
OpenML Benchmarking Suites

Bernd Bischl1∗, Giuseppe Casalicchio1, Matthias Feurer2, Pieter Gijsbers3, Frank Hutter2,4,
Michel Lang5, Rafael G. Mantovani6, Jan N. van Rijn7, Joaquin Vanschoren3

1 Department of Statistics, LMU Munich, Germany
2 Department of Computer Science, University of Freiburg, Germany

3 Department of Computer Science, Eindhoven University of Technology, the Netherlands
4 Bosch Center for Artificial Intelligence

5 Department of Statistics, TU Dortmund University, Germany
6 Federal Technology University Paraná (UTFPR), Brazil

7 Leiden Institute of Advanced Computer Science (LIACS), Leiden University, the Netherlands

Abstract

Machine learning research depends on objectively interpretable, comparable, and
reproducible algorithm benchmarks. We advocate the use of curated, compre-
hensive suites of machine learning tasks to standardize the setup, execution, and
reporting of benchmarks. We enable this through software tools that help to create
and leverage these benchmarking suites. These are seamlessly integrated into
the OpenML platform, and accessible through interfaces in Python, Java, and
R. OpenML benchmarking suites (a) are easy to use through standardized data
formats, APIs, and client libraries; (b) come with extensive meta-information on
the included datasets; and (c) allow benchmarks to be shared and reused in future
studies. We then present a first, carefully curated and practical benchmarking suite
for classification: the OpenML Curated Classification benchmarking suite 2018
(OpenML-CC18). Finally, we discuss use cases and applications which demon-
strate the usefulness of OpenML benchmarking suites and the OpenML-CC18 in
particular.

1 Introduction

Algorithm benchmarks shine a beacon for machine learning research. They allow us, as a community,
to track progress over time, identify challenging issues, to raise the bar and learn how to do better. To
learn as much as possible from them, they must include well-designed, challenging sets of tasks, be
easily accessible and practical to use. Evaluations of algorithms on these tasks should be performed
in standardized ways to support a rigorous analysis and clear conclusions. And above all, these
evaluations must be easy to find, easily interpretable, reproducible, and directly comparable to
evaluations run by other scientists.

The OpenML platform [Vanschoren et al., 2013] already serves thousands of datasets together
with tasks in a machine-readable way. Tasks define the evaluation procedure for a specific dataset.
Concretely, a task contains a reference to a dataset, information on the task type (e.g., classification
or regression), the target feature (in the case of supervised problems), the evaluation procedure
(e.g., k-fold CV, hold-out), the specific splits for that procedure, and the target performance metric,
which together allow for reproducible evaluation schemes. OpenML is also integrated into many
machine learning libraries, so that fine details about machine learning models (or pipelines) and
their performance evaluations can be automatically collected. This integration allows experiments to
be automatically shared and organized on the platform, linked to the underlying datasets and tasks.
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However, OpenML did not yet facilitate the simple creation and sharing of well-designed benchmark
suites and results of experiments ran on them.

We introduce a novel benchmarking layer on top of OpenML, fully integrated into the platform and
its APIs, that streamlines the creation of benchmarking suites, i.e., collections of tasks designed
to thoroughly evaluate algorithms. These suites can then be easily imported, used in systematic
benchmarking experiments, and the results can be automatically shared and organized on the OpenML
platform, where they can be easily searched, reused and compared to the results of others. We develop
tools that allow for creating a well-defined benchmark suite, and propose a new benchmark suite
designed with these tools: the Curated Classification benchmarking suite 2018 (OpenML-CC18).

In short, the contributions of this paper are as follows: (1) we advocate the use of curated, compre-
hensive suites of machine learning tasks (i.e., a dataset with meta-information about the evaluation
procedure) to standardize benchmarking, (2) we provide software tools to easily create and use these
benchmarking suites, (3) we propose a new benchmark suite (OpenML-CC18), (4) have a closer look
at an existing AutoML benchmark suite, and (5) discuss their impact on machine learning research. 1

We will first discuss related work. Next, we explain how OpenML benchmarking suites work and
how to use them in practice. We then present the OpenML-CC18 and review other benchmarking
suites, including the AutoML benchmark. Finally, we discuss the impact of benchmarking suites on
machine learning research and present our conclusions.

2 A Brief History of Benchmarking Suites

The machine learning field has long recognized the importance of dataset repositories. The UCI
repository [Dheeru and Taniskidou, 2017] and LIBSVM [Chang and Lin, 2011] offer a wide range
of datasets. Many more focused repositories also exist, such as UCR [Chen et al., 2015] for time
series data and Mulan [Tsoumakas et al., 2011] for multilabel datasets. Some repositories also
provide programmatic access. Kaggle.com and PMLB [Olson et al., 2017] offer a Python API for
downloading datasets, skdata [Bergstra et al., 2015] offers a Python API for downloading computer
vision and natural language processing datasets, and KEEL [Alcala et al., 2010] offers a Java and R
API for imbalanced classification and datasets with missing values.

Several platforms can also link datasets to reproducible experiments (similar to OpenML tasks).
Reinforcement learning environments such as the OpenAI Gym [Brockman et al., 2016] run and
evaluate reinforcement learning experiments, the COCO suite standardizes benchmarking for black-
box optimization [Hansen et al., 2020] and ASLib provides a benchmarking protocol for algorithm
selection [Bischl et al., 2016a]. The Ludwig Benchmarking Toolkit orchestrates the use of datasets,
tasks and models for personalized benchmarking and so far integrates the Ludwig deep learning
toolbox [Narayan et al., 2021]. PapersWithCode maintains a manually updated overview of model
evaluations linked to datasets.

Although for many years machine learning researchers have benchmarked their algorithms on some
subset of these datasets, this has not yet led to standardized benchmarks that can be easily compared
between individual studies. This often results in suboptimal shortcuts in study design, producing
rather small-scale experiments that should be interpreted with caution [Aha, 1992], are hard to
reproduce [Pedersen, 2008, Hutson, 2018], and even lead to contradictory results [Keogh and Kasetty,
2003]. An often criticized aspect is the competitive mindset in benchmarking which focuses too
much on dominating the state-of-art on a few datasets, instead of a rigorous and informative analysis
of large-scale studies, including negative results where popular algorithms fail [Sculley et al., 2018].

3 OpenML

OpenML is a collaborative platform that allows anyone to share new datasets, and enables anyone to
easily import these datasets and subsequently share their own models and experiments run on them.
It organizes everything based on four fundamental, machine-readable building blocks: (1) the data,
(2) the machine learning task to be solved, specifying the dataset, the task type (e.g., classification or

1We previously published a preprint on arXiv, which has already been used in new research. This is the reason
we can both introduce OpenML-CC18 and benchmark suites technology, but also review their use. For example,
the AutoML benchmark suite was created with the technology described in this paper (and the preprint).
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Figure 1: OpenML website showing a list of benchmark studies on the left, and interactive exploration
of the results of the AutoML Benchmark (see Section 7.1) on the right. Can be viewed online at
https://www.openml.org/s/226.

regression), the target feature (in the case of supervised problems), the evaluation procedure (e.g.,
k-fold CV, hold-out), the specific splits for that procedure, and the target performance metric (3) the
flow which specifies a machine learning pipeline that solves the task, and (4) the run that contains
experiment results (e.g., predictions and performance evaluations) when a flow is executed on a task
(see Vanschoren et al. [2013] for more details). OpenML goes beyond the platforms mentioned
in Section 2, as it includes extensive programmatic access to all datasets, tasks, flows, and runs,
comprehensive logging of experiments, and automated sharing of results, which have enabled the
collection of millions of publicly shared and reproducible experiments, linked to the exact datasets,
machine learning pipelines and hyperparameter settings. OpenML offers bindings with the Java,
Python and R ecosystems [van Rijn, 2016, Feurer et al., 2021b, Casalicchio et al., 2017] to provide
easy integration in common machine learning tools, workflows, and environments. An introduction
and detailed information can be found on https://docs.openml.org.

4 OpenML Benchmarking Suites

As with any platform where people can upload new datasets, an overwhelming amount and variety
of datasets is available, and it can be unclear how well they are curated. We designed OpenML
benchmarking suites as a remedy to allow researchers to compile and publish well-defined collections
of curated tasks and datasets, and collect benchmarking results from many scientists in a single place.
More precisely, we define:

An OpenML benchmarking suite is a set of OpenML tasks carefully selected to evaluate algorithms
under a precise set of conditions.

Using a set of tasks instead of a set of datasets makes experiments performed on them comparable and
reproducible. Compared to other (static) collections of datasets, the use of OpenML benchmarking
suites has the following advantages:

• Easy creation of benchmarks (see Section 5.1): OpenML hosts thousands of datasets, and scientists
can easily filter them down to those needed for their benchmarks (see Sections 6 and 7 for examples).

• Convenient access and sharing of suites: Each suite receives a unique ID, which can be used to
retrieve the suite via APIs, and via its own webpage. Figure 1 illustrates how results collected on
these suites can be explored online.

• Permanence and provenance: Because benchmarking suites are its own entity on OpenML, it is
clear who created them (provenance). It also guarantees no one but the original creator can edit or
remove the suite (permanence), this is an advantage over the previously used community tagging
mechanism which allowed any user to add tasks to a suite.
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• Community of practice: Curated benchmark suites allow scientists to thoroughly benchmark their
machine learning methods without having to worry about finding and selecting datasets for their
benchmarks.

• Building on existing suites: Scientists can extend, subset, or adapt existing benchmarking suites to
correct issues, raise the bar, or run personalized benchmarks.

• Reproducibility of benchmarks: Based on machine-readable OpenML tasks, with detailed instruc-
tions for evaluation procedures and train-test splits, shared results are comparable and reproducible.

• Conducting benchmark studies: After creating an OpenML benchmarking suite, existing and new
experiments (runs) on the underlying tasks can be associated with the suite. This is also illustrated
in Figure 3. Such data reuse bootstraps the creation of new benchmark studies that can analyze
existing machine learning algorithms in new ways, or to design new challenging benchmark suites.

• Collaborative work: OpenML benchmarking suites benefit from the OpenML community, where
users can help to identify and report bugs and errors in the contained datasets.

• Dynamic benchmarks: Benchmarks are never perfect, and when used for a long time, scientists
may overfit on specific sets of tasks. However, benchmarking suites can be easily corrected and
extended over time (e.g., on a yearly basis), leading to dynamic benchmarks that respond to novel
concerns, and evaluate methods on new and ever more challenging tasks. More than providing a
snapshot, this allows longitudinal studies that truly track progress over time.

5 How to Use OpenML Benchmarking Suites

To realize all these benefits, we have developed a series of extensions to the OpenML platform:2

• We added the concepts of a ‘benchmark suite’ as a collection of tasks, and a ‘benchmark study’ as
a collection of benchmark results (runs) obtained on them.

• We added data filtering procedures to the APIs and website that allow researchers to exactly specify
the constraints for tasks to be included in a benchmark suite.

• We provide scripts and notebooks that facilitate the creation and quality assessment of benchmark
suites. For instance, they filter out datasets that are modeled too easily, and hence cannot be used to
differentiate between most algorithms (see Section 5.1).

• Certain types of datasets, such as multilabel, time series, or artificial datasets, may require additional
care. We added collaborative and automated annotation (tagging) to filter such datasets accordingly.

In the following, we discuss the three main use cases for benchmarking suites, i.e., creating new suites,
retrieving existing suites, and running benchmarks. We provide code examples on how to retrieve,
iterate the contents of a benchmark suite and run machine learning algorithms on it in Figure 2.3

5.1 Creating New Suites

To collect data sets for a new suite, one usually starts by determining a list of constraints that datasets
or tasks should adhere to (e.g., have a minimal size, a limited amount of class imbalance, and not
be a time series). This is often an iterative refinement process, during which the distribution of
currently selected tasks can be visualized, and any existing benchmarking results on these tasks
can be retrieved. An example of this workflow is illustrated in the provided notebook.4 The final
selection of tasks can then be used to create a new benchmark suite. Each benchmark suite is
assigned a unique id and an overview webpage with a description and an analysis dashboard (e.g.,
https://www.openml.org/s/99). The description text can be used to describe the goals and
design criteria, provide links to external resources, and address any ethical concerns that should be
taken into consideration when using the benchmark suite. We give an exemplary curation protocol in
the Appendix.

5.2 Retrieving Existing Suites

Existing benchmark suites can be easily downloaded via any of the OpenML client libraries using
its unique id or alias (see Figure 2). The tasks and datasets are all uniformly formatted, and come

2All code is open, BSD-3 licenced, and available on https://github.com/openml
3More detailed and up-to-date instructions can be found on: https://docs.openml.org/benchmark
4Notebooks can be found at https://github.com/openml/benchmark-suites
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with extensive meta-data to streamline the execution of benchmarks on them. For instance, if a
dataset contains missing values, this is indicated in a machine-readable way so that researchers

1 from openml import config, study, tasks, runs, extensions
2 from sklearn import compose, impute, metrics, pipeline, preprocessing, tree
3
4 clf = pipeline.make_pipeline(
5 compose.make_column_transformer(
6 (impute.SimpleImputer(), extensions.sklearn.cont),
7 (preprocessing.OneHotEncoder(handle_unknown='ignore'), extensions.sklearn.cat),
8 ),
9 tree.DecisionTreeClassifier(max_depth=1)

10 ) # build a fast and simple classification pipeline
11
12 benchmark_suite = study.get_suite('OpenML-CC18') # obtain the benchmark suite
13 # config.apikey = 'FILL_IN_OPENML_API_KEY' # uploading to OpenML requires an API key
14
15 run_ids = []
16 for task_id in benchmark_suite.tasks: # iterate over all tasks
17 task = tasks.get_task(task_id) # download the OpenML task
18 X, y = task.get_X_and_y() # get the data (not used in this example)
19 run = runs.run_model_on_task(clf, task) # run classifier on splits given by the task
20 score = run.get_metric_fn(metrics.accuracy_score) # compute and print the accuracy score
21 print(f'Data set: {task.get_dataset().name}; Accuracy: {score.mean():.2}')
22 run.publish()
23 run_ids.append(run.id)
24
25 benchmark_study = study.create_study( # create a study to share the set of results
26 name="CC18-Example",
27 description="An example study reporting results of a decision stump.",
28 run_ids=run_ids,
29 benchmark_suite=benchmark_suite.id
30 )
31 benchmark_study.publish()
32 print(f"Results are stored at {benchmark_study.openml_url}")

(a) Python, available as pypi package OpenML

1 public static void runTasksAndUpload() throws Exception {
2 OpenmlConnector openml = new OpenmlConnector("FILL_IN_OPENML_API_KEY");
3 Study benchmarksuite = openml.studyGet("OpenML-CC18", "tasks"); // obtain the benchmark suite
4 Classifier tree = new REPTree(); // build a Weka classifier
5 for (Integer taskId : benchmarksuite.getTasks()) { // iterate over all tasks
6 Task t = openml.taskGet(taskId); // download the OpenML task
7 Instances d = InstancesHelper.getDatasetFromTask(openml, t); // obtain the dataset
8 Pair<Integer, Run> result = RunOpenmlJob.executeTask(openml, new WekaConfig(), taskId, tree);
9 Run run = openml.runGet(result.getLeft());

10 }
11 }

(b) Java, available on Maven Central with artifact id org.openml.openmlweka

1 library(OpenML) # requires at least package version 1.8
2 library(mlr)
3 lrn = makeLearner('classif.rpart') # construct a simple CART classifier
4 bsuite = getOMLStudy('OpenML-CC18') # obtain the benchmark suite
5 task.ids = extractOMLStudyIds(bsuite, 'task.id') # obtain the list of suggested tasks
6 for (task.id in task.ids) { # iterate over all tasks
7 task = getOMLTask(task.id) # download single OML task
8 data = as.data.frame(task) # obtain raw data set
9 run = runTaskMlr(task, learner = lrn) # run constructed learner

10 setOMLConfig(apikey = 'FILL_IN_OPENML_API_KEY')
11 upload = uploadOMLRun(run) # upload and tag the run
12 }

(c) R, available on CRAN via package OpenML

Figure 2: Complete code examples, in different programming languages, of how any benchmarking
suite (here the ‘OpenML-CC18’ suite) can be downloaded and used to evaluate a given algorithm.
The Python code also creates a new benchmark study and shares all results. Uploading requires a
(free) API key.
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can automatically adjust for this when running their algorithms. Datasets can be investigated using
exploratory data analysis tools, and existing runs on these tasks can be downloaded and analyzed.

5.3 Running Benchmarks

After retrieving the tasks from a suite, new experiments can be conducted locally. As illustrated
in Figure 2, this is easiest with the readily integrated machine learning libraries, such as scikit-
learn [Pedregosa et al., 2011], mlr [Bischl et al., 2016b] or its successor mlr3 [Lang et al., 2019],
and Weka [Hall et al., 2009]. Integrations for deep learning libraries are under development, and
we welcome further open source integrations.5 Custom code can often be wrapped, e.g., using the
scikit-learn interface.

The results of these experiments (runs) can also (optionally) be bundled in a benchmark study and
published on OpenML, as illustrated for Python in Figure 2. Runs include all experiment details,
including hyperparameter configurations, in a structured way. This allows entire communities of
scientists to bring together benchmarks of a wide range of algorithms, all evaluated uniformly on
the same tasks, in a single place where they can be directly compared on predictive performance
and analysed in novel ways. Figure 3 visualizes the results of 3.8 million runs collected on a single
benchmarking suite, which we will discuss next.

6 OpenML-CC18

To demonstrate the functionality of OpenML benchmarking suites, we created a first standard of
72 classification tasks built on a carefully curated selection of datasets from the many thousands
available on OpenML: the OpenML-CC18. It can be used as a drop-in replacement for many
typical benchmarking setups. These datasets are deliberately medium-sized for practical reasons.
An overview of the benchmark suite can be found at https://www.openml.org/s/99 and the
Appendix. We first describe the design criteria of the OpenML-CC18 before discussing uses of the
benchmark and success stories.1,6

6.1 Design Criteria

The OpenML-CC18 contains all verified and publicly licenced OpenML datasets until mid-2018 that
satisfy a large set of clear requirements for thorough yet practical benchmarking:

(a) The number of observations is between 500 and 100 000 to focus on medium-sized datasets that
can be used to train models on almost any computing hardware.

(b) The dataset has less than 5000 features, counted after one-hot-encoding categorical features
(which is the most frequent way to deal with categorical variables), to avoid most memory issues.

(c) The target attribute has at least two classes, with no class of less than 20 observations. This
ensures sufficient samples per class per fold when running 10-fold cross-validation experiments.

(d) The ratio of the minority and majority class is above 0.05 (to eliminate highly imbalanced
datasets which require special treatment for both algorithms and evaluation measures).

(e) The dataset is not sparse because not all machine learning models can handle them gracefully,
this constraint facilitates our goal of wide applicability.

(f) The dataset does not require taking time dependency between samples into account, e.g., time
series or data streams, as this is often not implemented in standard machine learning libraries.
As a precaution, we also removed datasets where each sample constitutes a single data stream.

(g) The dataset does not require grouped sampling. Such datasets would contain multiple data points
for one subject and require that all data points for a subject are put into the same data split for
evaluation. We introduce this constraint and the one above to simplify usage of the datasets, as
one does not have to use specialized cross-validation procedures.

We also applied several more opinionated criteria to avoid issues with problematic datasets:

5Development is carried out on GitHub. Contributor guidance can be found at https://docs.openml.org.
6The OpenML-CC18 is the successor of a preliminary benchmarking study called OpenML100, containing

100 classification datasets, and fixes several issues we encountered when working with the OpenML100.
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Figure 3: Distribution of the scores (average area under ROC curve, weighted by class support) of 3.8
million experiments with thousands of machine learning pipelines, shared on the CC18 benchmark
tasks. Some tasks prove harder than others, some have wide score ranges, and for all there exist
models that perform poorly (0.5 AUC). Code to reproduce this figure (for any metric) is available on
GitHub.4

(a) We strived to remove artificial datasets, as it is hard to reliably assess their difficulty. Admittedly,
there is no perfect distinction between artificial and simulated datasets (for example, a lot of
phenomena can be simulated that can be as simple as an artificial dataset). Therefore, we
removed datasets if we were in doubt of whether they are simulated or artificial.

(b) We removed datasets which are a subset of larger datasets. Allowing subsets would be very
subjective, as there is no objective choice of a dataset subset size or a subset of the variables or
classes.

(c) We excluded tasks for which the original target feature has been transformed or changed, e.g.,
when classes of a categorical target feature were merged or when a continuous target feature (for
original regression tasks) was discretized to create a classification task.

(d) We removed datasets without any source or reference. We want to be able to learn more about
their intended use and how to interpret learned models, and avoid black box datasets.

Finally, to ensure that datasets are sufficiently challenging, we applied the following restrictions:

(a) We removed datasets which can be perfectly classified by a single attribute or a decision stump,
as they do not allow us to meaningfully compare machine learning algorithms.

(b) We removed datasets where a decision tree could achieve 100% accuracy on a 10-fold cross-
validation task, to remove datasets which can be solved by a simple algorithm which is prone to
overfitting training data. We found that this is a good indicator of too easy datasets. Obviously,
other datasets will appear easy for several algorithms, and we aim to learn more about the
characteristics of such datasets in future studies.

We created the OpenML-CC18 as a first, practical benchmark suite. In hindsight, we acknowledge
that our initial selection still contains several mistakes. Concretely, sick is a newer version of the
hypothyroid dataset with several classes merged, electricity has time-related features, balance_scale
is an artificial dataset and mnist_784 requires grouping samples by writers. We will correct these
mistakes in new versions of this suite and also screen the more than 900 new datasets that were
uploaded to OpenML since the creation of the OpenML-CC18. Moreover, to avoid the risk of
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overfitting on a specific benchmark, and to include feedback from the community, we plan to create a
dynamic benchmark with regular release updates that evolve with the machine learning field. We
want to clarify that while we include some datasets which may have ethical concerns, we do not
expect this to have an impact if the suite is used responsibly (i.e., the benchmark suite is used for its
intended purpose of benchmarking algorithms, and not to construct models to be used in real-world
applications).

6.2 Usage of the OpenML-CC18

The OpenML-CC18 has been acknowledged and used in various studies.1 For instance, Van Wolputte
and Blockeel [2020] used it to study iterative imputation algorithms for imputing missing values,
König et al. [2020] used it to develop methods to improve upon uncertainty quantification of machine
learning classifiers and De Bie et al. [2020] introduced deep networks for learning meta-features,
which they computed for all OpenML-CC18 datasets. In some cases, the authors needed a filtered
subset of the OpenML-CC18, which is natively supported in most OpenML clients. Other uses
of the OpenML-CC18 include interpreting its multiclass datasets as multi-arm contextual bandit
problems [Bibaut et al., 2021a,b] and using the individual columns to test quantile sketch algo-
rithms [Mitchell et al., 2021].

Cardoso et al. [2021] claim that the machine learning community has a strong focus on algorithmic
development, and advocate a more data-centric approach. To this end, they studied the OpenML-
CC18 utilizing methods from Item Response Theory to determine which datasets are hard for many
classifiers. After analyzing 60 of its datasets (excluding the largest), they find that the OpenML-CC18
consists of both easy and hard datasets. They conclude that the suite is not very challenging as
a whole, but that it includes many appropriate datasets to distinguish good classifiers from bad
classifiers, and then propose two subsets: one that can be considered challenging, and one subset to
replicate the behavior of the full suite. The careful analysis and subsequent proposed updates are a
nice example of the natural evolution of benchmarking suites.

For completeness, we also briefly mention uses of OpenML100, a predecessor of the OpenML-CC18
that includes 100 datasets and less strict constraints. Fabra-Boluda et al. [2020] use this suite to
build a taxonomy of classifiers. They argue that the taxonomies provided by the community can be
misleading, and therefore learn taxonomies to cluster classifiers based on predictive behavior. van
Rijn and Hutter [2018] and Probst et al. [2019a] used it to quantify the hyperparameter importance
of machine learning algorithms, while Probst et al. [2019b] used it to learn the best strategy for
tuning random forest based on large-scale experiments (although Probst et al. [2019a] and Probst
et al. [2019b] use only the binary datasets without missing values).

Based upon these works, we conclude that the OpenML-CC18 is being used to facilitate very diverse
directions of machine learning research.

7 Further OpenML Benchmarking Suites

We now review other OpenML benchmarking suites. For this, we focus on AutoML benchmarking
suites, but also provide examples of others.

7.1 The AutoML Benchmark Suite

The AutoML benchmark [Gijsbers et al., 2019] also makes use of an OpenML benchmark suite
to evaluate AutoML tools in a reproducible manner. Combined with code to automatically run
experiments, any of the integrated AutoML tools can be evaluated on any suitable OpenML task or
suite directly from the command line.

7.1.1 Benchmark Suite Design

The AutoML benchmark explicitly sources part of their datasets from the OpenML-CC18, but
also includes datasets used in AutoML competitions (primarily Guyon et al. [2019]) or previous
comparisons of AutoML systems. A step-by-step list of recreating the benchmark suite does not exist,
but general guidelines are provided. Since the original release in 2019, the AutoML benchmark has
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been extending their selection of datasets.7,8 In the discussion below, aspects which are specific to
the newer selection are indicated with an asterisk (*).

The suite shares some of its design criteria with OpenML-CC18, such as the minimum number of
instances, as well as the exclusion of artificial datasets and those which require grouped sampling.
However, it loosens some other restrictions specifically because of the assumption that AutoML tools
should be able to deal with additional complexities:

(a) There is no limit to 100 000 instances or 5000 features, tools can restrict themselves to learners
which scale well or use, e.g., low-fidelity estimates.

(b) There is no limit for class imbalance, tools can use their preferred techniques to deal with
imbalanced data (e.g., SMOTE [Chawla et al., 2002]).

(c) It includes sparse data, though it is currently converted to dense format for tools that don’t
support sparse data.*

(d) It includes a suite of regression problems.*

Some other restrictions are instead stricter because of the tabular AutoML context:

(a) The "easy dataset" filter also takes into account results from OpenML across various learners, to
try to avoid datasets which need little search beyond algorithm selection.

(b) The number of image classification problems is explicitly restricted, as they are typically better
solved with Deep Learning and the benchmark’s focus is tabular AutoML tools.

Similar to OpenML-CC18, the AutoML benchmark suite is intended to be regularly updated to reflect
modern day challenges and to avoid overfitting.

7.1.2 Usage of the AutoML Benchmark Suite

Before the introduction of the AutoML benchmark suite, the closest to an accepted standard for
tabular AutoML benchmarking was the set of datasets on which Auto-WEKA was originally evalu-
ated [Thornton et al., 2013]. This selection of tasks was still used in, e.g., Mohr et al. [2018] and
consisted of 21 problems, a third of which are image classification tasks which are typically not the
intended use-case for the AutoML tools. However, it was by no means a standard. For example, Drori
et al. [2018], Rakotoarison et al. [2019] and Gil et al. [2018], all published at the same workshop,
each used different selections of datasets.

The original AutoML benchmark suite has been used in multiple AutoML publications, either as is
[LeDell and Poirier, 2020, Wang et al., 2021, Feurer et al., 2021a] or with modifications. Sometimes
more datasets are used, as Zöller and Huber [2021] combine it with OpenML-CC18 and OpenML100
and Kadra et al. [2021] add datasets from UCI and Kaggle. For the latter, hold-out evaluation is used
instead of the suite-defined 10-fold cross-validation. Erickson et al. [2020] use additional datasets
from Kaggle competitions to compare directly to solutions proposed by human competitors.

Other times not all datasets in the benchmark suite are used, e.g., Zimmer et al. [2021] uses all but
four big datasets for computational reasons, while Parmentier et al. [2019] limit themselves to only
four of the big datasets in the suite to assess their method designed for big datasets. Mohr and Wever
[2021] omitted some datasets because of technical issues.

7.2 Further Existing OpenML Benchmarking Suites

OpenML contains other benchmark suites as well, such as the OpenML100-friendly that only contains
the subset of the OpenML100 without missing values and with only numerical features, or Foreign
Exchange data for machine learning research [Schut et al., 2019].

We invite the community to create additional benchmarks suites for other tasks besides classification,
for larger datasets or more high-dimensional ones, for imbalanced or extremely noisy datasets, as
well as for text, time series, and many other types of data. We are confident that benchmarking suites
will help standardize evaluation and track progress in many subfields of machine learning, and also
intend to create new suites and make it ever easier for others to do so.

7Announcement of the new suites: https://github.com/openml/automlbenchmark/issues/187
8https://www.openml.org/s/{218,269,271} are the original, regression, and expanded suite, respec-

tively
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8 Limitations and Future Work

As benchmarking suites are increasingly being picked up by the machine learning community, we
also observed several limitations that should be tackled in future work.

Overfitting. While it has not yet been demonstrated, we assume that as more methods are being
evaluated on benchmarking suites, overfitting on fixed suites is increasingly likely. We therefore aim
to periodically update existing suites with new datasets that follow the specifications laid out by the
benchmark designers (e.g., as done for computer vision research [Recht et al., 2019]) and invite the
community to extend existing suites with harder tasks, as done in NLP research [Kiela et al., 2021].

Credit Assignment. Curating a benchmark is a lot of work, and we have manually inspected and
corrected datasets for the OpenML-CC18 over the course of multiple months. It is therefore important
to give proper credit to everyone involved in creating benchmarking suites, for example by somehow
making benchmarking suites citable.

Automating the curation of useful suites. We are not aware of any related work that describes how
to curate machine learning benchmark suites. In this paper we have defined benchmarking suites
by formalizing objective, but also more subjective constraints. Providing automated ways to create
high quality, diverse and realistic benchmarking suites is thus an important, open research question.
Additionally, post-hoc research, such as the one conducted by Cardoso et al. [2021], is important to
check the validity of benchmarking suites, and we hope for more such techniques to be developed
and also to become applicable during the suite design process.

Computational issues. While studying applications of the OpenML-CC18 in Section 6.2 we realized
that even though we consciously focused on mid-size datasets, some larger ones still incurred too
high computational load, so some researchers have used subsets of the OpenML-CC18 in their
work. Future suites could more carefully trade off the completeness of benchmarking suites and
computational issues, for example by choosing representative subsets [Cardoso et al., 2021].

Breadth of current benchmarking suites. On the other hand, many researchers are interested
in benchmarking larger (deep learning) models on larger datasets from many domains (including
language and vision). We are working on ways to enable the creation of such benchmarking suites as
well, and welcome further involvement from the community.

Specification of resource constraints. The task and suite specifications do not yet allow for con-
straints on resources, e.g., memory or time limits. Specific benchmark studies could impose identical
hardware requirements, e.g., to compare running times. Where requiring identical hardware is
impractical, general constraints would ensure results are more comparable when multiple people run
their experiments on a suite. Explicit constraints also help interpret earlier results.

Disclosure of ethical issues We currently encourage creators to disclose any ethical concerns with
datasets in their benchmark suite in its description. In the future we want to support this natively on
a dataset level (e.g., by integrating datasheets [Gebru et al., 2018]) and benchmark suite level (by
providing a dedicated information field).

9 Conclusion

Our goal is to simplify the creation of well-designed benchmarks to push machine learning research
forward. More than just creating and sharing benchmarks, we want to allow anyone to effortlessly run
and publish their own benchmarking results and organize them online in a single place where they can
be easily explored, downloaded, shared, compared, and analyzed. We created a new benchmarking
layer on the OpenML platform that allows scientists to do all the above with just a few lines of
code. We then introduced the OpenML-CC18, a benchmark suite created with these tools for general
classification benchmarking.

The use of suites is further motivated by a closer look at the AutoML benchmark suite. We also
reviewed how other scientists have adopted these benchmarking suites in their own work, from which
it becomes clear that a continuous conversation with the research community is essential to evolve
benchmarks and make them better and more useful over time. We hope that this work will unleash
a rapid evolution of benchmarks suites and large-scale studies that teach us more about machine
learning than any single study could.
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