Noname manuscript No.
(will be inserted by the editor)

Speeding up Algorithm Selection using Average
Ranking and Active Testing by Introducing Runtime

Salisu Mamman Abdulrahman
Pavel Brazdil - Jan N. van Rijn -
Joaquin Vanschoren

Received: Date / Accepted: Date

Abstract Algorithm selection methods can be speeded-up substantially by
incorporating multi-objective measures that give preference to algorithms that
are both promising and fast to evaluate. In this paper, we introduce such a
measure, A3R, and incorporate into two algorithm selection techniques: aver-
age ranking and active testing. Average ranking combines algorithm rankings
observed on prior datasets to identify the best algorithms for a new dataset.
The aim of the second method is to iteratively select algorithms to be tested on
the new dataset, learning from each new evaluation to intelligently select the
next best candidate. We show how both methods can be upgraded to incorpo-
rate a multi-objective measure A3R that combines accuracy and runtime. It
is necessary to establish the correct balance between accuracy and runtime, as
otherwise time will be wasted by conducting less informative tests. The cor-
rect balance can be set by an appropriate parameter setting within function
A3R that trades off accuracy and runtime. Our results demonstrate that the
upgraded versions of Average Ranking and Active Testing lead to much better
mean interval loss values than their accuracy-based counterparts.

Salisu Mamman Abdulrahman

LIAAD - INESC TEC/Faculdade de Ciéncias da Universidade do Porto
Rua Dr. Roberto Frias,Porto, Portugal 4200-465

Tel.: 4351 22 209 4199

Fax: +351 22 209 4199

E-mail: salisu.abdul@gmail.com

Pavel Brazdil
LIAAD - INESC TEC/Faculdade de Economia, Universidade do Porto
E-mail: pbrazdil@inescporto.pt

Jan N. van Rijn
Leiden University, Leiden, Netherlands
E-mail: j.n.van.rijn@liacs.leidenuniv.nl

Joaquin Vanschoren
Eindhoven University of Technology, Eindhoven, Netherlands
E-mail: j.vanschoren@tue.nl

2 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Keywords Algorithm selection, Meta-learning, Ranking of algorithms,
Average ranking, Active testing, Loss curves, Mean interval loss.

1 Introduction

A large number of data mining algorithms exist, rooted in the fields of machine
learning, statistics, pattern recognition, artificial intelligence, and database
systems, which are used to perform different data analysis tasks on large vol-
umes of data. The task to recommend the most suitable algorithms has thus
become rather challenging. Moreover, the problem is exacerbated by the fact
that it is necessary to consider different combinations of parameter settings,
or the constituents of composite methods such as ensembles.

The algorithm selection problem, originally described by Rice [Rice, 1976],
has attracted a great deal of attention, as it endeavours to select and apply
the best algorithm(s) for a given task [Brazdil et al., 2008, Smith-Miles, 2008].
The algorithm selection problem can be cast as a learning problem: the aim is
to learn a model that captures the relationship between the properties of the
datasets, or meta-data, and the algorithms, in particular their performance.
This model can then be used to predict the most suitable algorithm for a given
new dataset.

This paper presents two new methods, which build on ranking approaches
for algorithm selection [Brazdil and Soares, 2000, Brazdil et al., 2003] in that
it exploits meta-level information acquired in past experiments.

The first method is known as average ranking (AR), which calculates an
average ranking for all algorithms over all prior datasets. The upgrade here
consists of using A3R, a multi-objective measure that combines accuracy and
runtime (the time needed to evaluate a model). Many earlier approaches used
only accuracy.

The second method uses an algorithm selection strategy known as active
testing (AT) [Leite and Brazdil, 2010, Leite et al., 2012]. The aim of active
testing is to iteratively select and evaluate a candidate algorithm whose perfor-
mance will most likely exceed the performance of previously tested algorithms.
Here again, function A3R is used in the estimates of the performance gain,
instead of accuracy, as used in previous versions.

It is necessary to establish the correct balance between accuracy and run-
time, as otherwise time will be wasted by conducting less informative and
slow tests. In this work, the correct balance can be set by a parameter setting
within the A3R function. We have identified a suitable value using empirical
evaluation.

The experimental results are presented in the form of loss-time curves,
where time is represented on a log scale. This representation is very useful for
the evaluation of rankings representing schedules, as was shown earlier [Brazdil
et al., 2003, van Rijn et al., 2015]. The results presented in this paper show
that the upgraded versions of AR and AT lead to much better mean interval
loss values (MIL) than their solely accuracy-based counterparts.

Title Suppressed Due to Excessive Length 3

Our contributions are as follows. We introduce A3R, a measure that can be
incorporated in multiple meta-learning methods to boost the performance in
loss-time space. We show how this can be done with the AR and AT methods
and establish experimentally that performance indeed increases drastically.
As A3R requires one parameter to be set, we also experimentally explore the
optimal value of this parameter.

The remainder of this paper is organized as follows. In Section 2 we present
an overview of existing work in related areas.

Section 3 describes the average ranking method with a focus on how it was
upgraded to incorporate both accuracy and runtime. As the method includes
a parameter, this section describes also how we searched for the best setting.
Finally, this section presents an empirical evaluation of the new method.

Section 4 provides details about the active testing method. We explain how
this method relates to the earlier proposals and how it was upgraded to in-
corporate both accuracy and runtime. This section includes also experimental
results and a comparison of both upgraded methods and their accuracy-based
counterparts.

Section 5 is concerned with the issue of how robust the average ranking
method is to omissions in the meta-dataset. This issue is relevant because
meta-datasets gathered by researchers are very often incomplete. The final
section presents conclusions and future work.

2 Related Work

In this paper we are addressing a particular case of the algorithm selection
problem [Rice, 1976], oriented towards the selection of classification algo-
rithms. Various researchers addressed this problem in the course of the last 25
years.

2.1 Meta-learning Approaches to Algorithm Selection

One very common approach, that could now be considered as the classical
approach, uses a set of measures to characterize datasets and establish their
relationship to algorithm performance. This information is often referred to as
meta-data and the dataset containing this information as meta-dataset.

The meta-data typically includes a set of simple measures, statistical mea-
sures, information-theoretic measures and/or the performance of simple al-
gorithms referred to as landmarkers [Pfahringer et al., 2000, Brazdil et al.,
2008, Smith-Miles, 2008]. The aim is to obtain a model that characterizes the
relationship between the given meta-data and the performance of algorithms
evaluated on these datasets. This model can then be used to predict the most
suitable algorithm for a given new dataset, or alternatively, provide a ranking
of algorithms, ordered by their suitability for the task at hand. Many studies
conclude that ranking is in fact better, as it enables the user to iterative test

4 Salisu Mamman Abdulrahman Pavel Brazdil et al.

the top candidates to identify the algorithms most suitable in practice. This
strategy is sometimes referred to as the Top-N strategy [Brazdil et al., 2008].

2.2 Active Testing

The Top-N strategy has the disadvantage that it is unable to exploit the infor-
mation acquired in previous tests. For instance, if the top algorithm performs
worse than expected, this may tell us something about the given dataset which
can be exploited to update the ranking. Indeed, very similar algorithms are
now also likely to perform worse than expected. This led researchers to investi-
gate an alternative testing strategy, known as active testing [Leite et al., 2012].
This strategy intelligently selects the most useful tests using the concept of
estimates of performance gain.' These estimates the relative probability that a
particular algorithm will outperform the current best candidate. In this paper
we attribute particular importance to the tests on the new dataset. Our aim
is to propose a way that minimizes the time before the best (or near best)
algorithm is identified.

2.3 Active Learning

Active Learning is briefly discussed here to eliminate a possible confusion with
active testing. The two concepts are quite different. Some authors have also
used active learning for algorithm selection [Long et al., 2010], and exploited
the notion of Expected Loss Optimization (ELO). Another notable active learn-
ing approach to meta-learning was presented in [Prudencio and Ludermir,
2007], where the authors used active learning to support the selection on in-
formative meta-examples (i.e. datasets). Active learning is somewhat related
to experiment design [Fedorov, 1972].

2.4 Combining Accuracy and Runtime

Different proposals were made in the past regarding how to combine accuracy
and runtime. One early proposal involved function ARR (adjusted ratio of
ratios) [Brazdil et al., 2003], which has the form:

SRy
SR

ARRY = ot 1
G 4 AceD x log(Ta JTE:) W)

Here, SRZ; and SRZ:;/ represent the success rates (accuracies) of algorithms
a; and ares on dataset d;, where a,.s represents a given reference algorithm.

1 We prefer to use this term here, instead of the term relative landmarkers which was
used in previous work [Fiirnkranz and Petrak, 2001] in a slightly different way.

Title Suppressed Due to Excessive Length 5

Instead of accuracy, AUC or another measure can be used as well. Similarly,
T;l]? and Tjjef represent the run times of the algorithms, in seconds.

AccD is a parameter that needs to be set and represents the amount of
accuracy he/she is willing to trade for a 10 times speed-up or slowdown. For
example, AccD = 10% means that the user is willing to trade 10% of accuracy
for 10 times speed-up/slowdown.

The ARR function should ideally be monotonically increasing. Higher suc-
cess rate ratios should lead to higher values of ARR. Higher time ratios should
lead to lower values of ARR. The overall effect of combining the two should
again be monotonic. In one earlier work [Abdulrahman and Brazdil, 2014] the
authors have decided to verify whether this property can be verified on data.
This study is briefly reproduced in the following paragraphs.

The value of SRR was fixed to 1 and the authors varied the time ratio from
very small values 272° to very high ones 22° and calculated the ARR for three
different values of AcceD (0.2, 0.3 and 0.7). The result can be seen in Fig.1.
The horizontal axis shows the log of the time ratio (logRT'). The vertical axis
shows the ARR value.

As can be seen, the resulting ARR function is not monotonic and even ap-
proaching infinity at some point. Obviously, this can lead to incorrect rankings
provided by the meta-learner.

AccD =0.2
AccD=03 ——
AccD=0.7

ARR

L L L
20 2 510) 2

Ratio of Runtimes

Fig. 1 ARR with three different values for AccD (0.2,0.3 and 0.7)

This problem could be avoided by imposing certain constraints on the
values of the ratio, but here we prefer to adopt a different function, A3R, that
also combines accuracy and runtime and exhibits a monotonic behaviour. It
is described in Section 3.3.

2.5 Hyperparameter Optimization

This area is clearly relevant to algorithm selection, since most learning algo-
rithms have parameters that can be adjusted and whose values may affect the

6 Salisu Mamman Abdulrahman Pavel Brazdil et al.

performance of the learner. The aim is to identify a set of hyperparameters
for a learning algorithm, usually with the goal of obtaining good generaliza-
tion and consequently low loss [Xu et al., 2011]. The choice of algorithm can
also be seen as a hyperparameter, in which case one can optimize the choice
of algorithm and hyperparameters at the same time. However, these methods
can be computationally very expensive and typically start from scratch for
every new dataset [Feurer et al., 2015]. In this work, we aim to maximally
learn from evaluations on prior datasets to find the (near) best algorithms in
a shorter amount of time. Our method can also be extended to recommend
both algorithms and parameter settings [Leite et al., 2012], which we aim to
explore in more depth in future work.

2.6 Aggregation of Rankings

The method of aggregation depends on whether we are dealing with com-
plete or incomplete rankings. Complete rankings are those in which N items
are ranked M times and no value in this set is missing. Aggregation of such
rankings is briefly reviewed in Section 3.1.

Incomplete rankings arise when only some ranks are known in some of the
M rankings. Many diverse methods exist. According to Lin [2010], these can
be divided into three categories: Heuristic algorithms, Markov chain methods
and stochastic optimization methods. The last category includes, for instance,
Cross Entropy Monte Carlo, (CEMC) methods. Merging incomplete rankings
typically involve rankings of different ranks and some approaches require that
these rankings are completed before aggregation. Let us consider a simple
example. Suppose ranking R; represents 4 elements, namely (a1, as, a4, az),
while Ry represents a of just two elements (as,a;). Some approaches would
require that the missing elements in Rs (i.e. a3, aq) be attributed a concrete
rank (e.g. rank 3). This does not seem to be correct: we should not be forced
to assume that some information exists when in fact we have none.?

In Section 5.1 we address the problem of robustness against incomplete
rankings. This arises when we have incomplete test results in the meta-dataset.
We have investigated how much the performance of our methods degrades
under such circumstances. Here we have developed a simple heuristic method
based on Borda’s method reviewed in [Lin, 2010]. In the studies conducted by
this author, simple methods often compete quite well with other more complex
approaches.

2.7 Multi-Armed Bandits

The multi-armed bandit problem involves a gambler whose aim is to decide
which arm of a K-slot machine to pull to maximize his total reward in a series

2 We have considered using a package of R RankAggreg [Pihur et al., 2009], but unfortu-
nately we would have to attribute a concrete rank (e.g. k+1) to all missing elements.

Title Suppressed Due to Excessive Length 7

of trials. Many real-world learning and optimization problems can be modeled
in this way and algorithm selection is one of them. Different algorithms can
be compared to different arms. Gathering knowledge about different arms can
be compared to the process of gathering meta-data which involves conducting
tests with the given set of algorithms on given datasets. This phase is often
referred to as exploration.

Many meta-learning approaches assume that tests have been done off-line
without any cost, prior to determining which is the best algorithm for the new
dataset. This phase exploits the meta-knowledge acquired and hence can be
regarded as exploration. However, the distinction between the two phases is
sometimes not so easy to define. For instance, in the active testing approach
discussed in Section 4, tests are conducted both off-line and online, while the
new dataset is being used. Previous tests condition which tests are done next.

Several strategies or algorithms have been proposed as a solution to the
multi-armed bandit problem in the last two decades. Some researchers have
introduced so called contertual-bandit problem, where different arms are char-
acterized by features. For example, some authors [Li et al., 2010] have applied
this approach to personalized recommendation of news articles. In this ap-
proach a learning algorithm sequentially selects articles to serve users based
on contextual information about the users and articles, while simultaneously
adapting its article-selection strategy based on user-click feedback. Contextual
approaches can be compared to meta-learning approaches that exploit dataset
features.

Many articles on multi-armed bandits are based on the notion of reward
which is received after an arm has been pulled. The difference to the optimal
is often referred to as regret or loss. Typically, the aim is to maximize the
accumulated reward, which is equivalent to minimizing the accumulated loss,
as different arms are pulled. Although initial studies were done on this issue
(e.g. Jankowski [2013]), this area has, so far, been rather under-explored. To
the best of our knowledge there is no work that would provide an algorithmic
solution to the problem of which arm to pull when pulling different arms can
take different amounts of time. So one novelty of this paper is that it takes
the time of tests into account with an adequate solution.

3 Upgrading the Average Ranking Method by Incorporating
Runtime

The aim of this paper is to determine whether the following hypotheses can
be accepted:

Hypl: The incorporation of a function that combines accuracy and runtime is
useful for the construction of the average ranking, as it leads to better results

than just accuracy when carrying out evaluation on loss-time curves.

Hyp2: The incorporation of a function that combines accuracy and runtime

8 Salisu Mamman Abdulrahman Pavel Brazdil et al.

for the active testing method leads to better results than only using accuracy
when carrying out evaluation on loss-time curves.

The rest of this section is dedicated to the average ranking method. First,
we present a brief overview of the method and show how the average ranking
can be constructed on the basis of prior test results. This is followed by the
description of the function A3R that combines accuracy and runtime, and how
the average ranking method can be upgraded with this function. Furthermore,
we empirically evaluate this method by comparing the ranking obtained with
the ranking representing the golden standard. Here we also introduce loss-time
curves, a novel representation that is useful in comparisons of rankings.

As our A3R function includes a parameter that determines the weight
attributed to either accuracy or time, we have studied the effects of varying
this parameter on the overall performance. As a result of this study, we identify
the range of values that led to the best results.

3.1 Overview of the Average Ranking Method

This section presents a brief review of the average ranking method that is often
used in comparative studies in the machine learning literature. This method
can be regarded as a variant of Borda’s method [Lin, 2010].

For each dataset, the algorithms are ordered according to the performance
measure chosen (e.g., predictive accuracy) and ranks are assigned accordingly.
Among many popular ranking criteria we find, for instance, success rates, AUC,
and significant wins [Brazdil et al., 2003, Demsar, 2006, Leite and Brazdil,
2010]. The best algorithm is assigned rank 1, the runner-up is assigned rank
2, and so on. Should two or more algorithms achieve the same performance,
the attribution of ranks is done in two steps. In the first step, the algorithms
that are tied are attributed successive ranks (e.g. ranks 3 and 4). Then all tied
algorithms are assigned the mean rank of the occupied positions (i.e. 3.5).

Let r] be the rank of algorithm i on dataset j. In this work we use average
ranks, inspired by Friedman’s M statistic [Neave and Worthington, 1988]. The
average rank for each algorithm is obtained using

D
;= er =D (2)

j=1
where D is the number of datasets. The final ranking is obtained by ordering
the average ranks and assigning ranks to the individual algorithms accordingly.

The average ranking represents a quite useful method for deciding which
algorithm should be used. Also, it can be used as a baseline against which
other methods can be compared.

The average ranking would normally be followed on the new dataset: first
the algorithm with rank 1 is evaluated, then the one with rank 2 and so on.
In this context, the average ranking can be referred to as the recommended
ranking.

Title Suppressed Due to Excessive Length 9

3.1.1 Evaluation of rankings

The quality of a ranking is typically established through comparison with the
golden standard, that is, the ideal ranking on the new (test) dataset(s). This is
often done using a leave-one-out cross-validation (CV) strategy (or in general
k-fold CV) on all datasets: in each leave-one-out cycle the recommended rank-
ing is compared against the ideal ranking on the left-out dataset, and then the
results are averaged for all cycles.

Different evaluation measures can be used to evaluate how close the rec-
ommended ranking is to the ideal one. Often, this is a type of correlation
coefficient. Here we have opted for Spearman’s rank correlation [Neave and
Worthington, 1988], but Kendall’s Tau correlation could have been used as
well. Obviously, we want to obtain rankings that are highly correlated with
the ideal ranking.

A disadvantage of this approach is that it does not show directly what the
user is gaining or losing when following the ranking. As such, many researchers
have adopted a second approach which simulates the sequential evaluation of
algorithms on the new dataset (using cross-validation) as we go down the
ranking. The measure that is used is the performance loss, defined as the
difference in accuracy between apes; and ax, where apes; represents the best
algorithm identified by the system at a particular time and a* the truly best
algorithm that is known to us [Leite et al., 2012].

As tests proceed following the ranking, the loss either maintains its value,
or decreases when the newly selected algorithm improved upon the previously
selected algorithms, yielding a loss curve. Many typical loss curves used in the
literature show how the loss depends on the number of tests carried out. An
example of such curve is shown in Fig. 2(a). Evaluation is again carried out
in a leave-one-out fashion. In each cycle of the leave-one-out cross-validation
(LOO-CV) one loss curve is generated. In order to obtain an overall picture,
the individual loss-time curves are aggregated into a mean loss curve. An
alternative to using LOO-CV would be to use k-fold CV (with e.g. k=10).
This issue is briefly discussed in Section 6.1.

3.1.2 Loss-time curves

A disadvantage of loss curves it that they only show how loss depends on
the number of tests. However, some algorithms are much slower learners than
others - sometimes by several orders of magnitude, and these simple loss curves
do not capture this.

This is why, in this article, we follow Brazdil et al. [2003] and van Rijn
et al. [2015] and take into account the actual time required to evaluate each
algorithm and use this information when generating the loss curve. We refer
to this type of curve as a loss versus time curve, or loss-time curve for short.
Fig. 2(b) shows an example of a loss-time curve, corresponding to the loss
curve in Fig. 2(a).

10 Salisu Mamman Abdulrahman Pavel Brazdil et al.

As train/test times include both very small and very large numbers, it is
natural to use the logarithm of the time (logyg), instead of the actual time.
This has the effect that the same time intervals appear to be shorter as we
shift further on along the time axis. As normally the user would not carry out
exhaustive testing, but rather focus on the first few items in the ranking, this
representation makes the losses at the beginning of the curve more apparent.
Fig. 2(c) shows the arrangement of the previous loss-time curve on a log scale.

wwwwwwwwwwwwwwwwwww

(a) Loss-curve (b) Loss-time Curve (¢) Loss-time curve (log)

Fig. 2 Loss curves for accuracy-based average ranking.

Each loss time curve can be characterized by a number representing the
mean loss in a given interval, an area under the loss-time curve. The individual
loss-time curves can be aggregated into a mean loss-time curve. We want this
mean interval loss (MIL) to be as low as possible. This characteristic is similar
to AUC, but there is one important difference. When talking about AUCs, the
x-axis values spans between 0 and 1, while our loss-time curves span between
some Tyin and T4, defined by the user. Typically the user searching for
a suitable algorithm would not worry about very short times where the loss
could still be rather high. In the experiments here we have set T,,;, to 10
seconds. In an on-line setting, however, we might need a much smaller value.
The value of T}, needs also to be set. In the experiments here it has been set
to 10% seconds corresponding to about 2.78 hours. We assume that most users
would be willing to wait a few hours, but not days, for the answer. Also, many
of our loss curves reach 0, or values very near 0 at this time. Note that this
is an arbitrary setting that can be changed, but here it enables us to compare
loss-time curves.

3.2 Data Used in the Experiments

This section describes the dataset used in the experiments described in this ar-
ticle. The meta-dataset was constructed from evaluation results retrieved from
OpenML [Vanschoren et al., 2014], a collaborative science platform for machine
learning. This dataset contains the results of 53 parameterized classification
algorithms from the Weka workbench [Hall et al., 2009] on 39 classification

Title Suppressed Due to Excessive Length 11

datasets3. More details about the 53 classification algorithms can be found in
the Appendix.

3.3 Combining Accuracy and Runtime

In many situations, we have a preference for algorithms that are fast and also
achieve high accuracy. However, the question is whether such a preference
would lead to better loss-time curves. To investigate this, we have adopted
a multi-objective evaluation measure, A3R, described in Abdulrahman and
Brazdil [2014], that combines both accuracy and runtime. Here we use a
slightly different formulation to describe this measure:

SR%
J

. SR
A’?Raief,aj = d; :Z P (3)
(Ta; /Tayy)

Here SRg; and SRijsf represent the success rates (accuracies) of algorithms
a; and ares on dataset d;, where a,.s represents a given reference algorithm.
Instead of accuracy, AUC or another measure can be used as well. Similarly,
ng? and T, glt , represent the run times of the algorithms, in seconds.

To trade off the importance of time, the denominator is raised to the power
of P, while P is usually some small number, such as 1/64, representing in effect,
the 64" root. This is motivated by the observation that run times vary much
more than accuracies. It is not uncommon that one particular algorithm is
three orders of magnitude slower (or faster) than another. Obviously, we do
not want the time ratios to completely dominate the equation. If we take the
N root of the ratios, we will get a number that goes to 1 in the limit, when
N is approaching infinity (i.e. if P is approaching 0).

For instance, if we used P = 1/256, an algorithm that is 1000 times slower
would yield a denominator of 1.027. It would thus be equivalent to the faster
reference algorithm only if its accuracy was 2.7% higher than the reference
algorithm. Table 1 shows how a ratio of 1000 (one algorithm is 1000 times
slower than the reference algorithm) is reduced for decreasing values of P. As
P gets lower, the time is given less and less importance.

A simplified version of A3R introduced in [van Rijn et al., 2015] assumes
that both the success rate of the reference algorithm SRZ; ; and the correspond-
ing time Tg:ﬁf have a fixed value. Here the values are set to 1. The simplified
version, A3R’, which can be shown to yield the same ranking, is defined as
follows:

AR’y = — (4)

3 Full details: http://wuw.opennl .org/s/37

12 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Table 1 Effect of varying P on time ratio

C P=1/2¢ 1000" C P=1/2¢ 10007
0 1 1000.000 6 1/64 1.114
1 1/2 31.623 7 1/128 1.055
2 1/4 5.623 8 1/256 1.027
3 1/8 2.371 9 1/512 1.013
4 1/16 1.539 10 1/1024 1.006
5 1/32 1.241 o0 0 1.000

We note that if P is set to 0, the value of the denominator will be 1.
So in this case, only accuracy will be taken into account. In the experiments
described further on we used A3R (not A3R').

3.8.1 Upgrading the Average Ranking Method Using ASR

The performance measure A3R can be used to rank a given set of algorithms
on a particular dataset in a similar way as accuracy. Hence, the average rank
method described earlier was upgraded to generate a time-aware average rank-
ing, referred to as the A3R-based average ranking.

Obviously, we can expect somewhat different results for each particular
choice of parameter P that determines the relative importance of accuracy
and runtime, thus it is important to determine which value of P will lead to
the best results in loss-time space. Moreover, we wish to know whether the use
of A3R (with the best setting for P) achieves better results when compared to
the approach that only uses accuracy. The answers to these issues are addressed
in the next sections.

3.8.2 Searching for the Best Parameter Setting

Our first aim was to generate different variants of the A3R-based average
ranking resulting from different settings of P within A3R and identify the
best setting. We have used a grid search and considered settings of P ranging
from P=1/4 until P=1/256, shown in Table 2. The last value shown is P=0.
If this value is used in (ng /ngcf)P the result would be 1. The last option
corresponds to a variant when only accuracy matters.

All comparisons were made in terms of mean interval loss (MIL) associated
with the mean loss-time curves. As we have explained earlier, different loss-
time curves obtained in different cycles of leave-one-out method are aggregated
into a single mean loss-time curve, shown also in Fig. 3. For each one we
calculated MIL, resulting in Table 2.

The MIL values in this table represent mean values for different cycles of
the leave-one-out mode. In each cycle the method is applied to one particular
dataset.

The results show that the setting of P=1/64 leads to better results than
other values, while the setting P=1/128 is not too far off. Both settings are

Title Suppressed Due to Excessive Length 13

Table 2 Mean interval loss of AR-A3R associated with the loss-time curves for different
values of P

P= | 1/4 | 1/16 | 1/64 | 1/128 | 1/256 | 0
MIL | 0.752 | 0.626 | 0.531 | 0.535 | 0.945 | 22.11

better than, for instance, P=1/4, which attributes a much higher importance
to time. They are also better than, for instance, P=1/256 which attributes
much less importance to time, or to P=0 when only accuracy matters.

The boxplots in Fig. 4 show how the MIL values vary for different datasets.
The boxplots are in agreement with the values shown in Table 2. The variations
are lowest for the settings P=1/16, P=1/64 and P=1/128, although for each
one we note various outliers. The variations are much higher for all the other
settings. The worst case is P=0 when only accuracy matters.

For simplicity, the best version identified, that is AR-A3R-1/64, is identified
by the short name AR* in the rest of this article. Similarly, the version AR-

A3R-0 corresponding to the case when only accuracy matters is referred to as
ARO.

As AR* produces better results than AR0O we have provided evidence in
favor of hypothesis Hypl presented earlier.

An interesting question arises why ARO has such a bad performance. Using
AR with accuracy-based ranking leads to disastrous results (MIL=22.11) and
should be avoided at all costs! This issue is addressed further on in Subsection
5.2.2.

AR-A3R-1/4 = = =
AR* ——
187 ARO 1
1.6 | B
14 -
S
@ 12F]
173
S
> 1r 7
[$)
s
3 08 B
Q
<
06 B
04 - B
02 B
0 L L L I
1e+0 e+ 1e+2 1e+3 1e+4 1e+b 1e+6

Time (seconds)

Fig. 3 Loss-time curves for A3R-based and accuracy-based average ranking

14 Salisu Mamman Abdulrahman Pavel Brazdil et al.

© - 5
© (o)
© © o
[%2]
g
g ° ° o
-
S < :
(o) (e} E
[aV} ° e (o) ° :
- o ° —_
o | | | | | | ! e
T T T T T T
1/4 1/16 1/64 1/128 1/256 0

AR-A3R variants

Fig. 4 Boxplots showing the distribution of MIL values for the settings of P

3.3.8 Discussion

Parameter P could be used as a user-defined parameter to determine his/her
relative interest on accuracy or time. In other words, this parameter could be
used to establish the trade-off between accuracy and runtime, depending on
the operation condition required by the user (e.g. a particular value of T}, 4.,
determining the time budget).

However, one very important result of our work is that there is an optimum
for which the user will obtain the best result in terms of MIL.

The values of T},;, and T,z define an interval of interest in which we
wish to minimize MIL. It is assumed that all times in this interval are equally
important. We assume that the user could interrupt the process at any time
T lying in this interval and request the name of apest, the best algorithm
identified.

4 Active Testing Using Accuracy and Runtime

The method of A3R-based average ranking described in the previous section
has an important shortcoming: if the given set of algorithms includes many
similar variants, these will be close to each other in the ranking, and hence

Title Suppressed Due to Excessive Length 15

their performance will be similar on the new dataset. In these circumstances
it would be beneficial to try to use other algorithms that could hopefully yield
better results. The AR method, however, passively follows the ranking, and
hence is unable to skip very similar algorithms.

This problem is quite common, as similar variants can arise for many rea-
sons. One reason is that many machine learning algorithms include various
parameters which may be set to different values, yet have limited impact.
Even if we used a grid of values and selected only some of possible alternative
settings, we would end up with a large number of variants. Many of them will
exhibit rather similar performance.

Clearly, it is desirable to have a more intelligent way to choose algorithms
from the ranking. One very successful way to do this is active testing [Leite
et al., 2012]. This method starts with a current best algorithm, apest, which
is initialized to the topmost algorithm in the average ranking. It then se-
lects new algorithms in an iterative fashion, searching in each step for the
best competitor, a.. This best competitor is identified by calculating the esti-
mated performance gain of each untested algorithm with respect to apest and
selecting the algorithm that maximizes this value. In [Leite et al., 2012] the
performance gain was estimated by finding the most similar datasets, looking
up the performance of every algorithm, and comparing that to the perfor-
mance of apest on those datasets. If another algorithm outperforms apest on
many similar datasets, it is a good competitor.

In this paper we have decided to use a simpler approach without focusing
on the most similar datasets, but correct one major shortcoming, which is that
it does not take runtime into account. As a result, this method can spend a
lot of time evaluating slow algorithms even if they are expected to be even
marginally better. Hence, our aim is to upgrade the active testing method
by incorporating A3R as the performance measure and analyzing the benefits
of this change. Moreover, as A3R includes a parameter P, it is necessary to
determine the best value for this setting.

4.1 Upgrading Active Testing with A3R

In this section we describe the upgraded active testing method in more de-
tail. The main algorithm is presented in Algorithm 1 (AT-A3R), which shows
how the datasets are used in a leave-one-out evaluation. In step 5 the method
constructs the ARx average ranking, A. This ranking is used to identify the
topmost algorithm, which is used to initialize the value of apes;. Then Algo-
rithm 2 (AT-A3R') containing the actual active testing procedure is invoked.
Its main aim is to construct the loss curve L; for one particular dataset d; and
add it to the other loss curves Ls. The final step involves aggregating all loss

curves and returning the mean loss curve L,,.

16 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Algorithm 1 AT-A3R - Active testing with A3R

Require: algorithms A, datasets D5, parameter P

1: Ls + () (Initialize the list of loss-time curves to an empty list)
2: Leave-one-out cycle (d; represents dnew):

3: for all d; in Ds do
Dy < Dg — di
Construct AR+ average ranking, A, of algorithms A on D,
apest < A[1] (the topmost element)

A+ A-— Apest

(L;, apest) < ATA3R'(d;, Dy, apess, A, P) (Algorithm 2)
Add the new loss curve L; to the list:
Ls<+ Ls+ L;

10: end for

11: Construct the mean loss curve L,, by aggregating all loss cuves in Ls
Return: Mean loss curve L,

4.1.1 Active Testing with ASR on one dataset

The main active testing method in Algorithm 2 includes several steps:

Step 1: It is used to initialize certain variables.

Step 2: The performance of the current best algorithm apest on djpeq i
obtained using a cross-validation (CV) test.

Steps 3-12 (overview): These steps include a while loop, which at each
iteration identifies the best competitor (step 4), removes it from the ranking
A (step 5) and obtains its performance (step 6). If its performance exceeds the
performance of apest, it replaces it. This process is repeated until all algorithms
have been processed. More details about the individual steps are given in the
following paragraphs.

Step 4: This step is used to identify the best competitor. This is done by
considering all past tests and calculating the sum of estimated performance
gains APf for different datasets. This is repeated for all different algorithms
and the one with the maximum sum of APf is used as the best competitor a,
as shown in Equation 5:

a. = argmax Z APf(ag, apest, d;) (5)
et d; €D

The estimate of performance gain, APf, is reformulated in terms of A3R:

SRy SRE:

SR SR%
APf(a;, apest, di) = r(——2est] > () % (——est] 6
et ((Té?/TfJes,,)P : ((Tg;/Tg;m)P) (©

where a; is an algorithm and d; a dataset. The function r(test) returns 1 if
the test is true and 0 otherwise.

An illustrative example is presented in Fig. 5, showing different values of
APf of one potential competitor with respect to apes; on all datasets.

Title Suppressed Due to Excessive Length

17

Algorithm 2 ATA3R'- Active testing with A3R on one dataset

Require: d;, Dz, apest, A, P
1: Initialize ranking dnew and loss curve L;:
dnew di7 L’L <~ ()

2: Oblgaln the performance of apest on dataset dpew using a CV test:
(T new SR rLew) — va(abcst7 dnew)

Apest ? Apest

3: while |4] > 0 do

4: Find the most promising competitor a. of ap.s; using estimates of performance gain:

ac = argmax qu',ED.g Apf(a/m Apest s dz)
ag

5. A<+ A—a. (Remove ac from A)

6: Obtain the performance of a. on dataset dpew using a CV test:
(Tnew §RIrew) o CV(ac, duew)
Li + Li + (Tgrew, SRgrew)

7 Comp;re the accuracy performance of a. with apes; and carry out updates:
8: if SRg™ew > SR ne then

9: Ahest < ac, Tf;gg ¢ Tinew GRInew (gRAnew

10: end if

11: end while
12: return Loss-time curve L; and apest

0.12 = =
0.1
0.08
T
a 0.06
0.04
0.02 H H
0
RO U B TN 000 i DRI I B I 1 1 1 1 19 L9 L2 L) L) L)) L) LY
CERNTEGoIxcSRERBREREIRBEZRALRARAS

Remaining datasets

Fig. 5 Values of APf of a potential competitor with respect to apes¢ on all datasets

Table 3 shows the estimates of potential performance gains for 5 potential
competitors. The competitor with the highest value (aq) is chosen, expecting

that it will improve the accuracy on the new dataset.

Table 3 Determining the best competitor among different alternatives

Alg. | > APf
al 0.587
a2 3.017
as 0.143
ay 0.247
a5 | 1.280

18 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Step 6: After the best competitor has been identified, the method proceeds
with a cross-validation (CV) test on the new dataset to obtain the actual
performance of the best competitor. After this the loss curve L; is updated
with the new information.

Step 7-10: A test is carried to determine whether the best competitor is
indeed better than the current best algorithm. If it is, the new competitor is
used as the new best algorithm.

Step 12: In this step the loss-time curve L; is returned together with the
final best algorithm aps identified.

4.2 Optimizing the parameter settings for AT-A3R

To use AT-A3R in practice we need to determine a good setting of parameter
P in A3R used within AT-A3R. We have considered different values shown in
Table 4. The last value shown, P=0, represents a situation when only accuracy
matters. The empirical results presented in this table indicate that the optimal

Table 4 MIL values of AT-A3R for different parameter setting of P

P 1 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | 0
MIL | 0.846 | 0.809 | 0.799 | 0.809 | 0.736 | 0.905 | 1.03 | 1.864 | 3.108

parameter setting for P is 1/16 for the datasets used in our experiments.
We will refer to this variant of active testing as AT-A3R-1/16, or AT* for
simplicity. We note, however, that the MIL values do not vary much when
the values of P are larger than 1/16 (i.e. 1/4 etc.). For all these setting time
is given a high importance. The loss-time curves for some of the variants are
shown in Fig. 7.

When time is ignored, which corresponds to the setting of P=0 and the
version is AT-A3R-0. For simplicity, this version will be referred to as ATO in
the rest of this article.

The MIL values in this table represent mean interval values obtained in
different cycles of the leave-one-out mode. Individual values vary quite a lot
for different datasets, as can be seen in the boxplots in Fig. 6.

This study has provided an evidence that the AT method too works quite
well when time is taken into consideration. When time is ignored (version
ATO), the results are quite poor (MIL=3.108). But if we compare ATO and
ARO approaches, the ATO result is not so bad in comparison.

The fact that ATO achieved much better value that ARO can be explained
by the initialization step used in Algorithm 1. We note that the AR* has been
used to initialize the value of apes;. This version takes runtime into account.
If ARO were used instead, the MIL of ATO would increase to 21.89%, that is
a value comparable to ARO.

Title Suppressed Due to Excessive Length 19

o -
o
o
© o o °©
o
[%2]
Q
=
S <« -
2 8
s ° :
o ° ° :
o o o °
N _ o o 8 .
R == e === e
T T T T T T
1/4 1/8 1/16 1/32 1/64 0

AT-A3R Variants

Fig. 6 Boxplot showing the distribution of MIL values for the methods in Table 4

. AT* = = -
- AT-A3R-1/4
. X ATO = = =

Accuracy Loss (%)
| |
- - om om0

0.6 - =
04 r e

0.2 1

0 . . .
1e+0 1e+1 1e+2 1e+3 1le+4 1e+5 1e+6 1e+7
Time (seconds)

L S e s

Fig. 7 Mean loss-time curves for AT-A3R with different settings for P

The values shown in Table 4 and the accompanying boxplot indicate that
the MIL scores for the AT method have relatively high variance. One plausible

20 Salisu Mamman Abdulrahman Pavel Brazdil et al.

explanation for this is the following. The method selects the best competitor
on the basis of the estimate of the highest performance gain. Here the topmost
element is used in an ordered list. However, there may be other choices with
rather similar value, albeit a bit smaller, which are ignored. If the conditions
are changed slightly, the order in the list changes and this affects the choice
of the best competitor and all subsequent steps.

4.3 Comparison of Average Rank and Active Testing Method

In this section we present a comparison of the two upgraded methods discussed
in this article, the average ranking method and the active testing method (the
hybrid variant) with optimized parameter settings. Both are also compared to
the original versions based on accuracy. To be more precise, the comparison
involves:

— AR*: Upgraded average ranking method, described in Section 3;

— AT*: Upgraded active testing method, described in the preceding section;
— ARO: Average ranking method based on accuracy alone;

— ATO: Active testing method based on accuracy alone;

The MIL values for the four variants above are presented in Table 5. The
corresponding loss curves are shown in Fig. 8. Note that the curve for AR* is
the same curve shown earlier in Fig. 3.

Table 5 MIL values of the AR and AT variants described above

Method | AR* AT* ARO ATO
MIL 0.531 | 0.736 | 22.11 | 3.108

The results show that the upgraded versions of AR and AT that incorpo-
rate both accuracy and runtime lead to much better loss values (MIL) than
their accuracy-based counterparts. The corresponding loss curves are shown
in Fig. 8.

Statistical tests were used to compare the variants of algorithm selection
methods presented above. Following Demsar [Demsar, 2006] Friedman test was
used first to determine whether the methods were significantly different. As the
result of this test was positive, we have carried out Nemenyi test to determine
which of the methods are (or are not) statistically different. The data used for
this test is shown in Table 6. For each of the four selection methods the table
shows the individual MIL values for the 39 datasets used in the experiment.

Statistical tests require that the MIL values be transformed into ranks. We
have done that and the resulting ranks are also shown in this table. The mean
values are shown at the bottom of the table. If we compare the mean values of
AR* and AT*, we note that AR* is slightly better than AT* when considering
MILs, but the ordering is the other way round when considering ranks.

Title Suppressed Due to Excessive Length 21

AR* ——

- AT ———
1.8 ARO - - =
=% ATO = = =

0.8

Accuracy Loss (%)

06 | - - 1
04 | '

0.2 | 1

0 . . .
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7
Time (seconds)

Fig. 8 Mean loss-time curves of the AR and AT variants described above

CD
| |
1 2 3 4
L L |
AR* J_ L ARO
AT — ———— L ATO

Fig. 9 Results of Nemenyi test. Variants that are connected by a horizontal line are statis-
tically equivalent.

Figure 9 shows the result of the statistical test discussed earlier. The two
best variants are A3R-based Average Ranking (AR*) and the active testing
method AT*. Although AR* has achieved better performance (MIL), the sta-
tistical test indicates that the difference is not statistically significant. In other
words, the two variants are statistically equivalent.

Both of these methods outperform their accuracy based counterparts, namely
ATO0 and ARO. The reasons for this were already explained earlier. This is due
to the fact that the accuracy based variants tend to select slow algorithms in
the initial stages of the testing. This is clearly a wrong strategy, if the aim is
to identify algorithms with reasonable performance relatively fast.

An interesting question is whether the AT* method could ever beat AR
and, if so, under which circumstances. We believe this could happen if much
larger number of algorithms were used. As we have mentioned earlier, in this
study we have used 53 algorithms, which is a relatively modest number by
current standards. If we were to consider variants of algorithms with different
parameter settings, the number of algorithm configurations would easily in-
crease by 1-2 orders of magnitude. We expect that under such circumstances

22 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Table 6 MIL values for the four meta-learners mentioned in Fig. 8 on different datasets

AR* ARO AT* ATO
Dataset MIL Rank MIL Rank MIL Rank MIL Rank
Anneal. ORIG 0.00 1.0 4.50 4.0 0.05 2.0 0.95 3.0
Kr-vs-kp 0.01 1.0 10.77 4.0 0.03 2.0 4.67 3.0
Letter 1.07 1.0 83.94 4.0 2.60 2.0 5.26 3.0
Balance-scale 0.34 1.0 0.49 3.0 0.47 2.0 0.70 4.0
Mfeat-factors 0.70 3.0 45.58 4.0 0.70 2.0 0.67 1.0
Mfeat-fourier 0.76 2.0 31.39 4.0 0.43 1.0 1.79 3.0
Breast-w 0.00 1.5 1.10 4.0 0.00 1.5 0.08 3.0

Mfeat-karhunen 0.21 2.0 30.81 4.0 0.08 1.0 0.43 3.0
Mfeat-morphol. 0.37 1.0 13.01 4.0 0.65 2.0 3.49 3.0

Mfeat-pixel 0.00 2.0 73.88 4.0 0.00 2.0 0.00 2.0
Car 0.53 1.0 3.82 4.0 0.98 2.0 3.04 3.0
Mfeat-zernike 2.02 2.0 28.82 4.0 1.980 1.0 5.75 3.0
Cmc 0.24 1.0 4.11 4.0 0.36 2.0 1.98 3.0
Mushroom 0.00 1.5 30.97 4.0 0.00 1.5 0.02 3.0
Nursery 0.27 1.0 28.45 4.0 0.28 2.0 5.34 3.0
Optdigits 0.56 1.0 57.70 4.0 0.71 2.0 1.43 3.0
Credit-a 0.01 1.0 0.56 4.0 0.01 2.0 0.41 3.0
Page-blocks 0.03 1.0 3.11 4.0 0.09 2.0 0.54 3.0
Credit-g 0.00 1.0 0.53 4.0 0.00 2.0 0.05 3.0
Pendigits 0.29 1.0 55.04 4.0 0.41 2.0 1.21 3.0
Cylinder-bands 0.00 1.5 8.17 4.0 0.00 1.5 1.18 3.0
Segment 0.00 1.0 25.05 4.0 0.03 2.0 1.21 3.0
Diabetes 0.00 2.0 0.83 4.0 0.00 2.0 0.00 2.0
Soybean 0.00 1.0 47.29 4.0 0.00 2.0 0.01 3.0
Spambase 0.06 1.0 17.25 4.0 0.19 2.0 1.79 3.0
Splice 0.41 2.0 34.46 4.0 0.31 1.0 0.44 3.0
Tic-tac-toe 0.07 2.0 2.45 3.0 0.00 1.0 9.84 4.0
Vehicle 1.34 1.0 5.76 4.0 1.85 2.0 5.12 3.0
Vowel 0.68 1.0 17.89 4.0 1.05 2.0 10.50 3.0
Waveform-5000 0.96 2.0 32.62 4.0 0.71 1.0 1.81 3.0
Electricity 3.12 2.0 23.18 4.0 2.71 1.0 14.09 3.0
Solar-flare 0.00 1.5 0.01 3.0 0.00 1.5 0.14 4.0
Adult 0.76 2.0 9.61 4.0 0.72 1.0 1.84 3.0
Yeast 0.00 1.0 4.25 4.0 0.23 2.0 2.22 3.0
Satimage 0.27 1.0 36.29 4.0 0.90 2.0 2.51 3.0
Abalone 0.42 1.0 9.01 4.0 0.59 2.0 1.01 3.0
Kropt 5.07 1.0 58.64 4.0 9.22 2.0 21.35 3.0
Baseball 0.12 1.0 1.57 3.0 0.21 2.0 4.90 4.0
Eucalyptus 0.03 1.0 19.30 4.0 0.16 2.0 3.47 3.0

Mean 0.53 1.4 22.11 3.9 0.74 1.7 3.11 3.0

the active testing method would have an advantage over AR. AR would tend to
spend a lot of time evaluating very similar algorithms rather than identifying
which candidates represent good competitors.

5 Effect of Incomplete Meta-data on Average Ranking

Our aim is to investigate the issue of how the generation of the average ranking
is affected by incomplete test results in the meta-dataset available. The work

Title Suppressed Due to Excessive Length 23

presented here focuses on the AR* ranking discussed earlier in Section 3. We
wish to see how robust the method is to omissions in the meta-dataset. This
issue is relevant because meta-datasets that have been gathered by researchers
are very often incomplete. Here we consider two different ways in which the
meta-dataset can be incomplete: First, the test results on some datasets may
be completely missing. Second, there may be certain proportion of omissions
in the test results of some algorithms on each dataset.

The expectation is that the performance of the average ranking method
would degrade when less information is available. However, an interesting ques-
tion is how grave the degradation is. The answer to this issue is not straight-
forward, as it depends greatly on how diverse the datasets are and how this
affects the rankings of algorithms. If the rankings are very similar, then we
expect that the omissions would not make much difference. So the issue of the
effects of omissions needs to be relativized. To do this we will investigate the
following issues:

— Effects of missing test results on X% of datasets (alternative MTD);
— Effects of missing X% of test results of algorithms on each dataset (alter-
native MTA).

If the performance drop of alternative MTA were not too different from the
drop of alternative MTD, then we could conclude that X% of omissions is not
unduly degrading the performance and hence the method of average ranking is
relatively robust. Each of these alternatives is discussed in more detail below.

Missing all test results on some datasets (alternative MTD): This strategy
involves randomly omitting all test results on a given proportion of datasets
from our meta-dataset. An example of this scenario is depicted in Table 7. In
this example the test results on datasets Do and Dj are completely missing.
The aim is to show how much the average ranking degrades due to these
missing results.

Table 7 Missing test results on certain percentage of datasets (MTD)

Algorithms | D1 Do D3 Dy D5 Dg

al 0.85 0.77 | 0.98 0.82
a2 0.95 0.67 | 0.68 0.72
as 0.63 0.55 | 0.89 0.46
aq 0.45 0.34 | 0.58 0.63
as 0.78 0.61 | 0.34 0.97
ag 0.67 0.70 | 0.89 0.22

Missing some algorithm test results on each dataset (alternative MTA):
Here the aim is to drop a certain proportion of test results on each dataset.
The omissions are simply distributed uniformly across all datasets. That is,
the probability that the test result of algorithm a; is missing is the same irre-
spective of which algorithm is chosen. An example of this scenario is depicted
in Table 8. The proportion of test results on datasets/algorithms omitted is a

24 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Table 8 Missing test results on certain percentage of algorithms (MTA)

Algorithms D¢
a1 . | 0.82
as |

a 0.34 | 0.44

as 0.42

ae 0.89

parameter of the method. Here we use the values shown in Table 9. We use the
same meta-dataset described earlier in this article. This dataset was used to
obtain a new one in which the test results of some datasets, chosen at random,
would be obliterated. The resulting dataset was used to construct the average
ranking. Each ranking was then used to construct a loss-time curve. The whole
process was repeated 10 times. This way we would obtain 10 loss-time curves,
which would be aggregated into a single loss-time curve. Our aim is to upgrade
the average ranking method to be able to deal with incomplete rankings. The
enhanced method (AR*-MTA-H) is described in the next section. It can be
characterized as a heuristic method of aggregation of incomplete rankings that
uses weights of ranks. Later it is compared to the classical approach (AR*-
MTA-B), that serves as a baseline here. This method is based on the original
Borda’s method [Lin, 2010] and is commonly used by many researchers.

Table 9 Percentages of omissions and the numbers of datasets and algorithms used

Omissions % 0 5 10 | 20 | 50 | 90 | 95
No of datasets used in MTD 38 |36 | 34 |30 | 19 | 4 2
No of tests per dataset in MTA | 53 | 50 | 48 | 43 | 26 | 5 3

5.1 Aggregation Method for Incomplete Rankings (AR*-MTA-H)

Before describing the method, let us consider a motivating example (see Table
10), illustrating why we cannot simply use the usual average ranking method
[Lin, 2010], often used in comparative studies in machine learning literature.
Let us compare the rankings Ry and R (Table 10). We note that algorithm
as is ranked 4 in ranking Rj, but has rank 1 in ranking Rs,. If we used the
usual method, the final ranking of as would be the mean of the two ranks, i.e.
(441)/2=2.5. This seems intuitively not right, as the information in ranking
R5 is incomplete. If we carry out just one test and obtain ranking Rs as a
result, this information is obviously inferior to having conducted more tests
leading to ranking R;. So these observations suggest that the number of tests
should be taken into account to set the weight to of the individual elements
of the ranking.

Title Suppressed Due to Excessive Length 25

Table 10 An example of two rankings R; and Ra and the aggregated ranking R4

R; | Rank Ry [Rank RA | Rank | Weight
al 1 as 1 al 1.67 1.2

as 2 al 2 as 2 1

aq 3 a4 3 1

az 4 a2 3.5 1.2

ag 5 ag 5 1

as 6 as 6 1

In our method the weight is calculated using the expression (N—1)/(Nmaxz—
1), where N represents the number of filled-in elements in the ranking and
Nmax the maximum number of elements that could be filled-in. So, for in-
stance, in the ranking Ry, N = 6 and Nmax = 6. Therefore, the weight of
each element in the ranking is 5/5 = 1. We note that N — 1 (i.e. 5), repre-
sents the number of non-transitive relations in the ranking, namely a; > as,
as > aq, .. , ag > as. Here a; > a; is used to indicate that a; is preferred to
CL]'.

Let us consider the incomplete ranking R5. Suppose we know a priori that
the ranking could include 6 elements and so Nmax = 6, as in the previous case.
Then the weight of each element will be (N —1)/(Nmaz—1) =1/5 = 0.2. The
notion of weight captures the fact that ranking Rs provides less information
than ranking R;. We need this concept in the process of calculating the average
ranking.

Our upgraded version of the aggregation method for incomplete rankings
involves the initialization step, which consists of fetching the first ranking and
using it to initialize the average ranking R4. Then in each subsequent step a
new ranking is read-in and aggregated with the average ranking, producing a
new average ranking. The aggregation is done by going through all elements in
the ranking, one by one. If the element appears in both the aggregated ranking
and the read-in ranking, its rank is recalculated as a weighted average of the

two ranks:
A A

rit = et e wl) (wit +w))] xw] /(] +w]) (7)
where 7 represents the rank of element i in the aggregated ranking and rf
the rank of the element i in the ranking j and wZA and w] represent the
corresponding weights. The weight is updated as follows:

wi = w + wf (8)
If the element appears in the aggregated ranking, but not in the new read-in
ranking, both the rank and the weight are kept unchanged.

Suppose the aim is to aggregate the rankings R; and Rs shown before. The
new rank of ay will be 7§ = 4 * 1/1.2 + 1*0.2/1.2 = 3.5. The weight will be
wi =1 + 0.2 = 1.2. The final aggregated ranking of rankings R; and Ry is
R# as shown in Table 10.

26 Salisu Mamman Abdulrahman Pavel Brazdil et al.

5.2 Results on the Effects of Omissions in the Meta-Dataset
5.2.1 Characterization of the meta-dataset

We were interested in analyzing different rankings of classification algorithms
on different datasets used in this work and, in particular, how these differ
for different pairs of datasets. If two datasets are very similar, the algorithm
rankings will also be similar and, consequently, the correlation coefficient will
be near 1. On the other hand, if the two datasets are quite different, the
correlation will be low. In the extreme case, the correlation coefficient will be
-1 (i.e. one ranking is the inverse of the other). So the distribution of pairwise
correlation coeflicients provides an estimate of how difficult the meta-learning
task is.

Fig.10 shows a histogram of correlation values. The histogram is accompa-
nied by expected value, standard deviation and coefficient of variation calcu-
lated as the ratio of standard deviation to the expected value (mean) [Witten
and Frank, 2005]. These measures are shown in Table 11.

Histogram of correlation

150
|

Frequency

L]

-0.5 0.0 0.5 1.0

correlation

Fig. 10 Spearman’s rank correlation coefficient between rankings for pairs of datasets.

Table 11 Measures characterizing the histogram of correlations in Fig. 10

Measure % | Expected Value | Standard Deviation | Coefficient of Variation
Value 0.5134 0.2663 51.86%

Title Suppressed Due to Excessive Length 27

5.2.2 Study of accuracy-based rankings and one paradox

Ranking methods use a particular performance measure to construct an order-
ing of algorithms. Some commonly used measures of performance are accuracy,
AUC or A3R that combines accuracy and runtime discussed in Section 3.3. In
the first study we have focused solely on the average ranking based on accu-
racy. When studying how omissions of tests on datasets affect rankings and
the corresponding loss time curves, we became aware of one paradox that can
arise under certain conditions. This paradox can be formulated as follows:

Suppose we use tests of a given set of algorithms on a set of M (N) datasets
leading to M (N) accuracy-based rankings. Suppose the M (N) rankings are
aggregated to construct the average ranking. Suppose that M > N (for in-
stance, consider M=10 and N=1). Let AR); represent the average ranking
elaborated on the basis M rankings obtained on the respective M datasets. We
can then expect that MIL of the variant AR would be lower (better) than
the MIL of ARy . However, we have observed that this was exactly the other
way round.

Table 12 provides evidence for the observation above. When all datasets
are used to construct the average ranking (omissions are 0%) the MIL is 22.11.
When only 5% are used (omissions are 95%), the MIL value is lower, i.e. 15.15.
In other words, using more information leads to worse results!

Table 12 Mean interval loss (MIL) values for different percentage of omissions

% Omissions
Method 0 5 10 20 50 | 90 95

AR*-MTD 22.11 | 21.09 | 20.66 | 20.12 | 19 | 17.92 | 15.15

Our explanation for this paradox is as follows. The accuracy-based average
ranking orders the algorithms by accuracy. If we use several such rankings
constructed on different datasets, we can expect that we get an ordering where
the algorithms with high accuracy on many datasets will appear in the initial
positions of the ranking. These algorithms tend to be slower than the ones that
require less time to train. So if we use this ranking and use loss time curves in
the evaluation, we need to wait a long time before the high-accuracy algorithms
get executed. This does not happen so much if use a ranking constructed on
fewer datasets.

We have carried out additional experiments that support this explanation.
First, if we use just test curves, where each test lasts one unit of time, the para-
dox disappears. Also, if we use A3R to rank the algorithms, again the problem
disappears. In these situations we can see that if we use more information, the
result is normally better.

In conclusion, to avoid the paradox, it is necessary to use a similar cri-
terion both in the construction of rankings and in the process of loss curve
construction.

28 Salisu Mamman Abdulrahman Pavel Brazdil et al.

5.2.3 Study of AR™ ranking methods and the results

In the second study we have focused on AR*. Table 13 presents the results for
the alternatives AR*MTD, AR*MTA-H and AR*-MTA-B in terms of mean
interval loss (MIL). All loss-time curves start from the initial loss of the default
classification. This loss is calculated as the difference in performance between
the best algorithm and the default accuracy for each dataset. The default
accuracy is calculated in the usual way, by simply predicting the majority
class for the dataset in question. The values for the ordinary average ranking

method, AR*-MTA-B, are also shown, as this method serves as a baseline.

Fig.11 shows the loss-time curves for the three alternatives when the num-
ber of omissions is 90%. Not all loss-time curves are shown, as the figure would

be rather cluttered.

Table 13 Mean interval loss (MIL) values for different percentage of omissions

Omission%
Method 0 5 10 20 50 90 95
AR*-MTD 0.531 0.535 | 0.535 | 0.536 | 0.550 1.175 1.633
AR*MTA-H 0.531 0.534 | 0.537 | 0.542 | 0.590 1.665 2.042
AR*-MTA-B 0.531 0.536 | 0.537 | 0.544 | 0.593 | 2.970 | 3.402
AR*-MTA-H/AR*-MTD 1.00 1.00 1.00 1.01 1.07 1.42 1.25
25
AR*-MTD-90% =——
AR*-MTA-B-90%
AR*-MTA-H-90% ——

2

a i

S

>

g

3 .

8

<

0 ! ! . .
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6

Time (seconds)

Fig. 11 Comparison of AR*-MTA-H with AR*-MTD and the baseline method AR*-MTA-

B for 90% of omissions.

Our results show that the proposed average ranking method AR*-MTA-H
achieves better results than the baseline method AR*-MTA-B. We note also

Title Suppressed Due to Excessive Length 29

CD

AR*-MTD
AR*-MTA-H

AR*-MTA-B

Fig. 12 Results of Nemenyi test, variants of the meta-learners that are connected by a
horizontal line are statistically equivalent.

that although the proposed method AR*-MTA-H achieves comparable results
to AR*-MTD for many values of the percentage drop (all values up to about
50%). Only when we get to rather extreme values, such as 90%, the difference
is noticeable. Still, the differences between our proposed variant AR*MTA-H
and AR*MTD are smaller than the differences between AR*-MTA-B and
AR*-MTD.

These above observations are supported also by the results of a statistical
test. The values shown in Table 13 were used to conduct a Nemenyi test and
the result is shown in Fig. 12. These results indicate that the proposed average
ranking method is relatively robust to omissions.

6 Conclusions
Upgrading AT and AR Methods to be More Effective

In this paper we addressed an approach for algorithm selection where the
recommendation is presented in the form of a ranking. The work described
here extends two existing methods described earlier in the literature. The first
one was average ranking (AR) and the second active testing (AT).

The first method (AR) is a rather simple one. It calculates an average
ranking for all algorithms over all datasets. We have shown how to upgrade
this method to incorporate the measure A3R that combines accuracy and run
time. The novelty here lies in the use of A3R, instead of just accuracy. The
second method (AT) employs tests to identify the most promising candidates,
as its aim is to intelligently select the next algorithm to test on the new dataset.
We have also shown how this method can be to upgraded to incorporate the
measure A3R that combines accuracy and runtime.

Establishing the Correct Balance between Accuracy and Runtime

We have also investigated the issue of how to establish the correct balance
between accuracy and runtime. Giving too much weight to time would pro-
mote rather poor algorithms and hence time could be wasted. Giving too little
weight to time would work in the opposite direction. It would promote tests

30 Salisu Mamman Abdulrahman Pavel Brazdil et al.

on algorithms which exhibit good performance in general, but may occasion-
ally fail. Unfortunately, such algorithms tend to be rather slow and so their
incorporation early in the testing process may actually delay the process of
identifying good algorithms early.

It is thus necessary to establish the correct balance between the weight
given to accuracy and the weight given to time. As we have shown in Section
3.3.2, this can be done by determining an appropriate setting for parameter
P used within function A3R that combines accuracy and runtime. One rather
surprising consequence of this is the following: if the user wished to impose his
preference regards the relative importance of accuracy and runtime, he/she
would probably end up with a worse result than the one obtained with our
setting.

Evaluation Methodology using Loss-Time Curves

The experimental results were presented in the form of loss-time curves. This
representation, where time is represented on a logarithmic scale, has the fol-
lowing advantages. First, it stresses the losses at the beginning of the curve,
corresponding to the initial tests. This is justified by the fact that users would
normally prefer to obtain good recommendations as quickly as possible.

We note that testing without a cut-off on time (budget) is not really prac-
ticable, as users are not prepared to wait beyond a given limit. On the other
hand, many applications may allow that results come only after some small
amount of time. This is why here we focused on the selection process within a
given time interval. Having a fixed time interval has advantages, as it is pos-
sible to compare different variants just by comparing the mean interval loss
(MIL).

The results presented earlier, see Section 4.3, show that the upgraded ver-
sions of AR* and AT* lead to much better results in terms of mean loss values
(MIL) than their accuracy-based counterparts. In other words, the incorpora-
tion of both accuracy and runtime into the methods pays off.

Disastrous Results of ARO and a Paradox Identified

We have shown that if we do not incorporate both accuracy and runtime,
the variant ARO that uses only accuracy leads to disastrous results in terms
of MIL. We have provided an explanation for this phenomenon and drawn
attention to an apparent paradox, as more information seems to lead to worse
results.

Comparison of AT* and AR* methods

When comparing the AT* and AR* methods, we note that both methods lead
to comparable results. We must keep in mind, however, that our meta-dataset
included test results on 53 algorithms only. If more candidate algorithms were
used, we expect that AT* method would lead to better results that AR*.

Title Suppressed Due to Excessive Length 31

The Effects of Incomplete Test Results on AR* method

We have also investigated the problem of how the process of generating the
average ranking is affected by incomplete test results by describing a relatively
simple method, AR*-MTA-H, that permits to aggregate incomplete rankings.
We have also proposed a methodology that is useful in the process of evaluating
our aggregation method. This involves using a standard aggregation method
AR*MTD on a set of complete rankings, but whose number is decreased
following the proportion of omissions in the incomplete rankings. As we have
shown, the proposed aggregation method achieves quite comparable results
and is relatively robust to omissions in test results in the test data. We have
shown that a percentage drop of up to 50% does not make much difference.
As the incomplete meta-dataset does not affect much the final ranking and
the corresponding loss, this could be explored in future design of experiments,
when gathering new test results.

6.1 Discussion and Future work

In this section we present some suggestions on what could be done in future
work.

Verifying the Conjecture Regarding AT*

In Section 4.3 we have compared the two best variants - AT* and AR*. We have
shown that the results obtained with the AT* variant are slightly worse than
those obtained using AR*. However, the two results are statistically equivalent
and it is conceivable that if the number of algorithms or their variants were
increased, the AT* method could win over AR*. Experiments should be carried
out to verify whether this conjecture holds. Also, we plan to re-examine the
AT method to see if it could be further improved.

Would the Best Setting of P Transfer to Other Datasets?

An interesting question is how stable the best setting for the parameter P
(parameter used within A3R) is. This could be investigated in the follow-
ing manner. First we can gather a large set of datasets and draw samples of
datasets of fixed size at random. We would establish the optimum P; for sam-
ple i and then determine what we would be the loss on sample j if P; were
used, rather than the optimized value P;.

How does P wvary for different budgets?

Another question is whether the optimum value of P varies much if the bud-
get (Trmaz) is altered. A more general question involves the interval Ty -
Tinaz- Further studies should be carried out, so that these questions could be
answered.

32 Salisu Mamman Abdulrahman Pavel Brazdil et al.

Applying AT both to Algorithm Selection and Hyper-parameter Tuning

We should investigate whether the AT method can be extended to handle both
the selection of learning algorithms and parameter settings. This line of work
may require the incorporation of techniques used in the area of parameter
settings (e.g. [Xu et al., 2011], among others).

Combining AT with Classical Approaches to Meta-learning

Another interesting issue is whether the AT approach could be extended to
incorporate the classical dataset characteristics and whether this would be
beneficial. Earlier work [Leite and Brazdil, 2008] found that the AT approach
achieves better results than classical meta-models based on dataset character-
istics. More recently, it was shown [Sun and Pfahringer, 2013] that pairwise
meta-rules were more effective than the other ranking approaches. Hence, it is
likely that the AT algorithm could be extended by incorporation information
of dataset characteristics and pairwise meta-rules.

Leave-One-Out C'V versus k-fold Cross-validation

All methods discussed in this paper were evaluated using the leave-one-out
cross-validation (LOO-CV). All datasets except one were used to refine our
model (e.g. AR). The model was then applied to the dataset that was left out
and evaluated by observing the loss curve. We have opted for this method, as
our meta-dataset included test results on a modest number of datasets (39).
As LOO-CV may suffer from high variance, 10-fold CV could be used in future
studies.

Study of the Effects of Incomplete Meta-datasets

In most work on meta-learning it is assumed that the evaluations to construct
the meta-dataset can be carried out off-line and hence the cost (time) of gath-
ering this data is ignored. In future work we could investigate approaches that
permit to consider also the costs (time) of off-line tests. Their cost (time)
could be set to some fraction of the cost of on-line test (i.e. tests on a new
dataset), but not really ignored altogether. The approaches discussed in this
paper could be upgraded so that they would minimize the overall costs.

Acknowledgements

The authors wish to express our gratitude to the following institutions which
have provided funding to support this work:

— Federal Government of Nigeria Tertiary Education Trust Fund under the
TETFund 2012 AST$D Intervention for Kano University of Science and
Technology, Wudil, Kano State, Nigeria for PhD Overseas Training;

Title Suppressed Due to Excessive Length 33

— FCT/MEC through PIDDAC and ERDF/ON2 within project NORTE-
07-0124-FEDER-000059 and through the COMPETE Programme (opera-
tional programme for competitiveness) and by National Funds through the
FCT Portuguese Foundation for Science and Technology within project
FCOMP-01-0124-FEDER-037281;

— Grant 612:001:206 from the Netherlands Organisation for Scientific Re-
search (NWO).

We wish to express our gratitude to all anonymous referees for their detailed
comments which led to various improvements of this paper. Also, our thanks
to Miguel Cachado for reading through the paper and his comments and in
particular one very useful observation regarding the AT method.

References

S. M. Abdulrahman and P. Brazdil. Measures for Combining Accuracy and
Time for Meta-learning. In Meta-Learning and Algorithm Selection Work-
shop at ECAI 2014, pages 49-50, 2014.

P. Brazdil and C. Soares. A Comparison of Ranking Methods for Classifica-
tion Algorithm Selection. In Machine Learning: ECML 2000, pages 63-75.
Springer, 2000.

P. Brazdil, C. Soares, and J. P. da Costa. Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results. Machine Learning, 50
(3):251-277, 2003.

P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications
to data mining. Springer Science & Business Media, 2008.

J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. The
Journal of Machine Learning Research, 7:1-30, 2006.

V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1972.

M. Feurer, T. Springenberg, and F. Hutter. Initializing bayesian hyperparam-
eter optimization via meta-learning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 2015.

J. Firnkranz and J. Petrak. An Evaluation of Landmarking Variants. In
Working Notes of the ECML/PKDD 2000 Workshop on Integrating Aspects
of Data Mining, Decision Support and Meta-Learning, pages 57-68, 2001.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H. Wit-
ten. The WEKA Data Mining Software: An Update. ACM SIGKDD FEx-
plorations Newsletter, 11(1):10-18, 2009.

N. Jankowski. Complexity measures for meta-learning and their optimality.
Algorithmic Probability and Friends. Bayesian Prediction and Artificial In-
telligence., pages 198-210, 2013.

R. Leite and P. Brazdil. Selecting Classifiers Using Meta-Learning with Sam-
pling Landmarks and Data Characterization. In Proceedings of the 2nd
Planning to Learn Workshop (PlanLearn) at ICML/COLT/UAI 2008, pages
35-41. 2008.

34 Salisu Mamman Abdulrahman Pavel Brazdil et al.

R. Leite and P. Brazdil. Active Testing Strategy to Predict the Best Classifi-
cation Algorithm via Sampling and Metalearning. In FCAI pages 309-314,
2010.

R. Leite, P. Brazdil, and J. Vanschoren. Selecting Classification Algorithms
with Active Testing. In Machine Learning and Data Mining in Pattern
Recognition, pages 117-131. Springer, 2012.

L. Li, W. Chu, J. Langford, and R.E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of 19th WWW,
pages 661-670. ACM, 2010.

S. Lin. Rank aggregation methods. WIREs Computational Statistics, 2:555—
570, 2010.

B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. Tseng. Active
Learning for Ranking through Expected Loss Optimization. In Proceedings
of the 33rd international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 267-274. ACM, 2010.

H. R. Neave and P. L. Worthington. Distribution-free Tests. Unwin Hyman
London, 1988.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Tell me who can learn you
and I can tell you who you are: Landmarking various learning algorithms.
In Proceedings of the 17th International Conference on Machine Learning,
pages 743-750, 2000.

V. Pihur, S. Datta, and S. Datta. RankAggreg, an R package for weighted
rank aggregation. BMC bioinformatics, 10(1):62, 2009.

R. B. Prudencio and T. B Ludermir. Active Selection of Training Examples
for Meta-Learning. In Hybrid Intelligent Systems, 2007. HIS 2007. Tth In-
ternational Conference on, pages 126-131. IEEE, 2007.

J. R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:
65-118, 1976.

K. A. Smith-Miles. Cross-disciplinary Perspectives on Meta-Learning for Al-
gorithm Selection. ACM Computing Surveys (CSUR), 41(1):6:1-6:25, 2008.

Quan Sun and B. Pfahringer. Pairwise meta-rules for better meta-learning-
based algorithm ranking. Machine Learning, 93(1):141-161, 2013.

J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast
Algorithm Selection using Learning Curves. In Advances in Intelligent Data
Analysis XIV, pages 298-309. Springer, 2015.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):
49-60, 2014.

1. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming. In
RCRA workshop on Experimental Evaluation of Algorithms for Solving
Problems with Combinatorial Explosion at the International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2011.

Title Suppressed Due to Excessive Length

35

A Algorithm ranks

Table 14 Algorithms used in the experiment and their ranks ordered using AR*. All clas-
sifiers as implemented in Weka 3.7.12. For full details, see https://www.openml.org/s/37

Algorithm Rank-AR* Rank-ARO
A1DE 1 8
Bagging(RandomTree) 2 14
NaiveBayes 3 35
RandomCommittee(RandomTree) 4 15
NaiveBayesUpdateable 5 36
BayesNet(K2) 6 32
END(ND(J48)) 7 13
Bagging(J48) 8 9
LogitBoost(DecisionStump) 9 17
RandomForest 10 3
J48 11 28
RandomSubSpace(REPTree) 12 21
MultiBoost AB(J48) 13 10
SMO(PolyKernel) 14 11
AdaBoostM1(REPTree) 15 18
Bagging(REPTree) 16 22
REPTree 17 37
MultiBoost AB(REPTree) 18 19
SimpleLogistic 19 4
Bagging(NaiveBayes) 20 34
AdaBoostM1(J48) 21 16
PART 22 30
HoeffdingTree 23 33
ClassificationViaRegression(M5P) 24 12
LMT 25 1
JRip 26 31
AdaBoostM1(RandomTree) 27 40
AdaBoostM1(NaiveBayes) 28 26
AdaBoostM1(IBKk) 29 24
RandomTree 30 41
Bagging(JRip) 31 6
MultiBoost AB(RandomTree) 32 38
MultiBoost AB(JRip) 33 7
IterativeClassifierOptimizer(LogitBoost(DecisionStump)) 34 20
MultiBoostAB(NaiveBayes) 35 29
LADTree 36 25
Bagging(LMT) 37 2
Dagging(DecisionStump) 38 42
OneR 39 45
NBTree 40 23
AdaBoostM1(LMT) 41 5
DTNB 42 27
DecisionStump 43 50
AdaBoostM1(DecisionStump) 44 43
Bagging(OneR) 45 44
SMO(RBFKernel) 46 39
AdaBoostM1(OneR) 47 47
MultiBoost AB(OneR) 48 46
MultiBoostAB(DecisionStump) 49 48
Bagging(DecisionStump) 50 49
ZeroR 51 52
CVParameterSelection(ZeroR) 52 53
RacedIncrementalLogitBoost(DecisionStump) 53 51

