
Combining Sequential Model-Based Algorithm Configuration
with Default-Guided Probabilistic Sampling
Marie Anastacio

m.i.a.anastacio@liacs.leidenuniv.nl
Universiteit Leiden

Leiden, The Netherlands

Holger H. Hoos
hh@liacs.nl

Universiteit Leiden
Leiden, The Netherlands

University of British Columbia
Vancouver, Canada

ABSTRACT
General-purpose automated algorithm configuration procedures
have enabled impressive improvements in the state of the art in
solving challenging problems from AI, operations research and
other areas. The most successful configurators combine multiple
techniques to search vast combinatorial spaces of parameter set-
tings for a given algorithm as efficiently as possible. Specifically,
two of the most prominent general-purpose algorithm configura-
tors, SMAC and irace, can be seen as combinations of Bayesian
optimisation and racing, and of racing and an estimation of distri-
bution algorithm, respectively. Here, we investigate an approach
that combines all three of these techniques into one single configu-
rator, while exploiting prior knowledge contained in expert-chosen
default parameter values. We demonstrate significant performance
improvements over irace and SMAC on a broad range of running
time optimisation scenarios from AClib.

CCS CONCEPTS
•Computingmethodologies→Optimization algorithms;Ma-
chine learning; •General and reference→Empirical studies;

KEYWORDS
Parameter tuning and algorithm configuration, Combinatorial opti-
mization, Artificial intelligence, Machine learning

ACM Reference Format:
Marie Anastacio and Holger H. Hoos. 2020. Combining Sequential Model-
Based Algorithm Configuration with Default-Guided Probabilistic Sampling.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’20 Companion), July 8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3377929.3389999

1 INTRODUCTION
The performance of state-of-the-art algorithms critically depends
on parameter settings [7], and manual configuration of these pa-
rameters tends to be tedious and inefficient. For the past decade,
automated methods for configuring those algorithms have been
broadly established as an effective alternative to a manual approach.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3389999

The algorithm configuration problem (see, e.g., [4]) can be de-
fined as follows. Given: a target algorithm 𝐴 with parameters
𝑝1, ..., 𝑝𝑘 ; a domain𝐷 𝑗 of possible values and a default value𝑑 𝑗 ∈ 𝐷 𝑗

for each parameter 𝑝 𝑗 ; a configuration space𝐶 , containing all valid
combinations of parameter values of𝐴; a set of problem instances 𝐼 ;
a performance metric𝑚 that measures the performance of a config-
uration 𝑐 ∈ 𝐶 of target algorithm 𝐴 on 𝐼 ; find 𝑐∗ ∈ 𝐶 that optimises
the performance of 𝐴 on instance set 𝐼 , according to𝑚.

Prominent examples of general-purpose automated algorithm
configurators include irace [10], ParamILS [7], GGA/GGA++ [2, 3]
and SMAC [6]. State-of-the-art automated configurators are strik-
ingly effective (see, e.g., [5, 8]), leveraging combinations of sophisti-
cated methods, such as racing, estimation of distribution algorithms,
Bayesian optimisation and model-free stochastic local search. In
particular, SMAC and irace can be seen as combinations of Bayesian
optimisation and racing, and of racing and an estimation of distribu-
tion algorithm, respectively. We propose a first approach combining
these three techniques into a single general-purpose automated
algorithm configuration procedure that shows significant perfor-
mance improvements over irace and SMAC, the two state-of-the-art
configurators it is based on.

2 OUR APPROACH
The search space explored by automated algorithm configurators
grows exponentially with the number of parameters. Our recent
study [1] shows that reducing its size to focus the search on the
given default values can lead to significant performance improve-
ments for SMAC, despite excluding regions that could be relevant
in specific cases. Our new configurator, SMPS, exploits this insight
by including probabilistic sampling in the context of sequential
model-based optimisation; it combines the sequential model-based
approach of SMAC with probabilistic sampling inspired by irace.

SMPS uses the same sequential model-based optimisation ap-
proach (also known as Bayesian optimisation) as SMAC. It creates
a random forest model to predict the performance of the given
target algorithm for arbitrary parameter configuration, based on
performance data collected from specific target algorithm runs. In
each iteration, it selects a candidate configuration and runs it on
some problem instances from the given training set. The random
forest model is then updated with the observed performance. This
process continues until a given time budget (usually specified in
terms of wall-clock time) has been exhausted.

Algorithm 1 outlines our new configuration method. The step
of interest for us is the way SMAC selects new configurations. It
does so via two different mechanisms. On the one hand, it performs
local search from many randomly generated configurations on its

https://doi.org/10.1145/3377929.3389999
https://doi.org/10.1145/3377929.3389999

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Marie Anastacio and Holger H. Hoos

Algorithm 1 SMPS
𝐶: configuration space. 𝑐𝑑 : the default configuration.
𝐶𝑟𝑎𝑛𝑑 , 𝐶𝑝𝑟𝑜𝑚 and 𝐶𝑛𝑒𝑤 : sets of configurations.
R: target algorithm runs performed.M: performance model.
1: 𝑖𝑛𝑐 ←− 𝑐𝑑
2: R ←− 𝑟𝑢𝑛 (𝑐𝑑)
3: while Budget not exhausted do
4: M ←− 𝑢𝑝𝑑𝑎𝑡𝑒 (M, R)
5: 𝐶𝑝𝑟𝑜𝑚 ←− 𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝐶)
6: 𝐶𝑝𝑟𝑜𝑚 ←− 𝑙𝑜𝑐𝑎𝑙_𝑠𝑒𝑎𝑟𝑐ℎ (M,𝐶)
7: 𝐶𝑟𝑎𝑛𝑑 ←− 𝑠𝑎𝑚𝑝𝑙𝑒_𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝐶)
8: 𝐶𝑛𝑒𝑤 ←− 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒

(
𝐶𝑟𝑎𝑛𝑑 ,𝐶𝑝𝑟𝑜𝑚

)
9: 𝑖𝑛𝑐 ←− 𝑖𝑛𝑡𝑒𝑛𝑠𝑖 𝑓 𝑦 (𝐶𝑛𝑒𝑤 , 𝑖𝑛𝑐)
10: end while
11: Return 𝑖𝑛𝑐

random forest model (line 6). On the other hand, it selects new
configurations uniformly at random from the entire (usually vast)
configuration space (line 7). Those two sets are then interleaved and
raced against the current incumbent (line 9). For continuous and
integer parameters, we change the sampling distribution in those
two cases. The range is normalized to [0, 1], then sampled using
truncated normal distributions with means given by the default
parameter values and variance set to a fixed value of 0.05, based
on preliminary experiments. For categorical parameters, we still
sample uniformly at random.

3 EXPERIMENTAL SETUP AND RESULTS
We compare SMPS to SMAC and irace on 16 configuration scenarios
for running time optimisation from AClib [9], covering SAT, AI
planning andMIP. Because algorithm configurators are randomised,
it is common practice to perform multiple independent runs and
report the best configuration (evaluated on the training instances) as
the final result. To estimate the probability distribution of the quality
of the result produced by this standard protocol, we performed
24 independent runs per configurator on each scenario. Then we
repeatedly sampled 8 runs uniformly at random and identified the
best of these according to performance on the training set. We
compared the medians of these empirical distributions, using a
one-sided Mann-Whitney U-test (𝛼 = 0.05) to assess statistical
significance of observed performance differences.

The median PAR10 values obtained are shown in table 1. Note
that the missing results for CPLEX on RCW2 and REG200 are due
to the fact that less than 10 out of the 24 irace runs accepted to
start as it considered the configuration budget too low. Overall,
these results indicate clearly that SMPS represents a significant
improvement over both baselines, and hence an advance in the
state of the art in automated algorithm configuration.

The empirical cumulative distribution functions over the indi-
vidual configurator runs (without applying the standard protocol)
is shown in fig. 1 for one scenario on which SMPS achieves better
results than SMAC (fig. 1a) and one in which irace performs better
than the two other configurators (fig. 1b).

4 FUTUREWORK
We plan to extend our approach with a mechanism that adapts the
median and variance of the sampling distributions, such that we
handle cases in which defaults are poorly chosen.

Table 1: Results for SMAC, SMPS and irace; median PAR10
(inCPU sec); best results are underlined, while boldface indi-
cates results that are statistically tied to the best, according
to a one-sided Mann-Whitney test (𝛼 = 0.05).

Solver Benchmark Default SMAC irace SMPS

CF 193.87 193.00 174.00 174.87
Clasp LABS 745.74 837.93 847.10 745.49

UNSAT 0.885 0.362 0.359 0.360

CF 327.00 261.06 328.21 249.33
Lingeling LABS 873.67 866.99 959.353 857.12

UNSAT 2.41 1.59 2.36 1.50

CF 472.78 226.51 236.61 218.60
SpToRiss LABS 911.25 857.67 846.40 855.34

UNSAT 22.26 1.56 1.56 1.46

Depots 34.68 1.14 1.08 0.98
LPG Satellite 22.40 5.32 8.04 6.62

Zenotravel 29.64 2.61 2.93 2.85

CPLEX

CLS 4.06 3.36 3.91 2.95
COR-LAT 24.81 19.86 10.04 16.35
RCW2 82.51 71.98 – 81.94
REG200 13.08 5.56 – 5.05

Figure 1: Cumulative distribution functions for PAR10
scores (in CPU seconds) over independent configurator runs
on the testing set.

(a) LPG on Depots (b) Clasp on CF

REFERENCES
[1] M. Anastacio, C. Luo, and H. Hoos. 2019. Exploitation of Default Parameter

Values in Automated Algorithm Configuration. In Workshop Data Science meets
Optimisation (DSO), IJCAI 2019.

[2] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney. 2015.
Model-Based Genetic Algorithms for Algorithm Configuration. In Proc. IJCAI
2015. 733–739.

[3] C. Ansótegui, M. Sellmann, and K. Tierney. 2009. A Gender-Based Genetic
Algorithm for the Automatic Configuration of Algorithms. In Proc. CP 2009.
142–157.

[4] H. H. Hoos. 2012. Automated Algorithm Configuration and Parameter Tuning.
In Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion (Eds.). Springer,
37–71.

[5] F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2010. Automated Configuration of
Mixed Integer Programming Solvers. In Proc. CPAIOR 2010. 186–202.

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2011. Sequential Model-Based
Optimization for General Algorithm Configuration. In Proc. LION 5. 507–523.

[7] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. 2009. ParamILS: An
Automatic Algorithm Configuration Framework. J. Artif. Intell. Res. 36 (2009),
267–306.

[8] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and K. Leyton-Brown.
2017. The Configurable SAT Solver Challenge (CSSC). Artif. Intell. 243 (2017),
1–25.

[9] F. Hutter, M. López-Ibáñez, C. Fawcett, M. T. Lindauer, H. H. Hoos, K. Leyton-
Brown, and T. Stützle. 2014. AClib: A Benchmark Library for Algorithm Configu-
ration. In Proc. LION 8 (LNCS), Vol. 8426. 36–40.

[10] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari.
2016. The irace package: Iterated Racing for Automatic Algorithm Configuration.
Operations Research Perspectives 3 (2016), 43–58.

	Abstract
	1 Introduction
	2 Our Approach
	3 Experimental Setup and Results
	4 Future Work
	References

