we aim to take this into consideration for all
methods. Having access to better, symbolic defaults, makes machine
learning more accessible and robust to researchers from all domains.
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A IMPLEMENTATION DEFAULTS

Table 5 contains existing implementation defaults used in our ex-
periments. They have been obtained from the current versions of
the implementations. We analyze algorithms from the following
algorithm implementations: Elastic Net: glmnet [18] , Decision
Trees: rpart [46], Random Forest: ranger [56], SVM: LibSvM
via e1071 ([9], [35]) and xgboost [10]. We investigate HNSW
[32] as an approximate k-Nearest-Neighbours algorithm. Additional
details on the exact meaning of the different hyperparameters can be
obtained from the respective software’s documentation. We assume
that small differences due to implementation details e.g. between
the LibSVM and sklearn implementations exist, but try to com-
pare to existing default settings nonetheless, as they might serve as
relevant baselines.

B EVOLUTIONARY SEARCH

The main components of the evolutionary search are given in Sec-
tion 4.2. This appendix only defines the mutation operations. We use
a number of mutation operators, but not all mutations can be applied
to all candidates. Given a parent, we first determine the mutations
that will lead to valid offspring, after which we apply one chosen
uniformly at random. The mutation operators are:

Node Insertion: Pick a node in the tree and add an operator node
between that node and its parent node. If necessary, additional input
to the new node is generated by randomly selecting terminals.
Shrink Node: Select a node and replace it with one of its subtrees.
Node Replacement: Replace a randomly chosen node by another
node of the same type and arity.

Terminal Replacement: Replace a terminal with a different termi-
nal of the same type (i.e. <I> or <F>).

Mutate Ephemeral: Change the value of an ephemeral constant
(i.e. ¢; or c) with Gaussian noise proportional to the ephemeral’s

Algorithm  Default
Elastic Net glmnet: a:1,1:0.01
Decision rpart: cp. 0.01, m.ax.de'pth ¢ 30,
minbucket : 1, minsplit : 20
Tree
Random ranger: m%ry : foo, sample.fraction : 1,
min.node.size : 1
Forest
el071: C:l,y: =
SVM Kkl . . ! . po 1
sklearn: C.1,y.1m
Approx. mlr: k:10, M :16,ef : 10, efc : 200
kNN
xgboost: n 01, A : 1,y : 0, a 0,
subsample 1, max_depth : 3,
Gradient min_child_weight 1,
Boosting colsample_bytree 1,

colsample_bylevel : 1

Table 5: Baseline b): Existing defaults for algorithm implemen-
tations. Fixed parameters described in Table 3 apply
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value. For the integer ephemeral, the change is rounded and can not
be zero.

None of the mutations that work on operators work on the <configu-
ration> operator.

In order to define the search space for symbolic formulas, we define
a grammar composed of terminal symbols and operators. Opera-
tors can take one or multiple terminals or operators as input and
produce a single output. We consider two types of terminal sym-
bols: ephemeral constants and meta-features. This allows for a very
flexible description of the search space.

u+ A vs. random search. Figure 7 depicts optimization traces
of p+ A and random search across 10 replications on all datasets.
Shorter EA traces occur due to early stopping. Genetic programming
seems to consistently yield better results.

Problem: svm
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No. Generation

Figure 7: In-sample fitness scores of ; + A (blue) and 100, 200
and 300 generations equivalent of random search (orange).

C EXPERIMENTAL RESULTS

The following section describes the results of the Experiments con-
ducted to answer RQ1 and RQ2 across all other algorithms analyzed
in this paper. Results and a more detailed analysis for the SVM can
be obtained from section 6.2.
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(a) Symbolic, static and implementation defaults, comparing scaled
logloss predicted by surrogates.
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(c) Performance comparison of symbolic defaults to constant defaults (left)
and budget 8 optimistic random search (right).

Figure 8: Results for the elastic net algorithm on surrogate data.

C.2 Decision Trees
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(a) Symbolic, static and implementation defaults, comparing scaled
logloss predicted by surrogates.
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(c) Performance comparison of symbolic defaults to constant defaults (left)
and budget 8 optimistic random search (right).

Figure 9: Results for the decision tree algorithm on surrogate

data.



C.3 Approximate k-Nearest Neighbours
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(c) Performance comparison of symbolic defaults to constant defaults (left)

and budget 8 optimistic random search (right).
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Figure 10: Results for the approximate k-nearest neighbours

algorithm on surrogate data.
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C.4 Random Forest
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(a) Symbolic, static and implementation defaults, comparing scaled
logloss predicted by surrogates.
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(c) Performance comparison of symbolic defaults to constant defaults (left)

and budget 8 optimistic random search (right).

Figure 11: Results for the random forest algorithm on surrogate
data.



Meta-Learning for Symbolic Hyperparameter Defaults

C.5 eXtreme Gradient Boosting (XGBoost)
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(a) Symbolic, static and implementation defaults, comparing scaled
logloss predicted by surrogates.
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(c) Performance comparison of symbolic defaults to constant defaults (left)
and budget 8 optimistic random search (right).

Figure 12: Results for the XGBoost algorithm on surrogate
data.

D REAL DATA EXPERIMENTS

In analogy to the presentation of the results for the SVM of the main
text, we present results for Decision Tree and Elastic Net here.

D.1 Decision Tree
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Figure 13: Results for the decision tree algorithm. Comparison
of symbolic and implementation default using log-loss across all
datasets performed on real data. Box plots (right) and scatter
plot (left)

D.2 Elastic Net
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Figure 14: Results for the Elastic Net algorithm. Comparison of
symbolic and implementation default using log-loss across all
datasets performed on real data. Box plots (right) and scatter
plot (left)
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