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published in 1945; > 1 000 000 copies sold

Marvin Minsky: “everyone should know the work of George Pólya
Marvin Minsky: “ on how to solve problems”

highly praised by Zhores Ivanovich Alferov (2000 Nobel prize in physics)



How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

For now, I only consider optimising this step

of Polya’s approach.
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The nature of computation

Clear, precise instructions – flawlessly executed

 algorithm
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The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science.

(Charles Babbage, 1864)
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The age of computation

“The maths that computers use to de-
cide stu↵ [is] infiltrating every aspect of
our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Today, machine learning is "the next big thing".

But some tend to forget that this, too, has a long

history. Even multi-layer neural networks have been

around for a long time ...



Machine learning is old ...

I Alan Turing (1950): Computing machinery and intelligence

I Farley and Clark (1954): Simulation of Self-Organizing
Systems by Digital Computer

I Arthur Samuel (1959): Some Studies in Machine Learning
Using the Game of Checkers

I Paul Werbos (1974): Beyond Regression: New Tools
for Prediction and Analysis in the Behavioral Sciences

I . . .
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Of course, there has been much progress recently.

Still, much of it still fits into a few categories

of approaches that have been studied for a while.



Traditional machine learning:

I supervised classification / regression:

Given: set of training data with correct labels
Given: T := {(x1, y1), . . . , (xk, yk)}
Want: function mapping x to y minimising error on T

I unsupervised learning

I semi-supervised learning

I reinforcement learning

NB: learning = optimisation over family of functions (‘models’)
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Generalised machine learning:

I optimisation over family of algorithms for given problem P

e.g., TSP solvers

I Goal: maximise performance
e.g., expected time for finding optimal solution

I Given: set of problem instances T := {i1, . . . ik}
I Want: algorithm with maximum performance on T
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The machine learning revolution

manually constructed algorithms

 
automatic adaptation to given set / distribution of inputs
through optimisation of performance metric (loss minimisation)

machine learning procedures
= meta-algorithms (procedures for optimising algorithm)
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“Parameter optimization for general
broad-spectrum use is a daunting task
[...]

How could then any set of defaults
be recommended, without an enor-
mous expense of time and money?
Fortunately, there’s a way out of this
dilemma, thanks to advances in the
theory of learning.”

Donald Knuth, The Art of Computer Programming,

Vol. 4, Fascicle 6 (Satisfiability), p. 125
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Knuth’s sat13 (7.2.2.2C) on diverse set of instances
(very easy to medium; trained on very easy only)
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running time default [gmem]

mean running time 0.572 ! 0.402 gmems;

geometric average speedup: 1.414-fold
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Knuth’s sat13 (7.2.2.2C) on diverse set of instances
(TAOCP testing instances; trained on very easy)
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mean running time 47.4 ! 36.9 gmems;

geometric average speedup: 1.357-fold
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CPLEX on Wildlife Corridor Design
Hutter, HH, Leyton-Brown (2010)
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 52.3⇥ speedup on average!
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The algorithm configuration problem

Given:

I parameterised target algorithm A

with configuration space C

I set of (training) inputs I

I performance metric m

(w.l.o.g. to be minimised)

Want: c
⇤ 2 argminc2C m(A[c], I )
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Algorithm configuration is challenging:

I size of configuration space

I discrete / categorical parameters

I parameter interactions

I conditional parameters

I performance varies across inputs (problem instances)

I evaluating configurations can be very costly

I censored algorithm runs

 standard optimisation methods are insu�cient
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Algorithm configuration approaches:

I Advanced sampling methods
(e.g., REVAC, REVAC++ – Nannen & Eiben 2006–09)

I Racing
(e.g., F-Race – Birattari, Stützle, Paquete, Varrentrapp 2002;
Iterative F-Race – Balaprakash, Birattari, Stützle 2007;
irace package – López-Ibáñez, Dubois-Lacoste, Stützle, Birattari 2011;
irace+capping – Péres-Cáceres, López-Ibáñez, HH, Stützle, Birattari 2017)

I Model-free search
(e.g., ParamILS – Hutter, HH, Stützle 2007;
Hutter, HH, Leyton-Brown, Stützle 2009)

I Sequential model-based optimisation
(e.g., SPO – Bartz-Beielstein 2006; SMAC – Hutter, HH, Leyton-Brown
2011–12)
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Sequential Model-based Optimisation

parameter response

(Initialisation)
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measured

(Initialisation)
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Sequential Model-based Optimisation
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Sequential Model-based Optimisation

parameter response

model

predicted best

measured

new incumbent found!

(Initialisation)
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Sequential Model-based Algorithm Configuration (SMAC)

Hutter, HH, Leyton-Brown (2011)

I uses random forest model to predict performance
of parameter configurations

I predictions based on algorithm parameters and instance
features, aggregated across instances

I finds promising configurations based on expected improvement

criterion, using multi-start local search and random sampling

I initialisation with single configuration
(algorithm default or randomly chosen)
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Excellent results on widely studied problems:

I Mixed integer programming (CPLEX):
76 parameters, 2...52⇥ speed-up
Hutter, Leyton-Brown, HH (2010)

I AI Planning (LPG):
62 parameters, 3...118⇥ speed-up
Vallati, Fawcett, Gerevini, HH, Saetti (2011)

I Propositional satisfiability (PbO-CCSAT):
23 parameters, 3..230⇥ speed-up
Luo, HH, Cai (under review)
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PbO-CCSAT on revenue-optimising spectrum repacking (FCC)
(performance on test instances not used for configuration)
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running time (PAR10) 6554 ! 1979 CPU sec;

average speedup on instances solved by both configurations: 50-fold
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Further success stories:

I garbage collection in Java
Lengauer & Mössenböck (2014)

I bike sharing rebalancing
Dell’Amico et al. (2016)

I Machine learning (Auto-WEKA): 768 parameters
Thornton, Hutter, HH, Leyton-Brown (2013);

Kottho↵, Thornton, HH, Leyton-Brown (2017)

 automated machine learning (AutoML)

Holger Hoos: Learning how to solve it – faster, better and cheaper 22



Communications of the ACM, 55(2), pp. 70–80, February 2012

www.prog-by-opt.net



Total citations for key publications on

automated algorithm configuration
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LKH2+restart vs EAX+restart
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Per-instance algorithm selection (Rice 1976):

I Given: set S of algorithms for a problem, problem instance ⇡

I Objective: select from S the algorithm expected to solve ⇡
most e�ciently, based on (cheaply computable) features of ⇡

Note:

Best case performance bounded by oracle, which selects
the best s 2 S for each ⇡ = virtual best solver (VBS)
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EAX+restart vs perfect selector (VBS)
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Per-instance algorithm selection

algorithms
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Per-instance algorithm selection

selector

component
algorithms

feature extractor
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Key components:

I set of (state-of-the-art) solvers

I set of cheaply computable, informative features

I e�cient procedure for mapping features to solvers (selector)

I training data

I procedure for building good selector based on training data
(selector builder)
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“The overall champion in 2007 was SATzilla,
which was actually not a separate SAT solver
but rather a program that knew how to
choose intelligently between other solvers an
any given instance. [...]

This ‘portfolio’ approach, which tunes itself
nicely to the characteristics of vastly di↵erent
sets of clauses, has continued to dominate
the international competitions ever since.

Of course portfolio solvers rely on the exis-
tence of ‘real’ solvers, invented indepen-
dently and bug-free, which shine with respect
to particular classes of problems. And of
course the winner of the competition may
not be the best actual system for practical
use.”

Donald Knuth, The Art of Computer Programming,
Vol. 4, Fascicle 6 (Satisfiability), p. 132f.
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Methods for per-instance selection:

I classification-based: predict the best solver,
e.g., using . . .

I decision trees
(Guerri & Milano 2004)

I case-based reasoning
(Gebruers et al. 2004)

I (weighted) k-nearest neighbours

(Malitsky et al. 2011; Kadioglu et al. 2011)

I pairwise cost-sensitive decision forests + voting
(Xu, Hutter, HH, Leyton-Brown 2012)

I regression-based: predict running time for each solver,
select the one predicted to be fastest
(Leyton-Brown et al. 2003; Xu, Hutter, HH, Leyton-Brown 2007–9)

Holger Hoos: Learning how to solve it – faster, better and cheaper 30



Per-instance selection for the TSP

Kottho↵, Kerschke, HH, Trautmann (2016);
Kerschke, Bossek, Kottho↵, HH, Trautmann (2017)

I use 5 high-performance inexact TSP solvers

I consider large benchmark collection (TSPLIB, VLSI, RUE, ...)

I build per-instance selectors using range of feature sets,
feature selection + machine learning methods

I assess using cross-validation
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Results (PAR10):

I single best solver (EAX+restart): 36.30 CPU sec

I regression-based selector (based on SVM): 16.75 CPU sec

I oracle: 10.73 CPU sec
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Excellent results for many other problems:

I SAT  SAT competitions
(e.g., Xu, Hutter, HH, Leyton-Brown 2008, 2012)

I AI planning
(e.g., Helmert, Röger, Karpas 2011)

I Container pre-marshalling
(e.g., Tierney & Malitsky 2015)

I . . .

 ASlib (Bischl et al. 2016)
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Combining configuration and selection:

I performance complementarity between
di↵erent configurations of given solver
 selection over automatically determined configurations
 (e.g., Xu, Hutter, HH, Leyton-Brown 2011

I many design choices in selector construction,
di↵erent selectors perform best in di↵erent applications

 AutoFolio = automatic configuration of algorithm selectors
 (Lindauer, HH, Hutter, Schaub 2015)
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Recap

1. The machine learning revolution

2. Which parameter settings? (algorithm configuration)

3. Which solver? (algorithm selection)
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Wait a second ...

Faster: X

Better?Better: X
AutoML; Hutter, HH, Leyton-Brown (2010); Pagnozzi & Stützle (2018); ...

Cheaper?Cheaper: X
running time, manual performance optimjsation = money
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Recap

1. The machine learning revolution

2. Which parameter settings? (algorithm configuration)

3. Which solver? (algorithm selection)

4. Where the road goes ...



Making automated solver construction accessible

I problem: automated solver design methods (AS,AC,...)
problem: require substantial expertise, experience to use
 full potential currently not exploited

I idea: develop abstractions & platform
idea: to facilitate use, development
 substantially lowered barrier to entry

I proof-of-concept: algorithm selection for SAT
 Sparkle platform, Sparkle SAT Challenge

Holger Hoos: Learning how to solve it – faster, better and cheaper 37



[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

When we develop or assess algorithms, we often

think of that process like a competition, a race.

(And sometimes, as in SAT, we even have

prominent competitions.)

In a competition, all the glory goes to the winner;

Even the 2nd and 3rd place pale in comparison.



[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Instead, we want to give a single gold medal,

but cut it into pieces, recognising how much

every competitor contributes to the state of the art

in solving a given class of problem instances.



olympics.jpg





Sparkle SAT Challenge 2018

I part of FLoC Olympic Games, coordinated with
2018 SAT Competition

I launched March 2018, leader board phase 5–15 April,
final results @ FLoC 2018 (July)

I 23 solvers submitted
(19 open-source, 4 closed-source, hors concours)

I details: http://ada.liacs.nl/events/sparkle-sat-18
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Improvement over time, including hors-concours solvers
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Notice how the best stand-alone performance

only improves right after the leaderboard phase,

when some competitors who have held back their

solvers finally submit them.

Notice also how the selector and the VBS improve

throughout the leaderboard phase and beyond.

Test data was the same as in the SAT competition,

and quite different from training data.

Still, the selector performs well.



Stand-alone and relative marginal contribution
on testing set, with hors-concours solvers
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

The best solvers are very close w.r.t.

stand-alone performance

(typical for SAT competition).

The selector and VBS are much better.



Stand-alone and relative marginal contribution
on testing set, with hors-concours solvers
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[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Notice how the best stand-alone solver

does not make the biggest contribution to the selector.

Some very low-ranked solvers contribute very similarly.



Advantages over traditional competition:

I makes it easier to gain recognition for specialised techniques

I better reflects and makes accessible state of the art

I provides incentive to improve true state of the art

Further use of Sparkle:

I continuous solver evaluation (as community service)

I specialised application contexts (reduced solver sets)

I experimentation platform for algorithm selection,
configuration, programming by optimisation (PbO)
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Take-home message:

I AI revolution: explicit  automated programming

I Machine learning =⇢ automated performance optimisation

Machine learning ⇢ automated algorithm design

) great potential for OR!

I Meta-algorithmic techniques (configurators, selectors, . . . ):
powerful, useful, readily available;
key to better MIP, TSP, CP, SAT, SMT, ..., ML, AI

I Next: Make those easily accessible + broadly usable
 Sparkle (community e↵ort)
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How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).



[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

There might be the potential to automate more of Polya’s

approach.



How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).



How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).



Bigger picture:

I Part of broader e↵ort: Automation of AI (AutoAI)
(prominent special case: AutoML)

 advancement + democratisation of AI

I Sparkle, PbO use key AI techniques + (lots of) computation
to leverage human ingenuity + intuition

I Human-centred AI:
AI that augments, not replaces, human intelligence

) Auto-OR ?!!
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