
Learning how to solve it
– faster, better and cheaper

Holger H. Hoos

LIACS
Universiteit Leiden
The Netherlands

CS Department
University of British Columbia
Canada

OR 2018
Bruxelles (Belgium)

2018/09/14

Kevin Leyton-Brown
UBC

Thomas Stützle
U. Libre de Bruxelles

Frank Hutter
UBC

Zongxu Mu
UBC

Chris Thornton
UBC

Marius Schneider
U. Potsdam

Lin Xu
UBC

Yasha Pushak
UBC

Yoav Shoham
Stanford U.

Eugene Nudelman
Stanford U.

Chris Fawcett
UBC

Alan Hu
UBC

Domagoj Babić
UBC

Torsten Schaub
U. Potsdam

Benjamin Kaufmann
U. Potsdam

James Styles
UBC

Chuan Luo
U. Leiden

Alfonso Gerevini
U. di Brescia

Alessandro Saetti
U. di Brescia

Mauro Vallati
U. di Brescia

Matle Helmert
U. Basel

Erez Karpas
Technion

Gabriele Röger
U. Freiburg

Jendrik Seipp
U. Freiburg

Donald Knuth
Stanford U.

Lars Kotthoff
UBC

Jérémy Dubois-Lacoste
U. Libre de Bruxelles

Chris Cameron
UBC

Pascal Kerschke
U. Münster

Jakob Bossek
U. Münster

Bernd Bischl
LMU München

Heike Trautmann
U. Münster

published in 1945; > 1 000 000 copies sold

Marvin Minsky: “everyone should know the work of George Pólya
Marvin Minsky: “ on how to solve problems”

highly praised by Zhores Ivanovich Alferov (2000 Nobel prize in physics)

How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).

Holger Hoos: Learning how to solve it – faster, better and cheaper 2

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

For now, I only consider optimising this step

of Polya’s approach.

How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).

Holger Hoos: Learning how to solve it – faster, better and cheaper 2

The nature of computation

Clear, precise instructions – flawlessly executed

 algorithm

Holger Hoos: Learning how to solve it – faster, better and cheaper 3

The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science.

(Charles Babbage, 1864)

Holger Hoos: Learning how to solve it – faster, better and cheaper 4

The age of computation

“The maths that computers use to de-
cide stu↵ [is] infiltrating every aspect of
our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .

Holger Hoos: Learning how to solve it – faster, better and cheaper 5

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Today, machine learning is "the next big thing".

But some tend to forget that this, too, has a long

history. Even multi-layer neural networks have been

around for a long time ...

Machine learning is old ...

I Alan Turing (1950): Computing machinery and intelligence

I Farley and Clark (1954): Simulation of Self-Organizing
Systems by Digital Computer

I Arthur Samuel (1959): Some Studies in Machine Learning
Using the Game of Checkers

I Paul Werbos (1974): Beyond Regression: New Tools
for Prediction and Analysis in the Behavioral Sciences

I . . .

Holger Hoos: Learning how to solve it – faster, better and cheaper 6

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Of course, there has been much progress recently.

Still, much of it still fits into a few categories

of approaches that have been studied for a while.

Traditional machine learning:

I supervised classification / regression:

Given: set of training data with correct labels
Given: T := {(x1, y1), . . . , (xk, yk)}
Want: function mapping x to y minimising error on T

I unsupervised learning

I semi-supervised learning

I reinforcement learning

NB: learning = optimisation over family of functions (‘models’)

Holger Hoos: Learning how to solve it – faster, better and cheaper 7

Generalised machine learning:

I optimisation over family of algorithms for given problem P

e.g., TSP solvers

I Goal: maximise performance
e.g., expected time for finding optimal solution

I Given: set of problem instances T := {i1, . . . ik}
I Want: algorithm with maximum performance on T

Holger Hoos: Learning how to solve it – faster, better and cheaper 8

The machine learning revolution

manually constructed algorithms

automatic adaptation to given set / distribution of inputs
through optimisation of performance metric (loss minimisation)

machine learning procedures
= meta-algorithms (procedures for optimising algorithm)

Holger Hoos: Learning how to solve it – faster, better and cheaper 9

2

Lo Hi

Holger Hoos: Learning how to solve it – faster, better and cheaper 10

Lo Hi

Holger Hoos: Learning how to solve it – faster, better and cheaper 10

“Parameter optimization for general
broad-spectrum use is a daunting task
[...]

How could then any set of defaults
be recommended, without an enor-
mous expense of time and money?
Fortunately, there’s a way out of this
dilemma, thanks to advances in the
theory of learning.”

Donald Knuth, The Art of Computer Programming,

Vol. 4, Fascicle 6 (Satisfiability), p. 125

Holger Hoos: Learning how to solve it – faster, better and cheaper 11

Knuth’s sat13 (7.2.2.2C) on diverse set of instances
(very easy to medium; trained on very easy only)

10-3

10-2

10-1

100

101

10-3 10-2 10-1 100 101

ru
nn

in
g

ti
m

e
op

ti
m

is
ed

 [
gm

em
]

running time default [gmem]

mean running time 0.572 ! 0.402 gmems;

geometric average speedup: 1.414-fold

Holger Hoos: Learning how to solve it – faster, better and cheaper 12

Knuth’s sat13 (7.2.2.2C) on diverse set of instances
(TAOCP testing instances; trained on very easy)

10-3

10-2

10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103

ru
nn

in
g

ti
m

e
op

ti
m

is
ed

 [
gm

em
]

running time default [gmem]

mean running time 47.4 ! 36.9 gmems;

geometric average speedup: 1.357-fold

Holger Hoos: Learning how to solve it – faster, better and cheaper 13

CPLEX on Wildlife Corridor Design
Hutter, HH, Leyton-Brown (2010)

10-2

10-1

100

101

102

103

104

105

10-2 10-1 100 101 102 103 104 105

C
PL

EX
 o

pt
im

is
ed

 [C
PU

 s
]

CPLEX default [CPU s]

 52.3⇥ speedup on average!

Holger Hoos: Learning how to solve it – faster, better and cheaper 14

The algorithm configuration problem

Given:

I parameterised target algorithm A

with configuration space C

I set of (training) inputs I

I performance metric m

(w.l.o.g. to be minimised)

Want: c
⇤ 2 argminc2C m(A[c], I)

Holger Hoos: Learning how to solve it – faster, better and cheaper 15

Algorithm configuration is challenging:

I size of configuration space

I discrete / categorical parameters

I parameter interactions

I conditional parameters

I performance varies across inputs (problem instances)

I evaluating configurations can be very costly

I censored algorithm runs

 standard optimisation methods are insu�cient

Holger Hoos: Learning how to solve it – faster, better and cheaper 16

Algorithm configuration approaches:

I Advanced sampling methods
(e.g., REVAC, REVAC++ – Nannen & Eiben 2006–09)

I Racing
(e.g., F-Race – Birattari, Stützle, Paquete, Varrentrapp 2002;
Iterative F-Race – Balaprakash, Birattari, Stützle 2007;
irace package – López-Ibáñez, Dubois-Lacoste, Stützle, Birattari 2011;
irace+capping – Péres-Cáceres, López-Ibáñez, HH, Stützle, Birattari 2017)

I Model-free search
(e.g., ParamILS – Hutter, HH, Stützle 2007;
Hutter, HH, Leyton-Brown, Stützle 2009)

I Sequential model-based optimisation
(e.g., SPO – Bartz-Beielstein 2006; SMAC – Hutter, HH, Leyton-Brown
2011–12)

Holger Hoos: Learning how to solve it – faster, better and cheaper 17

Algorithm configuration approaches:

I Advanced sampling methods
(e.g., REVAC, REVAC++ – Nannen & Eiben 2006–09)

I Racing
(e.g., F-Race – Birattari, Stützle, Paquete, Varrentrapp 2002;
Iterative F-Race – Balaprakash, Birattari, Stützle 2007;
irace package – López-Ibáñez, Dubois-Lacoste, Stützle, Birattari 2011;
irace+capping – Péres-Cáceres, López-Ibáñez, HH, Stützle, Birattari 2017)

I Model-free search
(e.g., ParamILS – Hutter, HH, Stützle 2007;
Hutter, HH, Leyton-Brown, Stützle 2009)

I Sequential model-based optimisation
(e.g., SPO – Bartz-Beielstein 2006; SMAC – Hutter, HH, Leyton-Brown
2011–12)

Holger Hoos: Learning how to solve it – faster, better and cheaper 17

Sequential Model-based Optimisation

parameter response

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

new incumbent found!

(Initialisation)
Holger Hoos: Learning how to solve it – faster, better and cheaper 18

Sequential Model-based Algorithm Configuration (SMAC)

Hutter, HH, Leyton-Brown (2011)

I uses random forest model to predict performance
of parameter configurations

I predictions based on algorithm parameters and instance
features, aggregated across instances

I finds promising configurations based on expected improvement

criterion, using multi-start local search and random sampling

I initialisation with single configuration
(algorithm default or randomly chosen)

Holger Hoos: Learning how to solve it – faster, better and cheaper 19

Excellent results on widely studied problems:

I Mixed integer programming (CPLEX):
76 parameters, 2...52⇥ speed-up
Hutter, Leyton-Brown, HH (2010)

I AI Planning (LPG):
62 parameters, 3...118⇥ speed-up
Vallati, Fawcett, Gerevini, HH, Saetti (2011)

I Propositional satisfiability (PbO-CCSAT):
23 parameters, 3..230⇥ speed-up
Luo, HH, Cai (under review)

Holger Hoos: Learning how to solve it – faster, better and cheaper 20

PbO-CCSAT on revenue-optimising spectrum repacking (FCC)
(performance on test instances not used for configuration)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

P
b
O

-C
C

S
A

T
,
P

A
R

1
0

PbO-CCSAT (Default), PAR10

running time (PAR10) 6554 ! 1979 CPU sec;

average speedup on instances solved by both configurations: 50-fold

Holger Hoos: Learning how to solve it – faster, better and cheaper 21

Further success stories:

I garbage collection in Java
Lengauer & Mössenböck (2014)

I bike sharing rebalancing
Dell’Amico et al. (2016)

I Machine learning (Auto-WEKA): 768 parameters
Thornton, Hutter, HH, Leyton-Brown (2013);

Kottho↵, Thornton, HH, Leyton-Brown (2017)

 automated machine learning (AutoML)

Holger Hoos: Learning how to solve it – faster, better and cheaper 22

Communications of the ACM, 55(2), pp. 70–80, February 2012

www.prog-by-opt.net

Total citations for key publications on

automated algorithm configuration

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

I/F-Race (Balaprakash et al. 07, Birattari et al. 10, López-Ibáñez et al. 11)
ParamILS (Hutter et al. 07+09)
GGA/GGA++ (Ansotegui et al. 09+15)
SMAC (Hutter et al. 11)

(Data from Google Scholar; year vs total # citations up that year)

3

LKH2+restart vs EAX+restart

●

●

●

●

●

●

●

●

10−2

10+0

10+2

10+4

10−2 10+0 10+2 10+4

running time LKH2+restart [CPU sec]

ru
nn

in
g

tim
e

E
A

X
+r

es
ta

rt
[C

P
U

 s
ec

]

● national

netgen

rue

tsplib

vlsi

Holger Hoos: Learning how to solve it – faster, better and cheaper 25

Per-instance algorithm selection (Rice 1976):

I Given: set S of algorithms for a problem, problem instance ⇡

I Objective: select from S the algorithm expected to solve ⇡
most e�ciently, based on (cheaply computable) features of ⇡

Note:

Best case performance bounded by oracle, which selects
the best s 2 S for each ⇡ = virtual best solver (VBS)

Holger Hoos: Learning how to solve it – faster, better and cheaper 26

EAX+restart vs perfect selector (VBS)

●

●

●

●

●

●

●

●

10−2

10+0

10+2

10+4

10−2 10+0 10+2 10+4

running time EAX+restart [CPU sec]

ru
nn

in
g

tim
e

or
ac

le
 [C

P
U

 s
ec

]

● national

netgen

rue

tsplib

vlsi

Per-instance algorithm selection

algorithms

Holger Hoos: Learning how to solve it – faster, better and cheaper 27

Per-instance algorithm selection

selector

component
algorithms

feature extractor

Holger Hoos: Learning how to solve it – faster, better and cheaper 27

Key components:

I set of (state-of-the-art) solvers

I set of cheaply computable, informative features

I e�cient procedure for mapping features to solvers (selector)

I training data

I procedure for building good selector based on training data
(selector builder)

Holger Hoos: Learning how to solve it – faster, better and cheaper 28

“The overall champion in 2007 was SATzilla,
which was actually not a separate SAT solver
but rather a program that knew how to
choose intelligently between other solvers an
any given instance. [...]

This ‘portfolio’ approach, which tunes itself
nicely to the characteristics of vastly di↵erent
sets of clauses, has continued to dominate
the international competitions ever since.

Of course portfolio solvers rely on the exis-
tence of ‘real’ solvers, invented indepen-
dently and bug-free, which shine with respect
to particular classes of problems. And of
course the winner of the competition may
not be the best actual system for practical
use.”

Donald Knuth, The Art of Computer Programming,
Vol. 4, Fascicle 6 (Satisfiability), p. 132f.

Holger Hoos: Learning how to solve it – faster, better and cheaper 29

Methods for per-instance selection:

I classification-based: predict the best solver,
e.g., using . . .

I decision trees
(Guerri & Milano 2004)

I case-based reasoning
(Gebruers et al. 2004)

I (weighted) k-nearest neighbours

(Malitsky et al. 2011; Kadioglu et al. 2011)

I pairwise cost-sensitive decision forests + voting
(Xu, Hutter, HH, Leyton-Brown 2012)

I regression-based: predict running time for each solver,
select the one predicted to be fastest
(Leyton-Brown et al. 2003; Xu, Hutter, HH, Leyton-Brown 2007–9)

Holger Hoos: Learning how to solve it – faster, better and cheaper 30

Per-instance selection for the TSP

Kottho↵, Kerschke, HH, Trautmann (2016);
Kerschke, Bossek, Kottho↵, HH, Trautmann (2017)

I use 5 high-performance inexact TSP solvers

I consider large benchmark collection (TSPLIB, VLSI, RUE, ...)

I build per-instance selectors using range of feature sets,
feature selection + machine learning methods

I assess using cross-validation

Holger Hoos: Learning how to solve it – faster, better and cheaper 31

Results (PAR10):

I single best solver (EAX+restart): 36.30 CPU sec

I regression-based selector (based on SVM): 16.75 CPU sec

I oracle: 10.73 CPU sec

Holger Hoos: Learning how to solve it – faster, better and cheaper 32

Excellent results for many other problems:

I SAT SAT competitions
(e.g., Xu, Hutter, HH, Leyton-Brown 2008, 2012)

I AI planning
(e.g., Helmert, Röger, Karpas 2011)

I Container pre-marshalling
(e.g., Tierney & Malitsky 2015)

I . . .

 ASlib (Bischl et al. 2016)

Holger Hoos: Learning how to solve it – faster, better and cheaper 33

Combining configuration and selection:

I performance complementarity between
di↵erent configurations of given solver
 selection over automatically determined configurations
 (e.g., Xu, Hutter, HH, Leyton-Brown 2011

I many design choices in selector construction,
di↵erent selectors perform best in di↵erent applications

 AutoFolio = automatic configuration of algorithm selectors
 (Lindauer, HH, Hutter, Schaub 2015)

Holger Hoos: Learning how to solve it – faster, better and cheaper 34

Recap

1. The machine learning revolution

2. Which parameter settings? (algorithm configuration)

3. Which solver? (algorithm selection)

Holger Hoos: Learning how to solve it – faster, better and cheaper 35

Wait a second ...

Faster: X

Better?Better: X
AutoML; Hutter, HH, Leyton-Brown (2010); Pagnozzi & Stützle (2018); ...

Cheaper?Cheaper: X
running time, manual performance optimjsation = money

Holger Hoos: Learning how to solve it – faster, better and cheaper 36

Recap

1. The machine learning revolution

2. Which parameter settings? (algorithm configuration)

3. Which solver? (algorithm selection)

4. Where the road goes ...

Making automated solver construction accessible

I problem: automated solver design methods (AS,AC,...)
problem: require substantial expertise, experience to use
 full potential currently not exploited

I idea: develop abstractions & platform
idea: to facilitate use, development
 substantially lowered barrier to entry

I proof-of-concept: algorithm selection for SAT
 Sparkle platform, Sparkle SAT Challenge

Holger Hoos: Learning how to solve it – faster, better and cheaper 37

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

When we develop or assess algorithms, we often

think of that process like a competition, a race.

(And sometimes, as in SAT, we even have

prominent competitions.)

In a competition, all the glory goes to the winner;

Even the 2nd and 3rd place pale in comparison.

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Instead, we want to give a single gold medal,

but cut it into pieces, recognising how much

every competitor contributes to the state of the art

in solving a given class of problem instances.

olympics.jpg

Sparkle SAT Challenge 2018

I part of FLoC Olympic Games, coordinated with
2018 SAT Competition

I launched March 2018, leader board phase 5–15 April,
final results @ FLoC 2018 (July)

I 23 solvers submitted
(19 open-source, 4 closed-source, hors concours)

I details: http://ada.liacs.nl/events/sparkle-sat-18

Holger Hoos: Learning how to solve it – faster, better and cheaper 39

Improvement over time, including hors-concours solvers

 0

 1000

 2000

 3000

 4000

 5000

 6000

1st leader board (training)

last leader board (training)

final (training)
final (testing)

PA
R2

 [C
PU

 s
ec

]
SBS Sparkle Selector VBS

Holger Hoos: Learning how to solve it – faster, better and cheaper 40

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Notice how the best stand-alone performance

only improves right after the leaderboard phase,

when some competitors who have held back their

solvers finally submit them.

Notice also how the selector and the VBS improve

throughout the leaderboard phase and beyond.

Test data was the same as in the SAT competition,

and quite different from training data.

Still, the selector performs well.

Stand-alone and relative marginal contribution
on testing set, with hors-concours solvers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

VBS
Sparkle Selector

Maple_LCM_Dist_sparkle (SBS)

ReasonLS

CryptoMiniSatv5.5

SparrowToRiss-2018

MapleCOMSPS_LRB_VSIDS_2_no_drup_sparkle

COMiniSatPS_Pulsar_sparkle

Riss7
smallsat

CaDiCaL

Lingeling

Riss7-no-preprocessor

abcdsat_n18sparkle_closed_source

glu_mix

BreakIDGlucoseSEL

minisat-2.2.0_PADC

Minisat-v2.2.0-68-g37dc6c6

glucose-3.0_PADC

gluHack

CPSparrow

UPLS
YalSAT

Dimetheus

probSAT

 0

 20

 40

 60

 80

 100

PA
R2

 [C
PU

 s
ec

]

re
l m

ar
gi

na
l c

on
tr

ib
ut

io
n

[%
]

Holger Hoos: Learning how to solve it – faster, better and cheaper 41

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

The best solvers are very close w.r.t.

stand-alone performance

(typical for SAT competition).

The selector and VBS are much better.

Stand-alone and relative marginal contribution
on testing set, with hors-concours solvers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Maple_LCM_Dist_sparkle

ReasonLS

CryptoMiniSatv5.5

SparrowToRiss-2018

MapleCOMSPS_LRB_VSIDS_2_no_drup_sparkle

COMiniSatPS_Pulsar_sparkle

Riss7
smallsat

CaDiCaL

Lingeling

Riss7-no-preprocessor

abcdsat_n18sparkle_closed_source

glu_mix

BreakIDGlucoseSEL

minisat-2.2.0_PADC

Minisat-v2.2.0-68-g37dc6c6

glucose-3.0_PADC

gluHack

CPSparrow

UPLS
YalSAT

Dimetheus

probSAT

 0

 20

 40

 60

 80

 100

PA
R2

 [C
PU

 s
ec

]

re
l m

ar
gi

na
l c

on
tr

ib
ut

io
n

[%
]

Holger Hoos: Learning how to solve it – faster, better and cheaper 41

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

Notice how the best stand-alone solver

does not make the biggest contribution to the selector.

Some very low-ranked solvers contribute very similarly.

Advantages over traditional competition:

I makes it easier to gain recognition for specialised techniques

I better reflects and makes accessible state of the art

I provides incentive to improve true state of the art

Further use of Sparkle:

I continuous solver evaluation (as community service)

I specialised application contexts (reduced solver sets)

I experimentation platform for algorithm selection,
configuration, programming by optimisation (PbO)

Holger Hoos: Learning how to solve it – faster, better and cheaper 42

Take-home message:

I AI revolution: explicit automated programming

I Machine learning =⇢ automated performance optimisation

Machine learning ⇢ automated algorithm design

) great potential for OR!

I Meta-algorithmic techniques (configurators, selectors, . . .):
powerful, useful, readily available;
key to better MIP, TSP, CP, SAT, SMT, ..., ML, AI

I Next: Make those easily accessible + broadly usable
 Sparkle (community e↵ort)

Holger Hoos: Learning how to solve it – faster, better and cheaper 43

How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).

[This slide was not used during the presentation; it was added to make it easier to follow the slide deck.]

There might be the potential to automate more of Polya’s

approach.

How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).

How to solve it:

1. Understand the problem.

2. Devise a plan (translate).

3. Carry out the plan (solve).

4. Look back (check and reinterpret).

Bigger picture:

I Part of broader e↵ort: Automation of AI (AutoAI)
(prominent special case: AutoML)

 advancement + democratisation of AI

I Sparkle, PbO use key AI techniques + (lots of) computation
to leverage human ingenuity + intuition

I Human-centred AI:
AI that augments, not replaces, human intelligence

) Auto-OR ?!!

Holger Hoos: Learning how to solve it – faster, better and cheaper 45

